(3.237.20.246) 您好!臺灣時間:2021/04/15 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王昱凱
研究生(外文):Wang, Yu-Kai
論文名稱:週期性奈米線披覆金屬-介質-金屬結構之共振特性探討及生醫感測應用
論文名稱(外文):The Resonance Properties and Biosensing Application of Metal- Dielectric-Metal Coated Periodic Nanowire
指導教授:魏培坤江海邦
指導教授(外文):Wei, Pei-KuenChiang, Hai-Pang
口試委員:施閔雄蔡宛卲
口試委員(外文):Shih, Min-HsiungTsai, Wan-Shao
口試日期:2019-01-14
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:62
中文關鍵詞:表面電漿子共振(SPR)奈米結構多層膜結構非標定性高通量生物檢測射出成型晶片
外文關鍵詞:Surface Plasmon Resonance (SPR)NanostructureMultilayer StructureNon-labeledHigh ThroughputBiosensingInjection Molding Microchip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:56
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中介紹使用金屬-介質-金屬製程的方式製作生物檢測晶片,以表面電漿子共振(Surface plasmon resonance)理論作為製做生物檢測晶片的基礎,在週期性的射出成型(Injection Molding) 檢測晶片上做金屬-介質-金屬薄膜結構,可精確的設計穿透及反射光譜,具有再現性、高通量、高靈敏度、即時性檢測等優點。

本文工作中,使用熱蒸鍍(Thermal Evaporation)鍍上不同厚度,以及使用薄膜厚度輪廓測量儀(α-step)量測金屬厚度,來調整金屬和介質膜厚參數,後續在穿透式光學系統量測週期性的射出成形檢測晶片的波長及強度變化。

光譜上設計成金屬-介質-金屬薄膜結構之波長和表面電漿子共振波長做耦合,使用微流道系統進行不同濃度甘油水之環境折射率測試,發現在入射光源照射樣品時,會有特定的角度使波長靈敏度增加與波長往藍移(短波長)移動,為了確認及解釋藍移現象,在這以負折射用來解釋問題與重複製作實驗樣品來進行分析,在生物實驗的部分,以半胱胺及戊二醛溶液來修飾表面,在修飾步驟不剝離條件,進行改善鍍膜的速率,後續在晶片上封入微流道系統,使用牛血清蛋白(Bovine Serum Albumin, BSA)與免疫球蛋白(immunoglobulin G ,IgG)的生物溶液分別調配不同濃度來做分析量測。在金屬-介質-金屬檢測晶片上可增強檢測應用之生物晶片,對於未來能使波段產生藍移現象之檢測生物晶片是有很大的研究性及發展性。



關鍵字:表面電漿子共振(SPR)、奈米結構、多層膜結構、非標定性、高通量、生物檢測、射出成型晶片。
This paper describes the use of metal-dielectric-metal processes to make bio-sensing chips. Base on the theory of surface plasmon resonance. Making a metal- dielectric-metal film structure on a periodic injection molding substrate, an accurate design of transmission and reflection spectra, reproducibility, high throughput, high sensitivity, and instant detection.

In this experiment, different thicknesses of metal layer are coated using thermal evaporation, and metal thickness is measured using a film thickness profiler (α-step) to adjust the metal and dielectric film thickness parameters. Followed by a transmissive optical system, the periodic injection molding is measured to detect changes in wavelength and intensity of the microchip.

The wavelength of the metal- dielectric -metal thin film structure is designed to be coupled with the surface plasmon resonance wavelength. Using the microfluidic channel system to carry out refractive index test with different environmental concentrations of glycerol water, it is found that when the incident light source illuminates the sample, there will be a certain angle to increase the wavelength sensitivity and the wavelength shift to the blue shift (short wavelength). In order to confirm and explain the blue shift phenomenon, where negative refraction is used to explain the problem and to make samples of repetition for analysis.

In the part of the biological experiment, the surface was modified with cysteamine and glutaraldehyde solution, and the rate of coating was improved without removing the conditions in the modification step. Subsequently, the microfluidic channel system was sealed on the chip, and bovine serum albumin (BSA) and immunoglobulin (IgG) biological solution was used. Both were separately formulated with different concentrations for analytical measurement. On the metal-dielectric-metal detection chip, the biochip for detection application can be enhanced, and its very research and development for the detection biosensing chip which result the blue shift phenomenon of the wavelength band in the future.

Keywords: Surface Plasmon Resonance (SPR), Nanostructure, Multilayer Structure, Non-labeled, High Throughput, Biosensing, Injection Molding Microchip.
誌謝 I
摘要 II
Abstract III
目次 IV
圖目次 V
表目次 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 研究動機與目的 6
第二章 理論基礎 7
2.1 表面電漿子共振簡介 7
2.2 表面電漿子共振原理 7
2.3 金屬表面電漿之激發 13
2.4 超穎材料 16
2.5 一維次波長電漿之傳導原理 16
第三章 製作技術及實驗設備 20
3.1 奈米壓印技術 20
3.2 檢測奈米週期結構之設備 21
3.2.1 掃描式電子顯微鏡 21
3.2.2 原子力顯微鏡 22
3.2.3 膜厚儀 23
3.3 鍍膜設備 24
3.3.1 熱蒸鍍系統 24
3.4 射出成型感測晶片製作 25
3.5 微流道製作 27
3.6 穿透光譜儀量測系統 28
第四章 實驗結果與討論 29
4.1 奈米結構與厚度之光學量測 29
4.1.1 變角度之靈敏度測試 30
4.1.2 感測晶片之靈敏度訊號分析 37
4.2 感測晶片之再現性與穩定度 38
4.2.1 環境折射率再現性量測 38
4.2.2 質心法與穩定性整合分析 42
4.3 生物實驗應用 46
4.3.1 生物實驗 (牛血清蛋白) 46
4.3.2 牛血清蛋白-實驗流程 46
4.3.3 生物實驗 (免疫球蛋白) 52
4.3.4 免疫球蛋白-實驗流程 52
第五章 結論與未來研究方向 57
參考文獻 58
圖目次
圖1- 1 Biacore 稜鏡耦合檢測金薄膜生物感測晶片[18] 2
圖1- 2 Biosensing Instrument稜鏡耦合檢測金薄膜生物感測晶片[19] 3
圖1- 3 Ebbesen團隊發現光通過週期性孔洞結構的異常穿透現象[26]。 4
圖1- 4 Alexandre G. Brolo團隊之週期性奈米金屬孔洞結構生物感測器[31]。 4
圖1- 5奈米熱壓印製程轉印單層金屬狹縫結構[5]。 5
圖1- 6奈米熱壓印製程轉印單層金屬狹縫結構[6]。 5

圖2- 1在金屬(ε1)和介電質(ε2)以TM 電磁波所激發形成集體縱波震盪之表面 8
圖2- 2輻射性表面電漿子電磁波示意圖。[11] 11
圖2- 3非輻射性表面電漿子電磁波示意圖。[11] 12
圖2- 4金屬表面電漿子,色散關係曲線圖[11]。 12
圖2- 5稜鏡耦合技術來激發金屬表面電漿示意圖[14]。 13
圖2- 6光柵耦合激發金屬表面電漿示意圖。 14
圖2- 7光柵耦合與棱鏡耦合,色散關係曲線圖。 14
圖2- 8一維次波長電漿體晶體之幾何形狀示意圖。 16
圖2- 9 在奈米多層膜(使用高折射率的分析溶液)能帶之模擬圖[64] 19

圖3- 1奈米壓印技術示意圖 20
圖3- 2場發射式之電子顯微鏡及示意圖。[38] 21
圖3- 3 JPK NanoWizard®4 AFM 實機。 22
圖3- 4 Alpha-step實機 23
圖3- 5直流式真空濺鍍系統。 24
圖3- 6奈米壓印結構流程圖。 25
圖3- 7 經熱蒸鍍沉積至射出成型感測晶片實際樣品。 25
圖3- 8 經SEM拍攝射出成型感測晶片實際樣品。 26
圖3- 9 經AFM拍攝的晶片線寬及深度結構。 26
圖3- 10壓克力微流道架構圖。 27
圖3- 11使用紫外燈光纖導管儀器(Hamamatsu, LC8)及實際微流道系統。 27
圖3- 12 穿透光譜儀量測系統示意圖及實機。 28

圖4- 1週期470nm之正相(0°)穿透光譜圖。 29
圖4- 2金50nm -矽10nm -金30nm,不同折射率之0°至40°角度光譜圖。 30
圖4- 3金50nm -矽30nm -金30nm,不同折射率之0°至40°角度光譜圖。 30
圖4- 4金50nm -矽50nm -金30nm,不同折射率之0°至40°角度光譜圖。 31
圖4- 5金50nm -矽70nm -金30nm,不同折射率之0°至40°角度光譜圖。 31
圖4- 6金50nm -矽10nm -金30nm,角度與環境折射率之變化。 32
圖4- 7金50nm -矽30nm -金30nm,角度與環境折射率之變化。 32
圖4- 8金50nm -矽50nm -金30nm,角度與環境折射率之變化。 33
圖4- 9金50nm -矽70nm -金30nm,角度與環境折射率之變化。 33
圖4- 10為圖4- 6中各角度波長平均位置與溶液折射率之線性關係。 34
圖4- 11為圖4- 7中各角度波長平均位置與溶液折射率之線性關係。 35
圖4- 12為圖4- 8中各角度波長平均位置與溶液折射率之線性關係。 36
圖4- 13 (A)單層金50nm (B)金50nm -矽10nm -金30nm (C)金50nm -矽30nm-金 37
圖4- 14 針對金50nm -矽10nm -金30nm之再現性分析,以不同濃度角度為0~3度之環境折射率量測。 38
圖4- 15 針對金50nm -矽10nm -金30nm薄膜之再現性分析,以不同濃度角度為4~9度之環境折射率量測。 39
圖4- 16 為角度0~7度在不同濃度甘油水的平均位移變化量與折射率線性關係。 40
圖4- 17 為角度8~9度在不同濃度甘油水的平均位移變化量與折射率線性關係。 41
圖4- 18 根據圖4-16與4-17不同濃度甘油水之線性關係, 41
圖4- 19 角度0~3度之質心法分析 43
圖4- 20 角度4~7度之質心法分析 43
圖4- 21為圖4- 6之環境折射率的0、5、10角度之Origin放大的Fitting分析圖 44
圖4- 22為圖4- 14之再現性環境折射率的0、4角度之Origin放大的Fitting分析圖 44
圖4- 23為圖4- 19之環境折射率的0、4角度之Origin放大的Fitting分析圖 44
圖4- 24 穩定性測試之量測水中正相(0°)光譜圖 45
圖4- 25 穩定性測試之量測水中正相(0°) SPR mode波峰。 45
圖4- 26 使用微流道系統之感測晶片上的抗原抗體鍵結流程。 46
圖4- 27 為抗原抗體鍵結(0~3)角度變化量。 47
圖4- 28 為抗原抗體鍵結(4~9)角度變化量。 48
圖4- 29 之生物溶液0與5角度之Origin放大後Fitting分析圖。 49
圖4- 30 Fitting分析之抗原抗體結合與角度變化響應。 49
圖4- 31 Fitting分析之抗原抗體結合與角度移動量。 50
圖4- 32 質心法(Mass)分析之抗原抗體結合與角度變化響應。 50
圖4- 33 質心法(Mass)分析之抗原抗體結合與角度移動量。 51
圖4- 34感測晶片修飾後之抗原抗體鍵結示意圖。 53
圖4- 35不同濃度之抗原抗體結合角度量測。 53
圖4- 36 之生物溶液0、5、10角度之Origin放大後Fitting分析圖。 54
圖4- 37 Fitting分析之Anti-IgG與抗原結合角度變化響應。 54
圖4- 38 Fitting分析之Anti-IgG與抗原結合角度位移量。 55
圖4- 39 質心法(Mass)分析之抗原抗體結合與角度變化響應。 55
圖4- 40 質心法(Mass)分析之抗原抗體結合與角度移動量。 56


表目次

表1. COP(ZF16-188)和PC(lexan8010)之物理特性 20
表2. 為1號至11號之甘油水之折射率 38
表3. 為1號至6號之甘油水之折射率 43
表4. 為1號至5號之生物溶液順序 47
表5. 為1號至11號之生物溶液順序 52
參考文獻
1. Cambridge in the Age of the Enlightenment: Science, Religion and Politics from the Restoration to the French Revolution (2002) by John Gascoigne, p. 278.
2. Rich, R.L. and D.G. Myszka, Survey of the year 2004 commercial optical biosensor literature. Journal of Molecular Recognition, 2005. 18(6): p. 431-478.
3. Y. C. Fung, Foundations of Solid Mechanics, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1965
4. MV Klein & TE Furtak, Optics,1986, John Wiley & Sons, New York.
5. Lee, K.L., et al., "Sensitive biosensor array using surface Plasmon resonance on metallic nanoslits. ", Joural of Biomedical Optics, 2007.12(4): p.5.
6. Lee, K.-L., et al., Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films. Acs Nano, 2012. 6(4): p. 2931-2939.
7. Ju Young Lee, Omer Ahmed, Daniel Kwun, Lucas Kang. Title of motion picture [ ‎Fabry-Perot‎]. Retrieved from https://sites.google.com/site/opticalphysicstjhsst/labs-1/fabry-perot-interferometer/background
8. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography, " Applied Physics Letters, Vol. 84, pp.5299-5301, 2004.
9. F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim and J. A. Rogers, "Polymer Imprint Lithography with Molecular-Scale Resolution, " Nano Letters, Vol. 4, pp. 2467-2471, 2004.
10. P. Nagpal, N. C. Lindquist, S. H. Oh and D. J. Norris, "Ultrasmooth Patterned Metals for Plasmonics and Metamaterials, " Science, Vol. 325, pp. 594-597, 2009.
11. 邱國斌,蔡定平, "金屬表面電漿簡介," 物理雙月刊, vol. 28, pp. 472-485,
2006.
12. Wood, R., XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902. 4(21): p. 396-402.
13. Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA, 1941. 31(3): p. 213-222.
14. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," philos, vol. 4, pp. 396-402, 1902.
15. Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics reports, 2005. 408(3): p. 131-314.
16. Liedberg, B., C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 1983. 4: p. 299-304.
17. Nylander, C., B. Liedberg, and T. Lind, Gas detection by means of surface plasmon resonance. Sensors and Actuators, 1983. 3: p. 79-88.
18. Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and bioanalytical chemistry, 2003. 377(3): p. 528-539.
19. Gelifesciences(2013).Title of motion picture [Principle of Surface Plasmon resonance (SPR) used in Biacore™ systems].Retrieved from https://youtu.be/o8d46ueAwXI
20. Biosensing Instrument Inc.(2014).Title of data file [SPR technique translates a binding event into a sensorgram via the detection of the resonance angle changes over time.].Retrieved from https://www.youtube.com/watch?v=ki5LgjNSuRg
21. MacBeath, G. and S.L. Schreiber, Printing proteins as microarrays for high-throughput function determination. Science, 2000. 289(5485): p. 1760-1763.
22. Hoa, X., A. Kirk, and M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosensors and Bioelectronics, 2007. 23(2): p. 151-160.
23. Hu, W., et al., A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film. Biosensors and Bioelectronics, 2004. 19(11): p. 1465-1471.
24. Ebbesen, T.W., et al., Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998. 391(6668): p. 667-669.
25. Lezec, H.J., et al., Beaming light from a subwavelength aperture. Science, 2002. 297(5582): p. 820-822.
26. Raether, H., Surface plasmons on smooth surfaces. 1988: Springer.
27. Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003. 424(6950): p. 824-830.
28. Guillaumée, M., et al., Polarization sensitive silicon photodiodes using nanostructured metallic grids. Applied Physics Letters, 2009. 94(19): p. 193503.
29. Sundaram, V. and S. Wen, An easy method to perform e-beam negative tone lift-off fabrication on dielectric material with a sandwiched conducting polymer layer. Journal of Micromechanics and Microengineering, 2011. 21(6): p. 065021.
30. Rindzevicius, T., et al., Long-range refractive index sensing using plasmonic nanostructures. The Journal of Physical Chemistry C, 2007. 111(32): p. 11806-11810.
31. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint of sub‐25 nm vias and trenches in polymers. Applied physics letters, 1995. 67(21): p. 3114-3116.
32. Hua, F., et al., Polymer imprint lithography with molecular-scale resolution. Nano letters, 2004. 4(12): p. 2467-2471.
33. Lee, K.-L., et al., Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosensors and Bioelectronics, 2016. 75:p. 88–95.
34. Liedberg, B., C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 1983. 4: p. 299-304.
35. Nylander, C., B. Liedberg, and T. Lind, Gas detection by means of surface plasmon resonance. Sensors and Actuators, 1983. 3: p. 79-88.
36. Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and bioanalytical chemistry, 2003. 377(3): p. 528-539.
37. J. Homola, "Electromagnetic Theory of Surface Plasmons," in Surface Plasmon Resonance Based Sensors. vol. 4, J. Homola, Ed., ed: Springer Berlin Heidelberg, 2006.
38. 鍾燁析, 折射率漸變色轉換層應用於上發光型白光有機發光二極體, 國立臺灣海洋大學光電科學研究所碩士論文, 2013 .
39. Munk B.A. Metamaterials: Critique and Alternatives. Wiley-Interscience; Hoboken, NJ, USA: 2009.
40. Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000;84:4184–4187. doi: 10.1103/PhysRevLett.84.4184.
41. Schwartz B.T., Piestun R. Total external reflection from metamaterials with ultralow refractiveindex. J. Opt. Soc. Am. B. 2003;20:2448–2453.
doi: 10.1364/JOSAB.20.002448.
42. Schwartz B.T., Piestun R. Wave guiding in air by total external reflection from ultralow index metamaterials. Appl. Phys. Lett. 2004;85:1–3.
doi: 10.1063/1.1764596.
43. Shalaev V.M., Cai W., Chettiar U.K., Yuan H.K., Sarychev A.K., Drachev V.P., Kildishev A.V. Negative index of refraction in optical metamaterials. Opt. Lett. 2005;30:3356–3358. doi: 10.1364/OL.30.003356.
44. Zhang S., Fan W., Panoiu N.C., Malloy K.J., Osgood R.M., Brueck S.R.J. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 2005;95:1–4. doi: 10.1016/j.physletb.2005.02.022.
45. Cai W., Shalaev V. Optical Metamaterials: Fundamentals and Applications. Springer; Berlin, Germany: 2009.
46. Sasin M.E., Seisyan R.P., Kaliteevski M.A., Brand S., Abram R.A., Chamberlain J.M., Iorsh I.V., Shelykh I.A., Egorov A.Y., Vasil’ev A.P., Mikhrin V.S., Kavokin A.V. Tamm plasmon-polaritons: First experimental observation. Superlattice. Microst. 2010;47:44–49. doi: 10.1016/j.spmi.2009.09.003.
47. asin M.E., Seisyan R.P., Kalitteevski M.A., Brand S., Abram R.A., Chamberlain J.M., Egorov A.Y., Vasil’Ev A.P., Mikhrin V.S., Kavokin A.V. Tamm plasmon polaritons: Slow and spatially compact light. Appl. Phys. Lett. 2008;92:251112–251114. doi: 10.1063/1.2952486.
48. Vuković S., Aleksić N.B., Timotijević D.V. Dispersion of bloch modes in a multilayer structure with alternating left-handed and right-handed materials. Acta Phys. Pol. A. 2007;112:1061–1066.
49. Vukovic S.M. Plasmonic bragg reflector and tamm plasmon polaritons in metal-dielectric superlattices. Acta Phys. Pol. A. 2009;116:678–680.
50. Vuković S.M., Aleksić N.B., Timotijević D.V. Guided modes in left-handed waveguides.Opt.Commun.2008;281:1500–1509.
doi:10.1016/j.optcom.2007.11.010.
51. Vuković S.M., Shadrivov I.V., Kivshar Y.S. Surface Bloch waves in metamaterial and metal-dielectric superlattices. Appl. Phys. Lett. 2009;95:041902–041903. doi: 10.1063/1.3186041.
52. Vuković S.M., Jakšić Z., Matovic J. Plasmon modes on laminated nanomembrane-based waveguides. J. Nanophoton. 2010;4:041770. doi: 10.1117/1.3478229.
53. Contopanagos H., Yablonovitch E., Alexopoulos N.G. Electromagnetic properties of periodic multilayers of ultrathin metallic films from dc to ultraviolet frequencies. J. Opt. Soc. Am. A. 1999;16:2294–2306. doi: 10.1364/JOSAA.16.002294.
54. Vincenti M.A., D'Orazio A., Cappeddu M.G., Akozbek N., Bloemer M.J., Scalora M. Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies. J. Appl. Phys. 2009;105:103103:1–103103:6. doi: 10.1063/1.3126712.
55. Yariv A., Yeh P. Electromagnetic propagation in periodic stratified media. II. Birefringence, phase matching, and x-ray lasers. J. Opt. Soc. Am. 1977;67:438–447. doi: 10.1364/JOSA.67.000438.
56. Yeh P. Optical Waves in Layered Media. Wiley VCH; Weinheim, Germany: 1988.
57. Ebbesen T.W., Lezec H.J., Ghaemi H.F., Thio T., Wolff P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998;391:667–669. doi: 10.1038/35570.
58. Beruete, M.; Sorolla, M.; Campillo, I. Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays. Opt. Express 2006, 14, 5445-5455.
59. Degiron, A.; Ebbesen, T.W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J. Opt. A-Pure Appl. Opt. 2005, 7, S90-S96.
60. Garcia-Vidal, F.J.; Martin-Moreno, L.; Pendry, J.B. Surfaces with holes in them: New plasmonic metamaterials. J. Opt. A-Pure Appl. Opt. 2005, 7, S97-S101.
61. Gordon, R.; Brolo, A.G. Increased cut-off wavelength for a subwavelength hole in a real metal. Opt. Express 2005, 13, 1933-1938.
62. Gordon, R.; Brolo, A.G.; McKinnon, A.; Rajora, A.; Leathem, B.; Kavanagh, K.L. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 2004, 92, 374011-374014.
63. Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847-848.
64. Zoran Jakšić., Slobodan Vuković., Jovan Matovic., Dragan Tanasković., Negative Refractive Index Metasurfaces for Enhanced Biosensing. Materials 2011, 4, 1-36; doi:10.3390/ma4010001.
電子全文 電子全文(網際網路公開日期:20240124)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔