(3.238.249.17) 您好!臺灣時間:2021/04/14 13:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳軍佐
研究生(外文):Chen, Chun-Tso
論文名稱:旋轉球體與非球體之流場特性分析
論文名稱(外文):Analysis of Flow Field Characteristics of Rotating Spheres and Non-Spheres Objects
指導教授:蔡順峯
指導教授(外文):Tsai, Shun-Feng
口試委員:蔡順峯林瑞國李賢德
口試委員(外文):Tsai, Shun-FengLin, Reui-KuoLee, Hsien-Der
口試日期:2019-01-12
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:60
中文關鍵詞:旋轉球體計算流體力學運動軌跡流場對稱性
外文關鍵詞:Rotating spherecomputational fluid dynamicsmotion trajectoryflow fieldsymmetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
旋轉球體在運動過程中,其運動狀態各不相同,運動速度以及旋轉速度各不相同,應瞭解旋轉球體之旋轉速度大小與方向性。球體旋轉通常分為左旋、側旋、上旋、下旋、順旋以及逆旋,但在旋轉球體運動過程中的旋轉通常是以上六大旋轉中多種旋轉綜合作用。本論文研究係採用計算流體力學(computational fluid dynamics, 簡稱CFD)方法獲取旋轉球體在不同運動狀態下的流場及運動軌跡,與運動學求解方法進行比較驗證CFD方法的優勢。本論文研究採用CFD數值方法對旋轉球體在不同轉速大小方向運動進行模擬計算,對比分析不同方法對於旋轉球體之流場特性與運動軌跡的影響。吾人由結果得知:基於CFD方法的計算結果比運動學求解方法更符合實際;旋轉方向對旋轉球體的運動軌跡有很大影響,上旋球軌跡偏低,下旋球軌跡偏高,側旋球軌跡向左向偏轉;旋轉速度對旋轉球體的軌跡也有很大影響,上旋球球體的旋轉速度越大其落點距離越近;球體的旋轉運動將導致更為複雜的流場狀態。而對於旋轉球體運動的流場特性模擬與分析可知:相比於無旋轉球體,旋轉球體之流場分佈較為複雜,無旋轉球體速度及壓力流場具有對稱性,旋轉球體因受旋轉作用其流場不具有對稱性。本文研究結果可提供運動選手(如棒球、棒球球體等)在訓練過程中,可藉此找出更新穎的變化球種、打擊時機點或球路判斷點,提高選手掌握球體擊球點軌跡可控性的參考與依據。
During the movement of the rotating sphere, depending on its motion state, movement speed and rotation speed, the rotation speed and direction of the rotating sphere should be known in detail. The rotation of the sphere is usually divided into left-handed, side-pinned, up-spindle, down-spin, spin-spin, and counter-rotation, but the rotation during the rotation of the rotating sphere is usually a combination of multiple rotations in the above six major rotations. In this thesis, the computational fluid dynamics (CFD) method is used to obtain the flow field and motion trajectory of the rotating sphere under different motion states. The advantages of the CFD method are verified by comparison with the kinematic solution method. In this thesis, the CFD numerical method is used to simulate the motion of rotating spheres in different rotational speeds. The effects of different methods on the flow field characteristics and motion trajectories of rotating spheres are compared and analyzed. From the results, we know that the calculation results based on the CFD method are more realistic than the kinematics solution method; the rotation direction has a significant influence on the trajectory of the rotating sphere. The upper spiral track is low, the lower spin track is high, and the side spin track is deflected to the left. The rotational speed also has a significant influence on the trajectory of the rotating sphere. The higher the rotational speed of the topspin sphere, the closer the falling point distance; the rotational motion of the sphere will lead to a more complicated flow field state. For the simulation and analysis of the flow field characteristics of the rotating sphere, it can be seen that the flow field distribution of the rotating sphere is more complicated than that of the non-rotating sphere. There is no symmetry of the rotating sphere velocity and the pressure flow field, and the rotating sphere is subjected to the unsymmetrical rotating flow field. The results of this research can provide sports players in the training process, which can be used to find newer changes in the ball type, hitting the timing point or the ball path judgment point, and improve the player's grasp of the ball hitting point track.
目錄
誌謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XII
符號索引 XIII
第一章、前言 1
1.1 研究背景 1
1.1.1 棒球的歷史演進 2
1.1.2 硬式棒球的由來 3
1.1.3 各式球種的由來 4
1.2 文獻回顧 1
1.2.1 作用在飛行棒球上之力的來源 2
1.2.2 阻力 3
1.2.3 升力 4
1.2.4 尾流 8
1.2.4 風洞實驗 10
1.3 研究方法 1
1.4 研究內容與大綱 1
第二章、球體的結構 3
2.1 棒球結構 3
2.2 球皮粗細與飛行距離 3
2.3 幾何模型與網格系統 4
2.4 飛行軌跡探討相關文獻 7
第三章、數學模式 9
3.1 統御方程式 9
3.2 紊流模式 11
3.2.1 大渦紊流模型(Large Eddy Simulation, LES) 12
3.2.2 紊流傳遞模式(Turbulent Transport Models, TTM) 13
3.3 數值模式 14
3.3.1 對流項 15
3.3.2 平行運算 15
3.4 邊界條件 16
3.5 模擬分析流程 17
3.6 程式操作設定 20
第四章、模擬結果與討論 22
4.1 三維球體與網格無關測試 22
4.2 三維球體二縫線分析 24
4.3 三維球體四縫線分析 32
4.4 三維球體旋轉分析 40
4.4 尾流對運動軌跡的影響 47
第五章、結論與建議 53
5.1 結論 54
5.2 建議 56
參考文獻 57


圖目錄
圖1.1 作用在飛行棒球上的力 4
圖1.2 變化球(a)扣手腕的動作;(b)球體上表面的氣流 5
圖1.3 變化球(a)直球的尾勁;(b)垂直於運動方向的側力及(c)不對稱剝離球體 5
圖1.4球體周圍之邊界層性質 (資料來源:Anderson, 1991) 2
圖1.5 棒球飛行時,其球面上所受到的壓力與剪應力 3
圖1.6 不同雷諾數下的阻力係數 (資料來源: Landau &Lifshitz, Fluid Mechanics) 6
圖1.7 雷諾數與阻力係數之關係 (資料來源: Morrison 2013) 6
圖1.8 從打擊者方向看過去的各種右投手變化球的旋轉方向 6
圖1.9 馬格那斯力示意圖 (資料來源:Susan[20], 2003) 7
圖1.10 球體因旋轉方式Top-spin(旋轉前進)和Back-spin(逆旋)而產生不同方向之力(資料來源:Susan[20], 2003) 7
圖1.11 圓柱旋轉落水產生的馬格那斯效應 (資料來源:Hermans[21], 2005) 8
圖1.12 不同角速度下球體的升力係數與雷諾數之關係 (資料來源: Oesterléet al., 1998) 8
圖1.13 尾流的型態變化圖 (資料來源: Thompson et al., 2001) 9
圖1.14 在不同Re下,通過圓球所產生尾流的流線(資料來源: Taneda, 1956) 9
圖1.15 (a)雷諾數400及450時阻力係數有週期性變化的時序圖;(b)尾流分離角度與雷諾數之關係(資料來源: Lee, 2000) 10
圖1.16 風洞實驗棒球飛行 11
圖1.17 風洞實驗中的棒球飛行 (資料來源:Am.J.Phys.27, p589-596, 1959) 11
圖1.18 風洞實驗攝影:(a)網球在旋轉情形下之風洞實驗(Goodwill[40], 2004);(b)圓柱障礙物之煙霧擴散流場(Mavroidis[41], 2003) 12
圖2.1 球皮粗細與飛行距離 4
圖2.2 棒球的幾何模型及尺寸 5
圖2.3二維複合式網格 6
圖2.4 三維網格系統 6
圖2.5 三維非結構式網格計算域 7
圖2.6 三維結構式網格計算域 7
圖2.7 軟式棒球與硬式棒球 8
圖3.1 多顆CPU之平行運算系流示意圖 16
圖3.2 格點計算域分割示意圖 16
圖3.3 邊界條件及計算域尺寸示意圖(D=42.6 mm) 17
圖3.4 基本計算程序結構示意圖 19
圖3.5 結構化網格及座標系統示意圖 21
圖3.6 非結構化網格及座標系統示意圖 21
圖4.1 邊界條件及計算域尺寸示意圖(D=42.6 mm) 23
圖4.2 與網格數量無關之適當性比較 24
圖4.3 三維圓球二縫線模擬結果之壓力pressure等高線分佈(時間t=0.24 sec) 24
圖4.4 三維圓球二縫線模擬結果之streamstace分佈(時間t=0.24 sec) 25
圖4.5 三維圓球二縫線模擬結果之速度velocity等高線分佈(時間t=0.24 sec) 25
圖4.6 三維圓球二縫線模擬結果之vorticity分佈(時間t=0.24 sec) 25
圖4.7 三維圓球二縫線模擬結果之壓力pressure等高線分佈(時間t=0.45 sec) 26
圖4.8 三維圓球二縫線模擬結果之streamstace分佈(時間t=0.45 sec) 26
圖4.9 三維圓球二縫線模擬結果之速度velocity等高線分佈(時間t=0.45 sec) 26
圖4.10 三維圓球二縫線模擬結果之vorticity分佈(時間t=0.45 sec) 27
圖4.11 三維圓球二縫線模擬結果之壓力pressure等高線分佈(時間t=0.6 sec) 27
圖4.12 三維圓球二縫線模擬結果之streamstace分佈(時間t=0.6 sec) 28
圖4.13 三維圓球二縫線模擬結果之速度velocity等高線分佈(時間t=0.6 sec) 28
圖4.14 三維圓球二縫線模擬結果之vorticity分佈(時間t=0.6 sec) 29
圖4.15 維圓球二縫線模擬結果之壓力pressure等高線分佈 29
圖4.16 三維圓球二縫線模擬結果之streamstace分佈 30
圖4.17 三維圓球二縫線模擬結果之速度velocity等高線分佈 30
圖4.18 三維圓球二縫線模擬結果之vorticity分佈 30
圖4.19 三維圓球二縫線之阻力分佈(drag)與隨時間變化之頻率大小(amplitude) 31
圖4.20 三維圓球二縫線之升力分佈(lift)與隨時間變化之頻率大小(amplitude) 31
圖4.21 三維圓球四縫線模擬結果之壓力pressure等高線分佈(時間t=0.42 sec) 33
圖4.22 三維圓球四縫線模擬結果之streamstace分佈(時間t=0.42 sec) 33
圖4.23 三維圓球四縫線模擬結果之速度velocity等高線分佈(時間t=0.42 sec) 34
圖4.24 三維圓球四縫線模擬結果之vorticity分佈(時間t=0.42 sec) 34
圖4.25 三維圓球四縫線模擬結果之壓力pressure等高線分佈(時間t=0.54 sec) 35
圖4.26 三維圓球四縫線模擬結果之streamstace分佈(時間t=0.54 sec) 35
圖4.27 三維圓球四縫線模擬結果之速度velocity等高線分佈(時間t=0.54 sec) 35
圖4.28 三維圓球四縫線模擬結果之vorticity分佈(時間t=0.54 sec) 36
圖4.29 三維圓球四縫線模擬結果之壓力pressure等高線分佈(時間t=0.6 sec) 37
圖4.30 三維圓球四縫線模擬結果之streamstace分佈(時間t=0.6 sec) 37
圖4.31 三維圓球四縫線模擬結果之速度velocity等高線分佈(時間t=0.6 sec) 38
圖4.32 三維圓球四縫線模擬結果之vorticity分佈(時間t=0.6 sec) 38
圖4.33 三維圓球四縫線之阻力分佈(drag)與隨時間變化之頻率大小(amplitude) 39
圖4.34 三維圓球四縫線之升力分佈(lift)與隨時間變化之頻率大小(amplitude) 39
圖4.35 三維圓球四縫線之Q-criterion分佈 39
圖4.36 三維圓球施以旋轉外力模擬結果之壓力pressure等高線分佈(時間t=0.42 sec) 40
圖4.37 三維圓球施以旋轉外力模擬結果之streamstace分佈(時間t=0.42 sec) 41
圖4.38 三維圓球施以旋轉外力模擬結果之速度velocity等高線分佈(時間t=0.42 sec) 41
圖4.39 三維圓球施以旋轉外力模擬結果之vorticity分佈(時間t=0.42 sec) 42
圖4.40 三維圓球施以旋轉外力模擬結果之壓力pressure等高線分佈(時間t=0.54 sec) 43
圖4.41 三維圓球施以旋轉外力模擬結果之streamstace分佈(時間t=0.54 sec) 43
圖4.42 三維圓球施以旋轉外力模擬結果之速度velocity等高線分佈(時間t=0.54 sec) 43
圖4.43 三維圓球施以旋轉外力模擬結果之vorticity分佈(時間t=0.54 sec) 44
圖4.44 三維圓球施以旋轉外力模擬結果之壓力pressure等高線分佈(時間t=0.6 sec) 44
圖4.45 三維圓球施以旋轉外力模擬結果之streamstace分佈(時間t=0.6 sec) 44
圖4.46 三維圓球施以旋轉外力模擬結果之速度velocity等高線分佈(時間t=0.6 sec) 45
圖4.47 三維圓球施以旋轉外力模擬結果之vorticity分佈(時間t=0.6 sec) 45
圖4.48 三維圓球四縫線之阻力分佈(drag)與隨時間變化之頻率大小(amplitude) 46
圖4.49 三維圓球四縫線之升力分佈(lift)與隨時間變化之頻率大小(amplitude) 46
圖4.50 三維圓球軸心(axis)模擬結果之壓力pressure等高線分佈(時間t=0.42 sec) 48
圖4.51 三維圓球軸心(axis)模擬結果之streamstace分佈(時間t=0.42 sec) 48
圖4.52 三維圓球軸心(axis)模擬結果之速度velocity等高線分佈(時間t=0.42 sec) 48
圖4.53 三維圓球軸心(axis)模擬結果之vorticity分佈(時間t=0.42 sec) 48
圖4.54 三維圓球軸心(axis)模擬結果之壓力pressure等高線分佈(時間t=0.54 sec) 49
圖4.55 三維圓球軸心(axis)模擬結果之streamstace分佈(時間t=0.54 sec) 49
圖4.56 三維圓球軸心(axis)模擬結果之速度velocity等高線分佈(時間t=0.54 sec) 49
圖4.57 三維圓球軸心(axis)模擬結果之vorticity分佈(時間t=0.54 sec) 50
圖4.58 三維圓球軸心(axis)模擬結果之壓力pressure等高線分佈(時間t=0.6 sec) 50
圖4.59 三維圓球軸心(axis)模擬結果之streamstace分佈(時間t=0.6 sec) 50
圖4.60 三維圓球軸心(axis)模擬結果之速度velocity等高線分佈(時間t=0.6 sec) 51
圖4.61 三維圓球軸心(axis)模擬結果之vorticity分佈(時間t=0.6 sec) 51
圖4.62 三維圓球軸心(axis)之阻力分佈(drag)與隨時間變化之頻率大小(amplitude) 51
圖4.63 三維圓球軸心(axis)之升力分佈(lift)與隨時間變化之頻率大小(amplitude) 52


表目錄
表1.1 不同年代學者的臨界雷諾數及尾流現象的研究結果 10
表3.1 數值模擬解法設定 18
表3.2 計算流體力學商業軟體 19
參考文獻
[1] 蔡嘉晉,飛砂運動的模擬及其編籬定砂的應用,交通大學土木工程系所學位論文,2013
[2] 孫在,余廣鑫,郭美,朱麗莉,楊軍,何正兵, 乒乓球弧圈球的空氣動力學原理及其飛行軌跡的模擬分析,體育科學,2008
[3] 3.Barkla, H., & Auchterlonie, L., The Magnus or Robins effect on rotating spheres,Journal of Fluid Mechanics, 47(3), 437-447, 1971.
[4] Chegroun, N., & Oesterle, B., Etude Numérique de la Trainee, de la Portance et du Couple sur une sphere en translation et en rotation,Actes 11éme Congrés Francais Mecanique, Lille-Villeneuve d’Ascq, France, 3, 81-84, 1993.
[5] Chester, W., Breach, D., & Proudman, I., On the flow past a sphere at low Reynolds number,Journal of Fluid Mechanics, 37(4), 751-760, 1969.
[6] Goldstein, S.,Concerning some solutions of the boundary layer equations in hydrodynamics,Paper presented at the Mathematical Proceedings of the Cambridge Philosophical Society,1930.
[7] Johnson, T., & Patel, V., Flow past a sphere up to a Reynolds number of 300,Journal of Fluid Mechanics, 378, 19-70, 1999.
[8] Jones, D., &Clarke, D., Simulation of the flow past a sphere using the Fluent Code,2008.
[9] Kim, I., & Pearlstein, A. J., Stability of theflow past a sphere,Journal of Fluid Mechanics, 211, 73-93, 1990.
[10] Lee, S., A numerical study of the unsteady wake behind a sphere in a uniform flow at moderate Reynolds numbers, Computers & Fluids, 29(6), 639-667, 2000.
[11] Liao, S.-J., A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate,Journal of Fluid Mechanics, 385, 101-128, 1999.
[12] Magarvey, R., & Bishop, R. L., Transition ranges for three-dimensional wakes,Canadian Journal of Physics, 39(10), 1418-1422, 1961.
[13] Maxworthy, T., Accurate measurements of sphere drag at low Reynolds numbers,Journal of Fluid Mechanics, 23(2), 369-372, 1965.
[14] Morrison, F. A., Data correlation for drag coefficient for sphere,Department of Chemical Engineering, Michigan Technological University, Houghton, MI, 2013.
[15] Ockendon, J., & Evans, G., The drag on a sphere in low Reynolds number flow,Journal of Aerosol Science, 3(4), 237-242, 1972.
[16] Oesterlé, B., & Dinh, B. T., Experiments on the lift of a spinningsphere in a range of intermediate Reynolds numbers, Experiments in Fluids, 25(1), 16-22, 1998.
[17] Ormières, D., Etude expérimentale et modélisation du sillage d'une sphère à bas nombre de Reynolds,1999.
[18] Ormières, D., & Provansal, M., Transition to turbulence in the wake of a sphere, Physical review letters, 83(1), 80, 1999.
[19] Oseen, C., Ueber die stokes’ sche formel, und iiber eine venvandt. e aufgabe in der hydrodynamik. Ark. Math. Astronom. Fys, 6,1910.
[20] Ou, K., Castonguay, P., & Jameson, A., Computational sports aerodynamics of a moving sphere: Simulating a ping pong ball in free flight,Paper presented at the 29th AIAA Applied Aerodynamics Conference, Hawaii,2011.
[21] Proudman, I., & Pearson, J., Expansions at small Reynolds numbers for theflow past a sphere and a circular cylinder, Journal of Fluid Mechanics, 2(3), 237-262, 1957.
[22] Roos, F. W., & Willmarth, W. W., Some experimental results on sphere and disk drag, AIAA Journal, 9(2), 285-291, 1971.
[23] Ishikawa, S., Cho, H., Tsukahara, Y., Nakaso, N. and Yamanaka, K., 2003, “Analysis of spurious bulk waves in ball surface wave device,” Ultrasonics 41, pp. 1–8.
[24] Oppenheimer, C. H. and Dubowsky, S., 2003 “A methodology for predicting impact-induced acoustic noise in machine systems,” Journal of Sound and Vibration 266, pp. 1025–1051.
[25] Singer, B. A., Lockard, D. P. and Lilley, G. M., 2003, “Hybrid Acoustic Predictions,” Computers and Mathematics with Application 46, pp. 647-669.
[26] Fujisawa, N. and Takeda, G., 2003, “Flow control around a circular cylinder by internal acoustic excitation,” Journal of Fluids and Structures 17, pp. 903-913.
[27] Hall, J. W., Ziada, S. and Weaver, D. S., 2003 “Vortex-shedding from single and tandem cylinders in the presence of applied sound,” Journal of Fluids and Structures 18, pp. 741-758.
[28] Fujisawa, N., Takeda, G. and Ike, N., 2004, “Phase-averaged characteristics of flow around a circular cylinder under acoustic excitation control,” Journal of Fluids and Structures 19, pp. 159-170.
[29] Cox, J. S., Rumsey, C. L., Brentner, K. S. and Younis, B. A., 1997, “Computation of Sound Generated by Viscous Flow Over a Circular Cylinder,” NASA Technical Memorandum 110339, pp. 1-10.
[30] Montavon, C., Jones, I. P., Szepessy, S., Henriksson, R., Hachemi, Z., Dequand, S., Piccirillo, M., Tournour, M. and Tremblay, F., 2002, “Noise propagation from a cylinder in a cross flow: comparison of SPL from measurements and from a CAA method based on a generalized acoustic analogy,” IMA Conference on Computational Aeroacoustics, pp. 1-14.
[31] Nishi, A., Kikugawa, H., Matsuda, Y. and Tashiro, D., 1999, “Active control of turbulence for an atmospheric boundary layer model in a wind tunnel,” Journal of Wind Engineering and Industrial Aerodynamics 83, pp. 409-419.
[32] Goodwill, S. R., Chin, S. B. and Haake, S. J., 2004, “Aerodynamics of spinning and non-spinning tennis balls,” Journal of Wind Engineering and Industrial Aerodynamics 92, pp. 935–958.
[33] Mavroidis, I., Griffiths, R. F. and Hall, D. J., 2003, “Field and wind tunnel investigations of plume dispersion around single surface Baker, C. J., Jones, J., Lopez, C. F. and Munday, J., 2004, “Measurements of the cross wind forces on trains,” Journal of Wind Engineering and Industrial Aerodynamics 92, pp. 547–563.
[34] Lieberman, B., 1990, “Estimating lift and drag coefficients from golf ball trajectories,” Science and Golf: Proc. 1st World Scientific Congress of Golf, pp. 187-198.
[35] Smits, A. J. and Smith, D. R., 1995, “A new aerodynamic model of a golf ball in flight,” in Science and Golf II, Proceedings of the 1994 World Scientific Congress of Golf, pp. 340–347.
[36] Tavares, G., Shannon, K. and Melvin, T., 1999 “Golf ball spin decay model based on radar measurements,” in Science and Golf III, Proceedings of the 1998 World Scientific Congress of Golf, pp. 464–472.
[37] Jong, H. P. and Young, J. L., 2003, “Robust visual servoing for motion control of the ball on a plate,” Mechatronics 13, pp. 723–738.
[38] Baca, A., 1997, “Spatial reconstruction of marker trajectories from high-speed video image sequences,” Med. Eng. Phys. Vol. 19, No. 4, pp. 367-374.
[39] 佐野正樹、廣安知之、三木光範、角田昌也、植田勝彥、大貫正秀,2002,Detetcion of Rotation Angle of Golf Ball with Parallel Distribute Genetic Algorithm,日本機械學會第15 回計算力學講演會講演論文集,No.02-02, pp. 51-52
[40] Suzuki, S. and Inooka, H., 1998, “A New Golf-Swing Robot Model Utilizing Shaft Elasticity,” Journal of Sound and Vibration, 217(1), No. sv981733, pp. 17-31.
[41] Gregory, S. S., Mont, H. and William, J. S., 2003, “How to hit home runs: Optimum baseball bat swing parameters for maximum range trajectories,” Am. J. Phys., Vol. 71, No.11, pp. 1152-1162.
[42] Andrew, W. N., 1999, “Forces that govern a baseball’s flight path,” Physics Department, The College of Wooster, pp. 1-5.
[43] http://www.cfdesign.com/customerbriefs/topflite_img.asp
[44] Schlichting, H., 1979, “Boundary-Layer Theory, 7th ed.,” New York: McGraw-Hill.
[45] Fluent Inc., 2002, “Aero-Noise Prediction of Flow Across a Circular Cylinder,” Fluent 6.1 Tutorial Guide.
電子全文 電子全文(網際網路公開日期:20240220)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔