跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯承甫
研究生(外文):Hou, Cheng-Fu
論文名稱:可自修復之隨機雷射光學皮層
論文名稱(外文):Self-healable Random Laser Photonic Skin
指導教授:林泰源林泰源引用關係
指導教授(外文):Lin, Tai-Yuan
口試委員:林泰源沈志霖黃俊穎蔡宗儒
口試委員(外文):Lin, Tai-YuanShen, Ji-LinHuang, Chun-YingTsai, Tsong-Ru
口試日期:2019-07-25
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:33
中文關鍵詞:隨機雷射光學皮層自修復材料
外文關鍵詞:Random laserPhotonic SkinSelf-healing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著可穿戴式元件的盛行,可撓、可拉伸式的元件亦成為研究的焦點,由於可撓、可拉伸的元件在一般的使用及穿戴上,都有著比一般硬性元件更高的耐用性,因此廣受矚目。其中,電子皮膚中的皮膚上元件也受到廣大的研究,由於電子皮膚有著極薄、高生物相容性的優點,因此有許多研究將各種元件整合至電子皮膚上,製造多工的皮膚上元件。自修復材料則是這類皮膚上元件的首選,由於在受到機械性的破壞後,能夠在沒有外力參與的情況下自行地修復這些損害,能大幅延長元件的壽命,除了減少維修的成本之外,更使損壞的元件無需直接丟棄進而減少環境的負擔。在這篇論文中,我們結合自修復材料及隨機雷射元件,展現可修復式隨機雷射光學皮層(Self-Healable Random Laser Photonic Skin, SHRLPS),此元件在不同拉伸和彎曲的狀態下,其門檻值和發光強度均沒有明顯的下滑,這項光學特性使元件的發光在穿戴的過程中不會受到形變的影響,有著極高的舒適性和適應性。此外我們亦對元件在自修復時的光學特性進行測量,由研究結果可以發現其光學特性在自修復完成後與破壞前並無太大的不同,且元件的自修復過程無需外力刺激,這種特性大幅改善了可穿戴式元件的耐用性。在這份研究中,元件內的隨機雷射因其無共振腔體的優點,能與柔性基板極佳地結合,擁有無角度限制、高強度和窄半高寬的優點,其發出之紅、黃、藍光隨機雷射將有極大的潛力應用於抗發炎、抗菌及抑制腫瘤…等光動力療法上,我們在研究中也運用此元件,展示其作為光治療、顯示以及光學迷彩之演示圖,相信這項元件的發明能彌補現有雷射技術的不足並成為新一代整合治療、顯示和美觀的光源。
In recent years, with the prevalence of wearable components, making flexible and stretchable devices has become a popular topic of research. Flexible and stretchable components are of great interest with higher durability than ordinary rigid devices. Among these devices, the on-skin components of electronic skin have also been extensively studied. Since the electronic skin has the advantages of extremely thin and high biocompatibility, many studies have integrated various components onto the electronic skin to manufacture multiplexed skin components. Self-healing materials are the best materials for such on-skin devices. Since they can repair themselves after mechanical damages, the lifetime of the components can be significantly extended. Besides, to reduce the cost of maintenance, the damaged components do not need to be directly discarded, thereby reducing the burden on the environment. In this work, the Self-Healable Random Laser Photonic Skin(SHRLPS)demonstrated here combines self-healing materials and random laser components. The lasing threshold, intensity, and spectra of the device show the same performance under different tension and bending condition. This optical property allows the luminescence of the component to be unaffected by the deformation of wearing, with high comfort and adaptability. Besides, we also measure the optical properties of the device during the self-healing process. The result shows that the luminescence properties of the device are similar before and after self-heal. The self-healing process does not require external force stimulation, which makes it less susceptible to damage and significantly improve the durability of wearable components. In this work, the devices are flexible, stretchable, and highly durable, making this unique photonic skin extremely comfortable to wear. The random laser in the component can perfectly combine with the flexible substrate due to its cavity-free characteristics. Since the advantages of angle-free, high intensity, and narrow bandwidth, the red, yellow, and blue random lasers have great potential for Phototherapies such as anti-inflammatory, antibacterial, and anti-tumor. In this work, we also demonstrate possibilities of devices with phototherapy, display, and optical camouflage. It is believed that the invention of this new kind of light source can make up for the shortcoming of existing laser technology, and become a new generation of light source that integrates treatment, display, and aesthetics.
摘要 I
ABSTRACT III
目次 IV
圖目錄 V
第一章 緒論 1
1-1 前言 1
第二章 基本原理與文獻回顧 3
2-1 躍遷(Transition) 3
2-2 雷射(Light Amplification of Stimulated Emission Radiation, LASER) 4
2-3 表面電漿共振 7
2-4 自修復材料 8
2-5 隨機雷射機制 10
第三章 實驗原理與儀器介紹 11
3-1 實驗介紹 11
3-2 實驗材料 11
3-3 樣品製備流程 12
3-4 儀器原理 13
第四章 結果與討論 16
4-1 雷射染料之紫外-可見光吸收光譜及光激螢光光譜分析 16
4-2 銀奈米粒子之紫外-可見光吸收光譜及穿透式電子顯微鏡分析 17
4-3 隨機雷射光譜分析 18
4-4 隨機雷射光學皮層之可撓性 19
4-5 隨機雷射光學皮層之可延展性 20
4-6 隨機雷射光學皮層之自修復特性 21
4-7 隨機雷射光學皮層之自修復光譜 22
4-8 隨機雷射光學皮層之自修復穩定度 23
4-9 隨機雷射光學皮層之應用 24
第五章 結論 25
參考文獻 26
[1] J. A. Rogers, T. Someya, and Y. J. s. Huang, "Materials and mechanics for stretchable electronics," vol. 327, no. 5973, pp. 1603-1607, 2010.
[2] D.-H. Kim et al., "Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics," vol. 9, no. 6, p. 511, 2010.
[3] D. H. Kim et al., "Ultrathin silicon circuits with strain‐isolation layers and mesh layouts for high‐performance electronics on fabric, vinyl, leather, and paper," vol. 21, no. 36, pp. 3703-3707, 2009.
[4] I. Jung, G. Shin, V. Malyarchuk, J. S. Ha, and J. A. J. A. P. L. Rogers, "Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts," vol. 96, no. 2, p. 021110, 2010.
[5] B. P. Timko, T. Cohen-Karni, G. Yu, Q. Qing, B. Tian, and C. M. J. N. l. Lieber, "Electrical recording from hearts with flexible nanowire device arrays," vol. 9, no. 2, pp. 914-918, 2009.
[6] I. Jung et al., "Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability," vol. 108, no. 5, pp. 1788-1793, 2011.
[7] K. Cherenack, K. Van Os, and L. J. I. Van Pieterson, "PHOTONICS APPLIED: WEARABLE PHOTONICS: Smart photonic textiles begin to weave their magic," vol. 4, p. 01, 2012.
[8] T. Sekitani and T. J. A. M. Someya, "Stretchable, large‐area organic electronics," vol. 22, no. 20, pp. 2228-2246, 2010.
[9] D.-H. Kim et al., "Epidermal electronics," vol. 333, no. 6044, pp. 838-843, 2011.
[10] M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. J. A. m. Bao, "25th anniversary article: the evolution of electronic skin (e‐skin): a brief history, design considerations, and recent progress," vol. 25, no. 42, pp. 5997-6038, 2013.
[11] R.-H. Kim et al., "Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics," vol. 9, no. 11, p. 929, 2010.
[12] S. H. Chae et al., "Transferred wrinkled Al 2 O 3 for highly stretchable and transparent graphene–carbon nanotube transistors," vol. 12, no. 5, p. 403, 2013.
[13] M. Kaltenbrunner et al., "An ultra-lightweight design for imperceptible plastic electronics," vol. 499, no. 7459, p. 458, 2013.
[14] M. S. White et al., "Ultrathin, highly flexible and stretchable PLEDs," vol. 7, no. 10, p. 811, 2013.
[15] J. Liang, L. Li, X. Niu, Z. Yu, and Q. J. N. P. Pei, "Elastomeric polymer light-emitting devices and displays," vol. 7, no. 10, p. 817, 2013.
[16] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. J. P. o. t. N. A. o. S. Sakurai, "A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications," vol. 101, no. 27, pp. 9966-9970, 2004.
[17] T. Yamada et al., "A stretchable carbon nanotube strain sensor for human-motion detection," vol. 6, no. 5, p. 296, 2011.
[18] M. Park et al., "Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres," vol. 7, no. 12, p. 803, 2012.
[19] M. Kaltenbrunner et al., "Ultrathin and lightweight organic solar cells with high flexibility," vol. 3, p. 770, 2012.
[20] D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. J. A. M. Bao, "Stretchable organic solar cells," vol. 23, no. 15, pp. 1771-1775, 2011.
[21] M. Kaltenbrunner, G. Kettlgruber, C. Siket, R. Schwödiauer, and S. J. A. m. Bauer, "Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics," vol. 22, no. 18, pp. 2065-2067, 2010.
[22] A. M. Gaikwad, A. M. Zamarayeva, J. Rousseau, H. Chu, I. Derin, and D. A. J. A. M. Steingart, "Highly stretchable alkaline batteries based on an embedded conductive fabric," vol. 24, no. 37, pp. 5071-5076, 2012.
[23] Y.-C. Lai et al., "Stretchable organic memory: toward learnable and digitized stretchable electronic applications," vol. 6, no. 2, p. e87, 2014.
[24] D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. J. A. M. Rogers, "Stretchable, curvilinear electronics based on inorganic materials," vol. 22, no. 19, pp. 2108-2124, 2010.
[25] D.-H. Kim et al., "Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations," vol. 105, no. 48, pp. 18675-18680, 2008.
[26] D.-H. Kim et al., "Stretchable and foldable silicon integrated circuits," vol. 320, no. 5875, pp. 507-511, 2008.
[27] Y. Wang, Z. Li, and J. J. J. o. E. P. Xiao, "Stretchable thin film materials: fabrication, application, and mechanics," vol. 138, no. 2, p. 020801, 2016.
[28] Y. M. Song et al., "Digital cameras with designs inspired by the arthropod eye," vol. 497, no. 7447, p. 95, 2013.
[29] S. Xu et al., "Soft microfluidic assemblies of sensors, circuits, and radios for the skin," vol. 344, no. 6179, pp. 70-74, 2014.
[30] Y. Liu et al., "Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces," vol. 2, no. 11, p. e1601185, 2016.
[31] H. Lee et al., "A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy," vol. 11, no. 6, p. 566, 2016.
[32] A. Miyamoto et al., "Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes," vol. 12, no. 9, p. 907, 2017.
[33] T. Yokota et al., "Ultraflexible organic photonic skin," vol. 2, no. 4, p. e1501856, 2016.
[34] Y. Li, S. Chen, M. Wu, and J. J. A. M. Sun, "Polyelectrolyte multilayers impart healability to highly electrically conductive films," vol. 24, no. 33, pp. 4578-4582, 2012.
[35] K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. J. N. m. White, "Self-healing materials with microvascular networks," vol. 6, no. 8, p. 581, 2007.
[36] C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, and Z. J. N. c. Bao, "Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries," vol. 5, no. 12, p. 1042, 2013.
[37] P. Cordier, F. Tournilhac, C. Soulié-Ziakovic, and L. J. N. Leibler, "Self-healing and thermoreversible rubber from supramolecular assembly," vol. 451, no. 7181, p. 977, 2008.
[38] B. C. Tee, C. Wang, R. Allen, and Z. J. N. n. Bao, "An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications," vol. 7, no. 12, p. 825, 2012.
[39] E. T. Thostenson and T. W. J. A. M. Chou, "Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing," vol. 18, no. 21, pp. 2837-2841, 2006.
[40] Y.-L. Rao et al., "Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination," vol. 138, no. 18, pp. 6020-6027, 2016.
[41] J. Y. Oh et al., "Intrinsically stretchable and healable semiconducting polymer for organic transistors," vol. 539, no. 7629, p. 411, 2016.
[42] C.-H. Li et al., "A highly stretchable autonomous self-healing elastomer," vol. 8, no. 6, p. 618, 2016.
[43] O. R. Cromwell, J. Chung, and Z. J. J. o. t. A. C. S. Guan, "Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds," vol. 137, no. 20, pp. 6492-6495, 2015.
[44] J. A. Neal, D. Mozhdehi, and Z. J. J. o. t. A. C. S. Guan, "Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds," vol. 137, no. 14, pp. 4846-4850, 2015.
[45] S. A. Odom et al., "A self‐healing conductive ink," vol. 24, no. 19, pp. 2578-2581, 2012.
[46] B. J. Blaiszik et al., "Autonomic restoration of electrical conductivity," vol. 24, no. 3, pp. 398-401, 2012.
[47] E. Palleau, S. Reece, S. C. Desai, M. E. Smith, and M. D. J. A. M. Dickey, "Self‐healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics," vol. 25, no. 11, pp. 1589-1592, 2013.
[48] C. Hou, T. Huang, H. Wang, H. Yu, Q. Zhang, and Y. J. S. r. Li, "A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications," vol. 3, p. 3138, 2013.
[49] C. Wang et al., "User-interactive electronic skin for instantaneous pressure visualization," vol. 12, no. 10, p. 899, 2013.
[50] D. Son et al., "Multifunctional wearable devices for diagnosis and therapy of movement disorders," vol. 9, no. 5, p. 397, 2014.
[51] J. Kim et al., "Stretchable silicon nanoribbon electronics for skin prosthesis," vol. 5, p. 5747, 2014.
[52] S. Lee et al., "A transparent bending-insensitive pressure sensor," vol. 11, no. 5, p. 472, 2016.
[53] D. H. Ho, Q. Sun, S. Y. Kim, J. T. Han, D. H. Kim, and J. H. J. A. M. Cho, "Stretchable and multimodal all graphene electronic skin," vol. 28, no. 13, pp. 2601-2608, 2016.
[54] J. Kong et al., "Nanotube molecular wires as chemical sensors," vol. 287, no. 5453, pp. 622-625, 2000.
[55] C. Pang et al., "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres," vol. 11, no. 9, p. 795, 2012.
[56] F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. J. N. T. Prasad, "Lasing in nanocomposite random media," vol. 10, no. 2, pp. 168-192, 2015.
[57] N. M. Lawandy, R. Balachandran, A. Gomes, and E. J. N. Sauvain, "Laser action in strongly scattering media," vol. 368, no. 6470, p. 436, 1994.
[58] W.-J. Lin et al., "All-marine based random lasers," vol. 62, pp. 209-215, 2018.
[59] H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. J. P. R. L. Chang, "Random laser action in semiconductor powder," vol. 82, no. 11, p. 2278, 1999.
[60] R. C. Polson and Z. V. J. A. p. l. Vardeny, "Random lasing in human tissues," vol. 85, no. 7, pp. 1289-1291, 2004.
[61] W.-C. Liao et al., "Plasmonic carbon-dot-decorated nanostructured semiconductors for efficient and tunable random laser action," vol. 1, no. 1, pp. 152-159, 2017.
[62] H. W. Hu et al., "Wrinkled 2D materials: A versatile platform for low‐threshold stretchable random lasers," vol. 29, no. 43, p. 1703549, 2017.
[63] C. M. Raghavan et al., "Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals," vol. 18, no. 5, pp. 3221-3228, 2018.
[64] P. K. Roy et al., "Multicolor Ultralow‐Threshold Random Laser Assisted by Vertical‐Graphene Network," vol. 6, no. 16, p. 1800382, 2018.
[65] G. Haider et al., "A Highly-Efficient Single Segment White Random Laser," vol. 12, no. 12, pp. 11847-11859, 2018.
[66] X. Li et al., "A lotus leaf based random laser," vol. 69, pp. 216-219, 2019.
[67] D. S. J. N. p. Wiersma, "The physics and applications of random lasers," vol. 4, no. 5, p. 359, 2008.
[68] B. Redding, M. A. Choma, and H. J. N. p. Cao, "Speckle-free laser imaging using random laser illumination," vol. 6, no. 6, p. 355, 2012.
[69] S.-W. Chang et al., "A white random laser," vol. 8, no. 1, p. 2720, 2018.
[70] Y. M. Liao et al., "Inkjet‐Printed Random Lasers," vol. 3, no. 12, p. 1800214, 2018.
[71] M. Díaz et al., "Opto-chemical and laser properties of FLTX1, a novel fluorescent tamoxifen derivative, and its potential applications in breast cancer photodynamic chemotherapy," vol. 84, pp. 442-446, 2018.
[72] D. S. Wiersma and S. J. N. Cavalieri, "Light emission: A temperature-tunable random laser," vol. 414, no. 6865, p. 708, 2001.
[73] S. Mujumdar, S. Cavalieri, and D. S. J. J. B. Wiersma, "Temperature-tunable random lasing: numerical calculations and experiments," vol. 21, no. 1, pp. 201-207, 2004.
[74] Q. Song, L. Liu, L. Xu, Y. Wu, and Z. J. O. l. Wang, "Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity," vol. 34, no. 3, pp. 298-300, 2009.
[75] Q. Song et al., "Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity," vol. 32, no. 4, pp. 373-375, 2007.
[76] C. Y. Tsai et al., "Magnetically controllable random lasers," vol. 2, no. 12, p. 1700170, 2017.
[77] M. Leonetti and C. J. A. P. L. López, "Active subnanometer spectral control of a random laser," vol. 102, no. 7, p. 071105, 2013.
[78] K. Hentschel, "Twelve Semantic Layers of ‘Light Quantum’and ‘Photon’," in Photons: Springer, 2018, pp. 39-92.
[79] C. S. Long, P. W. Loveday, and A. Forbes, "A piezoelectric deformable mirror for intra-cavity laser adaptive optics," in Industrial and Commercial Applications of Smart Structures Technologies 2008, 2008, vol. 6930, p. 69300Y: International Society for Optics and Photonics.
[80] E. Hutter and J. H. J. A. m. Fendler, "Exploitation of localized surface plasmon resonance," vol. 16, no. 19, pp. 1685-1706, 2004.
[81] K. A. Williams, D. R. Dreyer, and C. W. J. M. b. Bielawski, "The underlying chemistry of self-healing materials," vol. 33, no. 8, pp. 759-765, 2008.
[82] A. Yangui, "Etude des propriétés optiques et structurales des matériaux hybrides organiques-inorganiques à base de Plomb: émission de lumière blanche," Paris Saclay, 2016.
[83] Wikipedia contributors. (2019, 17:42, July 31). Transmission electron microscopy. Available: https://en.wikipedia.org/w/index.php?title=Transmission_electron_microscopy&oldid=907563864
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top