跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊文智
研究生(外文):Yang, Wen-Chih
論文名稱:暫態與穩態水下螺槳噪聲分析
論文名稱(外文):Study on Propeller noise in Transient and Steady Field
指導教授:宋世平
指導教授(外文):Soon, Shin-Ping
口試委員:張建仁張君名宋世平
口試委員(外文):Chang, Jiang-RenChang, Chun-MingSoon, Shin-Ping
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:流場噪聲聲場輻射螺槳
外文關鍵詞:aeroacousticsound radiationpropeller
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
水下螺槳因旋轉產生流體噪聲,大致可以利用控制方程分為暫態與穩態進行分析,並分析螺槳近聲場與遠聲場物理特性,最後建構流場噪聲聲場驗證流程。本文將以水下螺槳暫態與穩態特性相互比較,驗證其聲場輻射之準確性。在暫態特性中,以暫態雷諾時均方程為基礎計算螺槳表面流場所產生的暫態壓差,並基於波動方程聲學類比理論計算出以有限體積法所計算暫態聲壓值。對於穩態方程計算時,利用偶極子模擬葉片聲壓,擷取暫態聲壓下螺槳葉片壓力脈動,將壓力做為穩態分析的邊界條件,利用邊界元素法計算出穩態下聲壓值。將有限體積法與邊界元素法兩者相比較其聲壓值,發現其聲壓定性趨勢具有一致性,藉此證明在流體噪聲中,以有限體積法與邊界元素法分析暫態及穩態水下螺槳噪聲有一定的準確性,同時滿足近聲場與遠聲場之聲場輻射特性,在工程應用及軍事應用中具有其關鍵性之價值。
According to governing equation, the analysis of propeller noise can be divided into transient analysis and steady-state analysis, different results can be used to analyze physical characteristics of propeller, and finally, constructing the verification procedures of propeller noise. That is to say, through comparing the phenomena of transient analysis and steady-state analysis, the accurate of sound field radiation can be vertified. For transient analysis, Calculateing the differential pressure generated by propeller blade surface flow is based on unsteady Reynold-averaged Navier-Stokes equation (URANS), Through Ffowcs-Williams and Hawkings acoustic model (FW-H model) solves the transient propeller noise base on finite volume method (FVM). For steady-state analysis, substituting dipole for propeller blade sound pressure and extracting propeller blade pressure pulsation from a transient propeller flow field as the boundary condition, the steady state propeller noise is solved by the boundary element method (BEM). Comparing the result of transient analysis and steady-state analysis, the sound pressure qualitative trends are consistent, as a result it proves that certain accuracy is exist in transient and steady-state analyses of propeller noise, Moreover, the results satisfy sound field radiation characteristics of near-field and far-field and are critical in engineering applications and military applications.
謝誌........................................................I
摘要.......................................................II
Abstract.................................................III
目錄.......................................................IV
圖目錄.....................................................VI
表目錄...................................................VIII
符號對照表.................................................IX
第一章 緒論.................................................1
1.1. 前言...................................................1
1.2. 文獻回顧...............................................1
1.3. 本文架構...............................................3
第二章 理論基礎..............................................4
2.1. 流體運動方程式..........................................4
2.1.1. 連續方程式...........................................4
2.1.2. 動量守恆方程式.......................................5
2.2. 紊流數值模式...........................................6
2.2.1. 紊流模式............................................8
2.2.2. 紊流模式............................................9
2.3. 初始條件與邊界條件.....................................10
2.4. 網格離散化............................................11
2.4.1. 滑移網格(Moving Mesh)...............................12
2.5. 求解方法..............................................12
2.6. 流體噪聲..............................................13
2.6.1. 暫態分析理論........................................14
2.6.1.1. Lighthill acoustic model.........................14
2.6.1.2. Ffowcs Williams and Hawkings acoustics model.....16
2.6.2. 穩態分析理論........................................18
第三章 數值模擬驗證與幾何分析................................21
3.1. 螺槳幾何..............................................21
3.2. CFD計算域及邊界條件....................................21
3.2.1. 網格構成............................................22
3.3. Kt Kq eta驗證.........................................22
3.4. FVM vs BEM 葉片壓力驗證...............................23
3.5. FVM vs BEM之驗證......................................24
3.6. 流場噪聲方向性分析.....................................25
3.7. 網格收斂分析..........................................26
第四章 結論與未來展望.......................................68
文獻資料...................................................69
[1] Lighthill M. J., “On sound generated aerodynamically. Ⅰ: general theory”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 211(1107), pp. 564-587, 1952.
[2] Lighthill M. J., “On sound generated aerodynamically. Ⅱ:turbulence as a source of sound”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 222(1148), pp. 1-32, 1954.
[3] Curle N., “The influence of solid boundaries upon aerodynamic sound”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 231(1187), pp. 505-514, 1955.
[4] Powell A., “Theory of vortex sound”, The Journal of Acoustic Society of America, Vol. 36(1), pp. 177, 1964.
[5] Ffowcs-Williams J. E., Hawkings D. L., “Sound generation by turbulence and surfaces in arbitrary motion”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 264(1151), pp. 321-342, 1969
[6] Farassat F., Myers M. K., “Extension of Kirchhoff's formula to radiation from moving surfaces”, Journal of Sound and Vibration, Vol. 123, pp. 451-460, 1988
[7] Mitchell B. E., Lele S. K., Moin P., “Direct computation of the sound from a compressible co-rotating vortex pair”, Journal of Fluid Mechanics, Vol. 285, pp. 181-202, 1995
[8] Colonius T., “Modeling artificial boundary conditions for compressible flow”, Annual Review of Fluid Mechanics, Vol. 36, pp. 315-345, 2004
[9] Wang M., Lele S. K., Moin P., “Sound radiation during local laminar breakdown in a low-Mach-number boundary layer”, Journal of Fluid Mechanics, Vol. 319, pp. 197-218, 1996
[10] Deardorff J. W., “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers”, Journal of Fluid Mechanics, Vol. 319, pp. 197-218, 1970
[11] Xu L. R., Wan D. C., “Numerical research on hydrodynamic characteristics of propeller boss cap fins”, Chinese Journal of Ship Research, Vol. 13(1), pp.15-21, 2018.
[12] Howe M. S., “On the absorption of sound by turbulence and other hydrodynamic flow”, IMA Journal of Applied Mathematics and Mechanics, Vol. 32, pp. 187-209, 1984
[13] Goldstein M. E., “A generalized acoustic analogy”, Journal of Fluid Mechanics, Vol. 488, pp. 315-333, 2003
[14] Morino L., “A general theory of unsteady compressible potential aerodynamics:NASA CR-2464”, 1974.
[15] Spalart P. R., JOU W. H., STRELETS M., Allmaras S. R., “ Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In Liu, C., Liu, Z. (eds.)”, Proceedings of the 1st AFOSR on DNS/LES, Greyden, Columbus, pp. 137-147, 1997.
[16] Wang C. X., WU C. J.,Chen L. J., Qiu C.L., Xiong J. S., “ A comprehensive review on the mechanism of flow-induced noise and related prediction methods”, Chinese Journal of Ship Research, Vol. 11(1), pp. 57-71, 2016
[17] Zhang Y. K., Xiong Y., Zhao X. L., “Prediction of propeller non-cavitation noise”, Noise and Vibration Control, Vol. 11(5), pp.131-156, 2008.
[18] Goldstein M. E., “Aeroacoustics of turbulent shear flows”, Annual Review of Fluid Mechanics, Vol. 16, pp.206-285,1984.
[19] Colonius T., Lele S. K., “Computational aeroacoustics:progress on nonlinear problems of sound generation”, Progress in Aerospace Science, Vol. 40(6), pp.345-416, 2004.
[20] Lyrintzis A. S., “Review:the use of Kirchhoff's method in computational aeroacoustics”, Journal of Fluids Engineering, Vol. 116(4), pp.665-676, 1994
[21] Manoha E., Hwrraero C., “Numerical prediction of airfoil aerodynamic noise”, AIAA 2002-2573, 2002.
[22] Howe M. S., “A review of the theory of trailing edge noise”,. Journal of Sound Vibration, Vol. 225(2), pp.221-238, 1978.
[23] Howe M. S., “Trailing edge noise at low Mach number”, Journal of Sound Vibration, Vol. 225(2), pp.221-238, 1999.
[24] Lele S. K., “Direct numerical simulations of compressible turbulent flows: Fundamentals and Applications”, Transition, Turbulence and Combustion Modelling, pp.421-488,1999
[25] Wang M., Moin P., “Dynamic wall modeling for large-eddy simulation of complex turbulent flows”, Physics of Fluids, Vol.14(7), p.241-250, 2002
[26] Zhu X.Q., Wu W.S., “Prediction of marine propeller loading noise”, Acta Acustica, Vol. 23(2), pp. 123-133, 1999
[27] Leonard A., “Computing three-dimensional incompressible flows with vortex elements”, Annual Review Fluid Mechanic, Vol. 17, pp.523-559, 1985
[28] Constantenescu G., Lele S. K., “Large eddy simulation of a near-sonic turbulent jet and its radiated noise”, AIAA 2001-0376, 2001
[29] Goldstein M. E., “An exact form of Lilley’s equation with a velocity quadrupole/temperature dipole source term”, Journal of Fluid Mechanic, Vol. 443, pp.231-236, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top