跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許雅紋
研究生(外文):Hsu, Ya-Wan
論文名稱:長餘暉螢光體環境耐候性研究
論文名稱(外文):Investigation on environmental durability for long lasting phosphors
指導教授:張宏宜
指導教授(外文):Chang, Horng-Yi
口試委員:洪逸明楊永欽張宏宜
口試委員(外文):Hon, Yi-MingYang, Yung-ChinChang, Horng-Yi
口試日期:2019-06-14
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:52
中文關鍵詞:綠色長餘暉耐候性核/殼結構螢光體明視強度
外文關鍵詞:green long afterglowweather-resistancecore-shell phosphorsdistinct
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
白光照射後發射520nm綠色長餘暉的SrAl2O4:Eu2+,Dy3+ (SAO)螢光體易受空氣中的水氣與CO2甚至鹽份侵襲,在應用上需進一步做環境耐候性研究改進。固態法製備SrAl2O4:Eu2+,Dy3+螢光粒子,經泡水測試,發現螢光粒子無法承受太久的浸泡時間,僅1小時後的光致發光與長效性螢光已經衰減殆盡。為了克服SAO抗濕性的耐候問題?本研究對固態法製備的SAO採用B2O3披覆技術形成(SAO/BO)核殼式結構,使B2O3披覆層具有增進SAO光學特性及耐候性。
在泡水的加速實驗中,SAO/BO能延長水解時間至4小時仍具發光性質,12小時測試後產生水解反應形成SrCO3與Al2(OOH)2。為了SAO/BO實際室外應用之耐候性鑑定,SAO/BO核/殼結構螢光體與蝶谷巴特膠(DG)均勻混練成塗料,塗佈在壓克力基材上製作成試片。首先進行泡水加速實驗,泡水1週後仍能維持一定的光致發光與長效性餘暉強度,在足夠肉眼可視強度以上。進一步使用SAO/BO螢光體與蝶谷巴特膠(DG)混練的塗料,繪製成小丑魚夜光看板,將其置於高濕度、高鹽份之基隆海科館潮境海邊進行長時間耐候測試,也做為潮境觀光之亮點。同時取樣分析結晶、微結構、光致發光與長效性餘暉量測分析。經兩週後分析螢光體結晶強度約僅為測試前之20%。包覆SAO顆粒的非晶質B2O3層在兩週測試後出現劣化,使SAO顆粒曝露分離,但仍存披覆的B2O3殼層在SAO表面。第四週後結晶劣化趨於穩定,綠色SAO螢光體在蝶谷巴特膠(DG)與非晶B2O3保護下可具耐候性。對觀賞者來說,長餘暉效果最明顯感受是60秒內的視覺!小丑魚夜光看板承受環境實測下,十週後第10分鐘的餘暉強度都還在明視強度。本研究結果確認SAO/BO核/殼結構螢光體具有耐候性之長效保存性;結合蝶谷巴特膠(DG)混練成的塗料在高濕度、高鹽份的環境侵蝕下,十週後維持肉眼明視之穩定餘暉強度,證明核/殼夜光長餘暉塗料具有長時效耐候性,利於顯像、指標等之應用。
The long persistent phosphors of SrAl2O4:Eu2+,Dy3+ (SAO) emit green light of 520 nm wavelength after white light excitation. Such phosphors are sensitive to humidity, CO2 and high salinity environment attack. The weather-resistance is required for the phosphor applications. In this study, the solid-state method prepared SAO phosphors are immersing in water for accelerated life test. Such SAO phosphors are water-endurable only 1 hour to destroy the SAO structure and optical properties degradation. In order to improve the weather-resistance of the SAO phosphors, the SAO particles are processed by B2O3 coating to form the type of core-shell structure SAO/BO. The shell of B2O3 forms buffer layer to improve the optical properties and to protect the SAO from wet environment attack effectively.
During the accelerated life test, the SAO/BO can endure the hydrolysis time to 4 hours but decomposes into SrCO3 and Al2(OOH)2 after 12 hours. For the outside environmental applications, the synthesized SAO/BO phosphors are mixed with Decoupage Glue (DG) to be a paste, then coating on some acrylic plates. They are subjected to accelerated life test firstly. The DG mixed samples maintain the long afterglow/photoluminescence brightness for distinct vision of human eyes after water immersion in one week. Further, the paste is painted as a kind of clownfish pattern on an acrylic plate to hang on the wall of a building in the National Museum of Marine Science and Technology (NMMST) by the Keelung beach. Those phosphor plates are subjected to weather-resistant test and compare to material analyses of crystal structure, microstructure and long afterglow measurement. The XRD intensity decreases to 20% peak intensity of original SAO/BO phosphor after two weeks test. The shell B2O3 surrounding SAO particles degrades after two weeks as to exposing the SAO particles. The B2O3 coverage is still coating on the SAO surface even four weeks exposure to the beach weather. The crystal degradation tends to stability after four weeks test. The DG and B2O3 layer play the role of weather-resistance for the SAO green long afterglow phosphors. Comparing the clownfish brightness with sampling data, it indicates the high emitting intensity at the first one minute recording. Generally, the most obvious vision impact on the human eyes is during the earliest time of 60 seconds. The results confirm the SAO/BO phosphors can stand up to high humidity and high salinity environment even ten weeks longer exposure. The stable afterglow intensity is sustained 10 minutes above distinct vision of human eyes. Thus, the B2O3 layer protected phosphors provide persistent intensity to weather-resistance for the display and indicator applications.
目錄.....................................頁次
中文摘要…………………………………………………………………………….. I
Abstract…………………………………………………………………………….... II
目錄……………………………………………………………………………….…III
圖目錄………………………………………………………………………………..V
表目錄……………………………………………………………………………….IⅩ
第一章 緒論與文獻回顧 1
1.1無機螢光材料組成 1
1.2無機螢光材料特性 2
1.2.1 濃度焠滅 2
1.2.2 溫度淬滅 4
1.2.3 史托克位移△S (Stokes shift) 4
1.3長、短效螢光(螢光、磷光、蓄光) 5
1.3.1 短效螢光(螢光、磷光) 5
1.3.2 長效螢光(長餘暉夜光/蓄光) 6
1.3.3 發光時效與熱力學(螢光/磷光/蓄光) 7
1.4 SrAl2O4:Eu2+,Dy3+綠色長效性螢光粒子 8
1.4.1 SrAl2O4晶體結構的發展 8
1.4.2 SrAl2O4:Eu2+餘暉夜光發展與機制 11
1.4.3 SrAl2O4:Eu2+,Dy3+之環境運用改善方式 12
第二章 研究動機與目的以及研究方法 16
2.1 研究動機與目的 16
2.2 SrAl2O4:Eu2+,Dy3+與SrAl2O4:Eu2+,Dy3+/B2O3製備 17
2.3 SrAl2O4:Eu2+,Dy3+與SrAl2O4:Eu2+,Dy3+/B2O3泡水加速測試 17
2.4 SrAl2O4:Eu2+,Dy3+/B2O3泡酸測試 17
2.5 小丑魚夜光板(試片)製備與環境測試地點 17
2.6 測試片取樣與照相參數 17
2.7 實驗所用藥品 18
2.8 光致發光(photoluminescence, PL)量測 18
2.9 長餘暉量測方式 19
2.10 掃描式電子顯微鏡微結構分析方式 20
2.11 X-射線繞射晶體結構分析 21
2.12 傅立葉轉換紅外光譜分析方式 21
第三章 結果與討論 22
3.1 SAO/BO與SrAl2O4:Eu2+,Dy3+螢光特性 22
3.2 SAO/BO抗酸效應 23
3.3 SrAl2O4:Eu2+,Dy3+/BO核殼微結構 25
3.4 SrAl2O4:Eu2+,Dy3+與SrAl2O4:Eu2+,Dy3+/BO抗水能力 26
3.5 SrAl2O4:Eu2+,Dy3+/BO混合蝶谷巴特膠抗水能力 33
3.6 SrAl2O4:Eu2+,Dy3+/BO混合蝶谷巴特膠環境測試 37
3.7 小丑魚夜光板環境測試照片 44
第四章 結論 47
參考文獻 50

[1] D.L. Dexter, J.H. Schulman, “Theory of concentration quenching in inorganic phosphors”, The Journal of Chemical Physics, vol.22, pp.1063-1070, 1954.
[2] E. Thomas, “Quantum chemistry and spectrocopy”, 2009.
[3] K.V. den Eeckhout, P.F. Smet, D. Poelman, “Persistent luminescence in Eu2+-doped compounds: A review”, Materials, vol.3, pp.2536-2566, 2010.
[4] F. Clabau, “Phosphorescence: Mécanismes et nouveaux matériaux”, PhD Thesis, 2005.
[5] Mindat.org http://www.mindat.org/min-3729.html
[6] F.P. Glasser, l.S. Dent Glasser, “Crystal chemistry of some AB2O4 compounds”, Journal of the America Ceramic Society, vol.46, pp.377-380, 1963.
[7] A.R. Schulze, M. Buschbaum, “Zur Struktur von monoklinem SrAl2O4”, Zeitschrift für anorganische und allgemeine Chemie, vol.81, pp.205-210, 1981.
[8] C.M.B. Henderson, D. Taylor, “The structural behaviour of the nepheline family: (1) Sr and Ba aluminates (MAl2O4)”, Mineralogical Magazine, vol45, pp.111-127, 1982.
[9] Y.L. Chang, H.I. Hsiang, M.T. Liang, F.S. Yen, “Phase evolution and thermal behaviors of the solid-state reaction between SrCO3 and Al2O3 to form SrAl2O4 under air and CO2-air atmospheres”, Ceramic International, vol.38, pp.2269-2276, 2012.
[10] H.H. Shin, S.Q. Ullah, “Crystal phases, photoluminescence, and long-afterglow luminescence of SrAl2O4: Eu2+, Dy3+ - xB2O3 (0 ≤ x ≤ 0.4) phosphors”, Journal of the Koeran Physical Socialty, vol.68, pp.54-58, 2016.
[11] M.L. Ruiz-Gonza´lez, J.M. Gonza´lez-Calbet, M. Vallet-Regı´, E. Cordoncillo, P. Escribano, J.B. Carda, M. Marchal, “Planar defects in a precursor for phosphor materials: SrAl2-xBxO4(x < 0.2)”, Journal of Materials and Chemistry, vol.12, 1128–1131, 2002.
[12] H. Yamada, W.S. Shi, C.N. Xu, “Observation of orientational disorder in the hexagonal stuffed tridymite Sr0.864Eu0.136Al2O4 by the maximum-entropy method”, Journal Applied Crystallography, vol.37, pp.698-702, 2004.
[13] K. Fukuda, K. Fukushima, “Crystal structure of hexagonal SrAl2O4 at 1073K”, Journal of Solid State Chemistry, vol.178, pp.2709–2714, 2005.
[14] M. Avdeev, S. Yakovlev, A.A. Yaremchenko, V.V. Kharton, “Transitions between P21, P63(√3), and P6322 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction”, Journal of Solid State Chemistry, vol.180, pp.3535–3544, 2007.
[15] N.K. Zurba, I. Bdikin, A. Kholkin, D. Golberg, J.M.F. Ferreira, “Intercrystalline distal-effect on the afterglow phenomenon in photoluminescent SrAl2O4:Ce(III), Ln nanotube growth”, Nanotechnology, vol.21, pp.325707, 2010.
[16] F.C. Palilla, A.K. Levine, M.R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium”, Journal of the Electrochemistry Society, vol.115, pp.642-644, 1968.
[17] V. Abbruscato, “Optical and electrical properties of SrAl2O4:Eu2+”, Journal of the Electrochemistry Society, vol.118, 930-933, 1971.
[18] T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+”, Journal of the Electrochemistry Society, vol.143, pp.2670-2673, 1996.
[19] A. Nag, T.R.N. Kutty, “Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4:Eu, Dy”, Journal of Alloys and Compounds. vol.354, pp. 221–231, 2003.
[20] T. Aitasalo, P. Deren’, J. Holsa, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions”, Journal of Solid State Chemistry, vol.171, pp.114–122, 2003.
[21] Z.M. Qi, C.S. Shi, M. Liu, D.F. Zhou, X.X. Luo, J. Zhang, Y.N. Xie, “The valence of rare earth ions in R2MgSi2O7:Eu, Dy(R = Ca, Sr) long-afterglow phosphors”, Physica Status Solidi (a), vol.201, pp.3109–3112, 2004.
[22] F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.H. Whangbo, A. Garcia, T.L. Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+”, Chemistry of Materials, vol.17, 3904-3912, 2005.
[23] P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped Aluminate and Silicate compounds”, Journal of the Electrochemistry Society, vol.152, pp.107-110, 2005.
[24] M.V. dos S. Rezende, P.J.R. Montes, F.M. dos S. Soares, C. dos Santos, M.E.G. Valerio, “Influence of co-dopant in the europium reduction in SrAl2O4 host”, Journal of Synchrotron Radiation, vol.21, pp.143–148, 2014.
[25] X.D. Lü, “Silica encapsulation study on SrAl2O4:Eu2+, Dy3+ phosphors”, Materials Chemistry and Physics, vol.93, pp.526–530, 2005.
[26] X.D. Lü, M.J. Zhong, W.G. Shu, Q.M. Yu, X.Q. Xiong, R.Q. Wang, “Alumina encapsulated SrAl2O4:Eu2+, Dy3+ phosphors”, Powder Technology, vol.177, pp.83–86, 2007.
[27] C.F. Guo, L. Lin, D.X. Huang, Q. Su, Y.H. Lv, “Study on the stability of phosphor SrAl2O4:Eu2+, Dy3+ in water and method to improve its moisture resistance”, Materials Chemistry and Physics, vol.106, pp.268–272, 2007.
[28] J. Lin, Y. Huang, J. Zhang, F.J. Shi, S.Y. Wei, J.M. Gao, Z.X. Huang, X.X. Ding, C.C. Tang, “Fabrication of BN nanosheets-coated SrAl2O4:Eu2+ as a new water-resistant phosphor by a one-pot method”, Materials Chemistry and Physics, vol. 108, pp.440–444, 2008.
[29] S.F. Yu, P.H. Pi, X.F. Wen, J. Cheng, Z.R. Yang, “Preparation and luminescence of SrAl2O4: Eu2+,Dy3+ phosphors coated with maleic anhydride”, The Canadian Journal of Chemical Engineering, vol.86, pp.30-34, 2008.
[30] Y. Zhu, M.T. Zheng, J.H. Zeng, Y. Xiao, Y.L. Liu, “Luminescence enhancing encapsulation for strontium aluminate phosphors with phosphate”, Materials Chemistry and Physics, vol.113, pp.721–726, 2009.
[31] R.E.R. Hernandez, F.R. Marcos, M.V. Dos Santos Rezende, M.Á. Rodriguez, A. Serrano, Á.M. Noval, J.F. Fernandez, “The impact of the synthesis conditions on SrAl2O4:Eu, Dy formation for a persistent afterglow”, Materials and Design, vol.108 , pp.354–363, 2016.
[32] C.Y. Wu, C.M. Lei, T. Takei, R. Wu, S.H. Wang, C.C. Chou, H.Y. Chang, “Structure and luminescence of core-shell phosphor aluminate-boron oxide”, Journal of Alloys and Compounds, vol.743, pp.506-513, 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top