跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/19 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭浩然
研究生(外文):Cheng, Hao-Jan
論文名稱:P型MoS2量子點作為添加物改善高分子太陽能電池效能之研究
論文名稱(外文):Study on the effects of p-type MoS2 quantum dots as the additive to improve the performance of polymer solar cells
指導教授:林泰源林泰源引用關係
指導教授(外文):Lin, Tai-Yuan
口試委員:沈志霖黃俊穎蔡宗儒林泰源
口試委員(外文):Shen, Ji-LinHuang, Chun-YingTsai, Tsong-RuLin, Tai-Yuan
口試日期:2018-07-25
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:36
中文關鍵詞:MoS2 QDsP3HTPC61BM高分子太陽能電池
外文關鍵詞:polymer solar cellsadditiveMoS2 QDsP3HTPC61BM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究二維材料量子點提升高分子太陽能電池轉換效率(Power Conversion Efficiency)之應用。本論文以P3HT和PC61BM作為有機太陽能電池主動層的二元共混物,以此為基礎添加了p型二維MoS2量子點。我們發現摻入p型MoS2 QDs的三元混合太陽能電池相對於二元混合物P3HT:PC61BM的元件效率有所提升。轉換效率由3.72 %提升至4.04 %,相較於二元結構成長了8.60 %。p型MoS2 QDs作為添加物進一步改善了高分子太陽能電池之短路電流,短路電流由9.74 mA/cm2提升至10.5 mA/cm2。整體的效能提升是由於P3HT的結晶性提升,排列更加有序,進而提高對於太陽光的吸收能力和電洞的遷移率。
We study the use of quantum dots (QDs) based on two-dimensional materials to enhance the power conversion efficiency (PCE) of polymer solar cells. In this work, P3HT and PC61BM were used as the active layer of the polymer solar cells. Based on this structure, the p-type two-dimensional MoS2 QDs were added to the active layer precursor solution to form the ternary mixture for the active layer. We found that the ternary hybrid solar cell with p-type MoS2 QDs exhibited superior performance than that of the solar cells without MoS2 QDs. The best PCE was found to be 4.04 % for the solar cells with 4 vol% MoS2 QDs which was an increase of 8.60 % compared to that for the solar cells without MoS2 QDs (3.72%). The p-type MoS2 QDs as an additive were found to improve the short-circuit current of the polymer solar cell, and the short-circuit current was increased from 9.74 mA/cm2 to 10.49 mA/cm2. The overall improvement in performance was due to the increased crystallinity of P3HT, which is more orderly and thus improved the absorption of sunlight and the mobility of hole carriers.
中文摘要.................................................I
ABSTRACT.............................................. II
致謝................................................. III
目錄...................................................IV
圖目錄.................................................VI
表目錄...............................................VIII
第一章 緒論 ........................................... 1
1.1前言.................................................1
1.2太陽能電池發展........................................1
1.3有機高分子太陽能電池簡介...............................1
1.4研究動機..............................................2
第二章 太陽能電池理論背景.................................3
2.1 太陽能電池工作原理...................................3
2.1.1太陽光譜............................................3
2.1.2光伏效應............................................4
2.2太陽能電池參數計算....................................5
2.2.1短路電流............................................5
2.2.2開路電壓............................................6
2.2.3能量轉換效率與填充因子...............................6
2.2.4外部量子效率........................................8
2.2.5電子電洞遷移率......................................9
2.3主動層添加物改善效能太陽能電池效能之文獻回顧............10
2.3.1氧化銅奈米顆粒作為添加物............................10
2.3.2 CdSe QDs作為添加物................................11
2.3.3 MoS2 nanosheets作為添加物.........................12
第三章 實驗原理及儀器介紹................................13
3.1 實驗儀器............................................13
3.1.1太陽光模擬系統.....................................13
3.1.2光電轉換效率系統...................................14
3.1.3紫外/可見分光光譜儀................................15
3.1.4蒸鍍機............................................15
3.1.5原子力顯微鏡.......................................16
3.1.6 X-射線繞射儀(X-Ray Diffraction,XRD)............17
3.2 實驗材料............................................18
3.2.1氧化銦錫玻璃.......................................18
3.2.2氧化鋅............................................18
3.2.3 P3HT.............................................19
3.2.4 PC61BM...........................................19
3.2.5二硫化鉬量子點合成.................................20
3-3 元件製程............................................20
第四章 結果與討論.......................................22
4.1 P3HT:PC61BM適合的混摻比例...........................23
4.2 P型MOS2 QDS適合的添加量.............................24
4.2.1開路電壓隨時間衰減圖................................26
4.2.2外部量子效率.......................................27
4.2.3紫外/可見分光光譜儀................................28
4.2.4單載子電洞元件.....................................29
4.2.5原子力顯微鏡分析...................................29
4.2.6 X-ray 繞射光譜....................................32
第五章 結論.............................................33
參考文獻................................................34
[1] Green MA, Hishikawa Y, Dunlop ED, et al. “Solar cell efficiency tables (Version 53)”, Prog Photovolt Res Appl. 27 (1), 3–12 (2019)
[2] Chapin, D. M.; Fuller, C.; Pearson, G., “A new silicon p‐n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys. 25 (5), 676 -677 (1954)
[3] Alexander L. Ayzner, Christopher J. Tassone, Sarah H. Tolbert, and Benjamin J. Schwartz,“Reappraising the Need for Bulk Heterojunctions in Polymer-Fullerene hotovoltaics: The Role of Carrier Transport in All-Solution-Processed P3HT/PCBM Bilayer Solar Cells”, J. Phys. Chem. C 113 (46), 20050–20060 (2009)
[4] Nicola Gasparini, Andrew Wadsworth, Maximilian Moser, Derya Baran, Iain McCulloch, and Christoph J. Brabec, “The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells”, Adv. Energy Mater. 8 (12), 1703298 (2018)
[5] Jia Jia Huang, Zhen Feng Zhong, Min Zhi Rong, Xiang Zhou, Xu Dong Chen, Ming Qiu Zhang,“An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency”, Carbon 70, 190-198 (2014)
[6] Luyao Lu, Tao Xu, Wei Chen, Erik S. Landry, and Luping Yu, “Ternary blend polymer solar cells with enhanced power conversion efficiency”, Nature Photonics 8 (9), 716–722 (2014)
[7] E. Salima, S.R. Bobbarab, A. Orabya, J.M. Nunzi, “Copper oxide nanoparticle doped bulk-heterojunction photovoltaic devices”, Synthetic Metals 252, 21–28 (2019)
[8] Chunyu Liu, Jinfeng Li, Xinyuan Zhang, Yeyuan He, Zhiqi Li, Hao Li, Wenbin Guo, Liang Shen and Shengping Ruan, “Improving efficiency of inverted polymer solar cells by introducing inorganic dopants”, Phys. Chem. Chem. Phys. 17 (12), 7960 -7965 (2015)
[9] http://www.nrel.gov/.
[10] Razi Ahmad, Ritu Srivastava, Sushma Yadav, Suresh Chand, and Sameer Sapra, “Functionalized 2D-MoS2‑Incorporated Polymer Ternary Solar Cells: Role of Nanosheet-Induced Long-Range Ordering of Polymer Chains on Charge Transport”, ACS Appl. Mater. Interfaces 9 (39), 34111 −34121(2017)
[11] Lin KP, Hsiao YJ, Fang TH, Yang BY, “Characteristics of Molybdenum Disulfide Nanoparticles for Heterojunction Polymer Solar Cells”, J Nanosci Nanotechnol. 18 (4), 2576 -2581 (2018)
[12] http://www.greenrhinoenergy.com/solar/radiation/spectra.php.
[13] Chamberlain, G., “Organic solar cells: a review.”, Solar Cells 8 (1), 47- 83(1983)
[14] Andre´ Moliton, Jean-Michel Nunzi, “How to model the behaviour of organic photovoltaic cells”, Polym Int. 55 (6), 583–600 (2006)
[15] Ching-Ting Lee, Cheng-Hsin Lee, “Conversion efficiency improvement mechanisms of polymer solar cells by balance electron–hole mobility using blended P3HT: PCBM:pentacene active layer”, Organic Electronics 14 (8), 2046–2050 (2013)
[16] S. A. Rutledge and A. S. Helmy, “Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing”, J. Appl. Phys. 114 (13), 133708 (2013)
[17] B. Lucas, A. El Amrani, A. Moliton, A. Skaiky, A. El Hajj, M. Aldissi, “Charge transport properties in pentacene films: Evaluation of carrier mobility by different techniques”, Solid-State Electronics 69, 99–103 (2012)
[18] https://commons.wikimedia.org/wiki/File:Atomic_force_microscope_block_diagram.svg
[19] Yanming Sun, Jung Hwa Seo, Christopher J. Takacs, Jason Seifter, and Alan J. Heeger, “Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer”, Adv. Mater. 23 (14), 1679–1683 (2011)
[20] Jie Min, Tayebeh Ameri, Roland Gresser, Melanie Lorenz-Rothe, Derya Baran, Anna Troeger, Vito Sgobba, Karl Leo, Moritz Riede, Dirk M. Guldi, and Christoph J. Brabec, “Two Similar Near-Infrared (IR) Absorbing Benzannulated Aza-BODIPY Dyes as Near-IR Sensitizers for Ternary Solar Cells”, ACS Appl. Mater. Interfaces 5 (12), 5609 -5616 (2013)
[21] https://www.ossila.com
[22] Guan‐Zhang Lu, Meng‐Jer Wu, Tzu‐Neng Lin, Chi‐Yuan Chang, Wei‐Ling Lin, Yi Ting Chen, Chen‐Fu Hou, Hao‐Jan Cheng, Tai‐Yuan Lin, Ji‐Lin Shen, Yang‐Fang Chen,“Electrically Pumped White‐Light‐Emitting Diodes Based on Histidine‐Doped MoS2 Quantum Dots”, Small 1901908 (2019)
[23] P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernoutsa, D. Cheyns, C. Deibel, J. D’Hae, P. Heremansa, J. Poortmans, J.V. Manca, “P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics”, Solar Energy Materials & Solar Cells 90 (14), 2150–2158 (2006)
[24] Sanjay Sahare, Naresh Veldurthi, Suwarna Datar and Tejashree, Bhave “Photon assisted conducting atomic force microscopy study of nanostructured additives in P3HT: PCBM”, RSC Adv. 5 (124), 102795–102802 (2015)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊