|
Amin, J. A, Ananthan, J & Voellmy, R. (1988). Key features of heat shock regulatory elements. Molecular and cellular biology, 8(9), 3761-3769. Altieri, F., Grillo, C., Maceroni, M., & Chichiarelli, S. (2008). DNA damage and repair: from molecular mechanisms to health implications. Antioxidants & redox signaling, 10(5), 891-938. Balajee, A. S., May, A., & Bohr, V. A. (1999). DNA repair of pyrimidine dimers and 6-4 photoproducts in the ribosomal DNA. Nucleic acids research, 27(12), 2511-2520. Batty, D. P., & Wood, R. D. (2000). Damage recognition in nucleotide excision repair of DNA. Gene, 241(2), 193-204. Budden, T., & Bowden, N. A. (2013). The role of altered nucleotide excision repair and UVB-induced DNA damage in melanomagenesis. International Journal of Molecular Sciences, 14(1), 1132-1151. Calderwood, S. K., Wang, Y., Xie, X., Khaleque, M. A., Chou, S. D., Murshid, A., ... & Zhang, Y. (2010). Signal transduction pathways leading to heat shock transcription. Signal transduction insights, 2, STI-S3994. Cai, Q., Fu, L., Wang, Z., Gan, N., Dai, X., & Wang, Y. (2014). α-N-methylation of damaged DNA-binding protein 2 (DDB2) and its function in nucleotide excision repair. Journal of Biological Chemistry, jbc-M114. Chang, Y., Lee, W. Y., Lin, Y. J., & Hsu, T. (2017). Mercury (II) impairs nucleotide excision repair (NER) in zebrafish (Danio rerio) embryos by targeting primarily at the stage of DNA incision. Aquatic Toxicology, 192, 97-104. Cleaver, J. E. (2005). Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Reviews Cancer, 5(7), 564. Cunniff, N. F., & Morgan, W. D. (1993). Analysis of heat shock element recognition by saturation mutagenesis of the human HSP70. 1 gene promoter. Journal of Biological Chemistry, 268(11), 8317-8324. de Laat, W. L., Jaspers, N. G., & Hoeijmakers, J. H. (1999). Molecular mechanism of nucleotide excision repair. Genes & development, 13(7), 768-785. Desgarnier, M. C. D., Fournier, F., Droit, A., & Rochette, P. J. (2017). Influence of a pre-stimulation with chronic low-dose UVB on stress response mechanisms in human skin fibroblasts. PloS one, 12(3), e0173740. Dreze, M., Calkins, A. S., Galicza, J., Echelman, D. J., Schnorenberg, M. R., Fell, G. L., ... & Lazaro, J. B. (2014). Monitoring repair of UV-induced 6-4-photoproducts with a purified DDB2 protein complex. PloS one, 9(1), e85896. Fernandes, M., Xiao, H., & Lis, J. T. (1994). Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions. Nucleic acids research, 22(2), 167-173. Ghosh, R., Tummala, R., & Mitchell, D. L. (2003). Ultraviolet radiation‐induced DNA damage in promoter elements inhibits gene expression. FEBS letters, 554(3), 427-432. Guo CX, Tang TS, Friedberg EC (2010). SnapShot : Nucleotide Excision Repair. Cell. 140(5):754-U169. Huang, J. C., Svoboda, D. L., Reardon, J. T., & Sancar, A. (1992). Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5'and the 6th phosphodiester bond 3'to the photodimer. Proceedings of the National Academy of Sciences, 89(8), 3664-3668. Iyama, T., & Wilson, D. M. (2013). DNA repair mechanisms in dividing and non-dividing cells. DNA repair, 12(8), 620-636. Jezierska, B., Ługowska, K., & Witeska, M. (2009). The effects of heavy metals on embryonic development of fish (a review). Fish physiology and biochemistry, 35(4), 625-640. Jonak, C., Klosner, G., & Trautinger, F. (2009). Significance of heat shock proteins in the skin upon UV exposure. Front Biosci, 14, 4758-4768. Kemp, M. G., Reardon, J. T., Lindsey-Boltz, L. A., & Sancar, A. (2012). Mechanism of release and fate of excised oligonucleotides during nucleotide excision repair. Journal of Biological Chemistry, 287(27), 22889-22899. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental dynamics, 203(3), 253-310. Khobta, A., & Epe, B. (2012). Interactions between DNA damage, repair, and transcription. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 736(1-2), 5-14. Ling, L. B., Chang, Y., Liu, C. W., Lai, P. L., & Hsu, T. (2017). Oxidative stress intensity-related effects of cadmium (Cd) and paraquat (PQ) on UV-damaged-DNA binding and excision repair activities in zebrafish (Danio rerio) embryos. Chemosphere, 167, 10-18. Li, J., Wang, Q. E., Zhu, Q., El-Mahdy, M. A., Wani, G., Prætorius-Ibba, M., & Wani, A. A. (2006). DNA damage binding protein component DDB1 participates in nucleotide excision repair through DDB2 DNA-binding and cullin 4A ubiquitin ligase activity. Cancer research, 66(17), 8590-8597. Lo, H. L., Nakajima, S., Ma, L., Walter, B., Yasui, A., Ethell, D. W., & Owen, L. B. (2005). Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest. BMC cancer, 5(1), 135. Marteijn, J. A., Lans, H., Vermeulen, W., & Hoeijmakers, J. H. (2014). Understanding nucleotide excision repair and its roles in cancer and ageing. Nature reviews Molecular cell biology, 15(7), 465. Mellon, I., Spivak, G., & Hanawalt, P. C. (1987). Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell, 51(2), 241-249. Moser, J., Volker, M., Kool, H., Alekseev, S., Vrieling, H., Yasui, A., ... & Mullenders, L. H. (2005). The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA repair, 4(5), 571-582. Morimoto, R. I., & Tissières, A. (1994). The biology of heat shock proteins and molecular chaperones (No. 577.112 BIO). Marteijn, J. A., Lans, H., Vermeulen, W., & Hoeijmakers, J. H. (2014). Understanding nucleotide excision repair and its roles in cancer and ageing. Nature reviews Molecular cell biology, 15(7), 465. Nakajima, S., Lan, L., Kanno, S. I., Takao, M., Yamamoto, K., Eker, A. P., & Yasui, A. (2004). UV light-induced DNA damage and tolerance for the survival of nucleotide excision repair-deficient human cells. Journal of Biological Chemistry, 279(45), 46674-46677. Pasheva, E. A., Pashev, I. G., & Favre, A. (1998). Preferential binding of high mobility group 1 protein to UV-damaged DNA Role of the COOH-terminal domain. Journal of Biological Chemistry, 273(38), 24730-24736. Rastogi, R. P., Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of nucleic acids, 2010. Rosen, M. A., Bulucea, C. A., Mastorakis, N. E., Bulucea, C. A., Jeles, A. C., & Brindusa, C. C. (2015). Evaluating the thermal pollution caused by wastewaters discharged from a chain of coal-fired power plants along a river. Sustainability, 7(5), 5920-5943. Rylander, M. N., Feng, Y., Bass, J. O. N., & Diller, K. R. (2006). Thermally induced injury and heat‐shock protein expression in cells and tissues. Annals of the New York Academy of Sciences, 1066(1), 222-242. Saxowsky, T. T., & Doetsch, P. W. (2006). RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis?. Chemical reviews, 106(2), 474-488. Scrima, A., Koníčková, R., Czyzewski, B. K., Kawasaki, Y., Jeffrey, P. D., Groisman, R., ... & Thomä, N. H. (2008). Structural basis of UV DNA-damage recognition by the DDB1–DDB2 complex. Cell, 135(7), 1213-1223. Shen, Y. C., Hsu, T., Ling, L. B., You, W. C., & Liu, C. W. (2017). Identification of low-molecular-weight vitellogenin 1 (Vg1)-like proteins as nucleotide excision repair (NER) factors in developing zebrafish (Danio rerio) using a transcription-based DNA repair assay. Fish physiology and biochemistry, 43(2), 663-676. Stephanou, A., & Latchman, D. S. (2011). Transcriptional modulation of heat-shock protein gene expression. Biochemistry research international, 2011 Tang, J. Y., Hwang, B. J., Ford, J. M., Hanawalt, P. C., & Chu, G. (2000). Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Molecular cell, 5(4), 737-744. Xiao, H., & Lis, J. T. (1988). Germline transformation used to define key features of heat-shock response elements. Science, 239(4844), 1139-1142. van Gool, A. J., van der Horst, G. T., Citterio, E., & Hoeijmakers, J. H. (1997). Cockayne syndrome: defective repair of transcription?. The EMBO journal, 16(14), 4155-4162. Weindling, E., & Bar-Nun, S. (2015). Sir2 links the unfolded protein response and the heat shock response in a stress response network. Biochemical and biophysical research communications, 457(3), 473-478. Wittschieben, B. Ø., Iwai, S., & Wood, R. D. (2005). DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. Journal of Biological Chemistry, 280(48), 39982-39989. Wu, C. (1995). Heat shock transcription factors: structure and regulation. Annual review of cell and developmental biology, 11(1), 441-469. Åkerfelt, M., Morimoto, R. I., & Sistonen, L. (2010). Heat shock factors: integrators of cell stress, development and lifespan. Nature reviews Molecular cell biology, 11(8), 545.
|