跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫珮元
研究生(外文):Sun, Pey-Yuan
論文名稱:船舶等候定價模式與移動軌跡之研究
論文名稱(外文):A Study on Ship Queuing Pricing and Movement Track
指導教授:陳俊隆陳俊隆引用關係賴禎秀賴禎秀引用關係
指導教授(外文):Chen, Chun-LungLaih, Chen-Hsiu
口試委員:顏上堯盧宗成盧華安陳俊隆賴禎秀
口試委員(外文):Yan, Shang-YaoLu, Chung-ChengLu, Hua-AnChen, Chun-LungLaih, Chen-Hsiu
口試日期:2019-01-18
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:107
中文關鍵詞:船舶等候定價模式零等候收費架構階梯式收費架構移動軌跡
外文關鍵詞:ship queuing pricing modeloptimal time-varying tollstep tollmovement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在海運貿易市場的蓬勃發展下,船舶繁密地航行在各大洋間,頻繁的船舶航次顯示了港口的興盛與繁忙;在這樣大量航次下的貿易需求,使得船舶在錨區排隊等候現象時有所聞。面對這樣的船舶等候問題,運輸經濟研究學者提出「減少需求」:「以價制量」的觀點,探討透過收費來分散船舶過於密集的抵達狀態,進而舒緩船舶等候現象。而目前船舶等候定價傳統模式已發展出單至多階段之階梯式收費架構,用以消除不同程度之等候現象。

然在船舶等候定價傳統模式中,吾人已知船舶之排隊等候時間成本的價值均相同,且船舶報到時間要求為精準時刻。此狀態則與目前海運現況有所落差,例如不同船舶性質或種類的船舶,其排隊等候時間成本之價值之衡量應有所差異,以及管理單位允許船舶報到時間有一定的緩衝範圍而非精準時刻。故本研究將船舶等候定價傳統模式進行改良,考量不同性質或種類的船舶排隊時間成本價值有所差異,以及船舶報到時間放寬為彈性時段而非單一時刻,從而建構出船舶等候定價改良模式,使改良模式能夠更加貼切於港務實際現況。

船舶等候定價改良模式首先確立船舶抵達型態後,建構收費實施前之船舶均衡成本,以收費取代等候時間成本之概念,推導出改良模式下之零等候彈性收費架構與階梯式彈性收費架構。以瞭解收費對於排隊等候之消除效果。研究同時也探討過往未曾討論關於收費實施前後每一艘船舶抵達時刻的改變,以了解收費實施前後所有船舶抵達錨區時的分散效果與移動變化,藉此分析收費造成船舶改變行為之因果關係。

本研究同時也將船舶等候定價傳統模式與改良模式進行比較,以瞭解兩種模式之差異,以及改良前後之優缺點。最後則藉由蒐集高雄港與巴拿馬運河相關統計資料與港埠相關成本之實務數據,編寫程式進行數值分析,提供傳統與改良模式下之數值模擬結果,以作為港務單位與航商之收費參考依據。
Under the vigorous development of the shipping market, ships are sailed densely among the oceans. Frequent ship sailings show the prosperity and bustling of the port; the trade demand under such a large number of sailings makes the ship wait in line when the ship is queuing at the anchor zone. In the face of such ship queuing problems, transport economics scholars have proposed "reducing demand": "in the form of price system", to explore the excessively dense arrival of ships through tolls, thereby relieving ship queuing. At present, the traditional model of ship queuing pricing model has developed single to multiple-step toll structure to eliminate the queuing phenomenon.

However, in the traditional model of ship queuing pricing model, we know that the value of the queuing time cost of the ship is the same, and the ship registration time requirement is a precise time. This state is different from the current maritime status. For example, the value of the queuing time cost should be different for ships of different types, and the management allows the ship to have a certain buffer range rather than a precise time. Therefore, this study will improve the traditional model of queuing pricing model, considering the difference in the cost of the ship's queuing time of different natures or types, and the relaxation of the ship's registration time into a flexible time period rather than a single time, thus constructing a ship queuing pricing improvement model. The improved model can be more closely related to the actual situation of the port.

The ship queuing pricing improvement model. first establishes the ship arrival type, constructs the ship equilibrium cost before the implementation of the tolls, replaces the queuing time cost with the toll, and derives the optimal time-varying flexible toll structure and the stepped flexible toll structure under the improved model. To understand the effect of charging on the elimination of queues. The study also explored the changes in the arrival time of each ship before and after the implementation of the tolls, in order to understand the dispersion effect and movement changes of all ships before and after the implementation of the toll, to analyze the causal relationship between the changes caused by the charges.
摘要......I
Abstract......II
圖目錄......IV
表目錄......VI
第一章 緒論......1
1.1 研究背景與動機......1
1.2 研究目的......2
1.3 研究範圍......4
1.4 研究方法......5
1.5 研究流程......6
第二章 文獻回顧......9
2.1 道路等候定價模式相關文獻......9
2.2 船舶等候定價模式相關文獻......13
2.3 小結......16
第三章 船舶等候定價傳統模式......17
3.1 傳統模式下之收費前船舶均衡成本......18
3.2 傳統模式下之收費架構......30
3.3 傳統模式下之船舶抵達時刻移動軌跡......35
第四章 船舶等候定價改良模式......39
4.1 改良模式下之收費前船舶均衡成本......40
4.2 改良模式下之收費架構......47
4.3 改良模式下之船舶抵達時刻移動軌跡......57
4.4 船舶等候定價傳統模式與改良模式之比較......67
第五章 數值分析......71
5.1 港埠實例(高雄港)......71
5.2 運河實例(巴拿馬運河)......82
第六章 結論與建議......92
6.1 結論......92
6.2 建議......94
參考文獻......95
附錄一 符號定義表......97
附錄二 船舶等候定價改良模式時刻值推導過程......99
附錄三 程式碼......102
吳瑾麟 (2013),「考慮船舶引水服務及異質貨種條件下不定期船船席排隊等候定價之研究」,國立臺灣海洋大學商船學系碩士學位論文。

林晏如 (2012),「定期到達與隨機到達情況下船舶排隊等候定價模式之研究」,國立台灣海洋大學商船學系碩士論文。

陳冠宇 (2005),「船席擁擠定價模式之研究」,國立臺灣海洋大學商船學系碩士學位論文。

陳姿蓓 (2014) ,「不定期船可共用船席裝卸的前提下排隊等候定價模式之研究」,國立台灣海洋大學商船學系碩士論文。

賴禎秀 (2001),「階梯式擁擠收費體制下最佳收費階段數之研究」,運輸計劃季刊,30(2), 253-274.

謝佳璇 (2015) ,「不定期船於外港錨區之隨機到達與等候定價模式之研究」,國立台灣海洋大學商船學系碩士論文。

簡光志、周宗仁(1996),「船席使用率與等候時間模擬之研究」,海運研究學刊,第二期,頁117~127。

Arnott, R., de Palma, A., & Lindsey, R. (1990). Departure time and route choice for the morning commute.
Transportation Research Part B: Methodological, 24(3), 209-228.

Arnott, R., De Palma, A., & Lindsey, R. (1990). Economics of a bottleneck. Journal of urban economics, 27(1), 111-130.

Bronmo, G., Christiansen, M., Fagerholt, K. and Nygreen, B. (2007). “A multi-start local search heuristic for ship scheduling - a computational study,” Computers & Operations Research, 34, 900-917.

Laih, C. H. (1994). “Queueing at a bottleneck with single- and multi-step tolls,” Transportation Research Part A: Policy & Practice, 28(3),197-208.

Laih, C.H. and Sun, P.Y. (2013). Effects of the Optimal n-Step Tolls on Bulk Vessels Queuing for Multiple Berths of a Busy Port, Transport Policy, 28, 42-50.

Laih, C.H. and Sun, P.Y. (2014). The Optimal Toll Scheme for Ships Queuing at the Entrance of Panama Canal, Maritime Economics and Logistics, 16, 20-32.

Laih, C.H., Tsai, Y.C. and Chen, Z.B. (2015). Optimal Non-Queuing Pricing for the Suez Canal, Maritime Economics and Logistics, 17, 359-370

Laih, C-H and Chen, K-Y. (2008). “Economics on the Optimal n-step Toll Scheme for a Queuing Port”, Applied Economics, 40, 209-228.

Laih, C-H and Chen, K-Y. (2009). “Economics on the optimal port queuing pricing to bulk ships”, Applied Economics, 41, 2817-2825.

Laih, C-H, Lin, B and Chen, K-Y. (2007). “Effects of the Optimal Port Queuing Pricing on Arrival Decisions for Container Ships”, Applied Economics, 39, 1855-1865.

Lindsey, C. R., Van den Berg, V. A., & Verhoef, E. T. (2012). Step tolling with bottleneck queuing congestion. Journal of Urban Economics, 72(1), 46-59.

Sun, P.Y, Laih, C.H and Chen, C.L, (2016). Modeling the Optimal Pricing for Nonscheduled Trampers Queuing for Shared-Use Berths at a Busy Port, International Journal of Transport Economics, 43(3), 361-378.

Tabuchi, T. (1993). Bottleneck congestion and modal split. Journal of Urban Economics, 34(3), 414-431.

Vickrey, W. S. (1969). Congestion theory and transport investment. The American Economic Review, 251-260.

Vincent, A.C. and Van Den Berg, V.A.C. (2014). Coarse Tolling with Heterogeneous Preferences, Transportation Research-Part B, 64(1), 1-23.

Xiao, F., Qian, Z. and Zhang, H.M. (2011). “The Morning Commute Problem with Coarse Toll and Nonidentical Commuters,” Networks and Spatial Economics, 11(2), 343-369.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top