|
[1] J. A. Rogers, T. Someya, and Y. J. s. Huang, "Materials and mechanics for stretchable electronics," vol. 327, no. 5973, pp. 1603-1607, 2010. [2] D.-H. Kim et al., "Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics," vol. 9, no. 6, p. 511, 2010. [3] D. H. Kim et al., "Ultrathin silicon circuits with strain‐isolation layers and mesh layouts for high‐performance electronics on fabric, vinyl, leather, and paper," vol. 21, no. 36, pp. 3703-3707, 2009. [4] I. Jung, G. Shin, V. Malyarchuk, J. S. Ha, and J. A. J. A. P. L. Rogers, "Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts," vol. 96, no. 2, p. 021110, 2010. [5] B. P. Timko, T. Cohen-Karni, G. Yu, Q. Qing, B. Tian, and C. M. J. N. l. Lieber, "Electrical recording from hearts with flexible nanowire device arrays," vol. 9, no. 2, pp. 914-918, 2009. [6] I. Jung et al., "Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability," vol. 108, no. 5, pp. 1788-1793, 2011. [7] K. Cherenack, K. Van Os, and L. J. I. Van Pieterson, "PHOTONICS APPLIED: WEARABLE PHOTONICS: Smart photonic textiles begin to weave their magic," vol. 4, p. 01, 2012. [8] T. Sekitani and T. J. A. M. Someya, "Stretchable, large‐area organic electronics," vol. 22, no. 20, pp. 2228-2246, 2010. [9] D.-H. Kim et al., "Epidermal electronics," vol. 333, no. 6044, pp. 838-843, 2011. [10] M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. J. A. m. Bao, "25th anniversary article: the evolution of electronic skin (e‐skin): a brief history, design considerations, and recent progress," vol. 25, no. 42, pp. 5997-6038, 2013. [11] R.-H. Kim et al., "Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics," vol. 9, no. 11, p. 929, 2010. [12] S. H. Chae et al., "Transferred wrinkled Al 2 O 3 for highly stretchable and transparent graphene–carbon nanotube transistors," vol. 12, no. 5, p. 403, 2013. [13] M. Kaltenbrunner et al., "An ultra-lightweight design for imperceptible plastic electronics," vol. 499, no. 7459, p. 458, 2013. [14] M. S. White et al., "Ultrathin, highly flexible and stretchable PLEDs," vol. 7, no. 10, p. 811, 2013. [15] J. Liang, L. Li, X. Niu, Z. Yu, and Q. J. N. P. Pei, "Elastomeric polymer light-emitting devices and displays," vol. 7, no. 10, p. 817, 2013. [16] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. J. P. o. t. N. A. o. S. Sakurai, "A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications," vol. 101, no. 27, pp. 9966-9970, 2004. [17] T. Yamada et al., "A stretchable carbon nanotube strain sensor for human-motion detection," vol. 6, no. 5, p. 296, 2011. [18] M. Park et al., "Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres," vol. 7, no. 12, p. 803, 2012. [19] M. Kaltenbrunner et al., "Ultrathin and lightweight organic solar cells with high flexibility," vol. 3, p. 770, 2012. [20] D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, and Z. J. A. M. Bao, "Stretchable organic solar cells," vol. 23, no. 15, pp. 1771-1775, 2011. [21] M. Kaltenbrunner, G. Kettlgruber, C. Siket, R. Schwödiauer, and S. J. A. m. Bauer, "Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics," vol. 22, no. 18, pp. 2065-2067, 2010. [22] A. M. Gaikwad, A. M. Zamarayeva, J. Rousseau, H. Chu, I. Derin, and D. A. J. A. M. Steingart, "Highly stretchable alkaline batteries based on an embedded conductive fabric," vol. 24, no. 37, pp. 5071-5076, 2012. [23] Y.-C. Lai et al., "Stretchable organic memory: toward learnable and digitized stretchable electronic applications," vol. 6, no. 2, p. e87, 2014. [24] D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. J. A. M. Rogers, "Stretchable, curvilinear electronics based on inorganic materials," vol. 22, no. 19, pp. 2108-2124, 2010. [25] D.-H. Kim et al., "Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations," vol. 105, no. 48, pp. 18675-18680, 2008. [26] D.-H. Kim et al., "Stretchable and foldable silicon integrated circuits," vol. 320, no. 5875, pp. 507-511, 2008. [27] Y. Wang, Z. Li, and J. J. J. o. E. P. Xiao, "Stretchable thin film materials: fabrication, application, and mechanics," vol. 138, no. 2, p. 020801, 2016. [28] Y. M. Song et al., "Digital cameras with designs inspired by the arthropod eye," vol. 497, no. 7447, p. 95, 2013. [29] S. Xu et al., "Soft microfluidic assemblies of sensors, circuits, and radios for the skin," vol. 344, no. 6179, pp. 70-74, 2014. [30] Y. Liu et al., "Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces," vol. 2, no. 11, p. e1601185, 2016. [31] H. Lee et al., "A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy," vol. 11, no. 6, p. 566, 2016. [32] A. Miyamoto et al., "Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes," vol. 12, no. 9, p. 907, 2017. [33] T. Yokota et al., "Ultraflexible organic photonic skin," vol. 2, no. 4, p. e1501856, 2016. [34] Y. Li, S. Chen, M. Wu, and J. J. A. M. Sun, "Polyelectrolyte multilayers impart healability to highly electrically conductive films," vol. 24, no. 33, pp. 4578-4582, 2012. [35] K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. J. N. m. White, "Self-healing materials with microvascular networks," vol. 6, no. 8, p. 581, 2007. [36] C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, and Z. J. N. c. Bao, "Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries," vol. 5, no. 12, p. 1042, 2013. [37] P. Cordier, F. Tournilhac, C. Soulié-Ziakovic, and L. J. N. Leibler, "Self-healing and thermoreversible rubber from supramolecular assembly," vol. 451, no. 7181, p. 977, 2008. [38] B. C. Tee, C. Wang, R. Allen, and Z. J. N. n. Bao, "An electrically and mechanically self-healing composite with pressure-and flexion-sensitive properties for electronic skin applications," vol. 7, no. 12, p. 825, 2012. [39] E. T. Thostenson and T. W. J. A. M. Chou, "Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing," vol. 18, no. 21, pp. 2837-2841, 2006. [40] Y.-L. Rao et al., "Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination," vol. 138, no. 18, pp. 6020-6027, 2016. [41] J. Y. Oh et al., "Intrinsically stretchable and healable semiconducting polymer for organic transistors," vol. 539, no. 7629, p. 411, 2016. [42] C.-H. Li et al., "A highly stretchable autonomous self-healing elastomer," vol. 8, no. 6, p. 618, 2016. [43] O. R. Cromwell, J. Chung, and Z. J. J. o. t. A. C. S. Guan, "Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds," vol. 137, no. 20, pp. 6492-6495, 2015. [44] J. A. Neal, D. Mozhdehi, and Z. J. J. o. t. A. C. S. Guan, "Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds," vol. 137, no. 14, pp. 4846-4850, 2015. [45] S. A. Odom et al., "A self‐healing conductive ink," vol. 24, no. 19, pp. 2578-2581, 2012. [46] B. J. Blaiszik et al., "Autonomic restoration of electrical conductivity," vol. 24, no. 3, pp. 398-401, 2012. [47] E. Palleau, S. Reece, S. C. Desai, M. E. Smith, and M. D. J. A. M. Dickey, "Self‐healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics," vol. 25, no. 11, pp. 1589-1592, 2013. [48] C. Hou, T. Huang, H. Wang, H. Yu, Q. Zhang, and Y. J. S. r. Li, "A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications," vol. 3, p. 3138, 2013. [49] C. Wang et al., "User-interactive electronic skin for instantaneous pressure visualization," vol. 12, no. 10, p. 899, 2013. [50] D. Son et al., "Multifunctional wearable devices for diagnosis and therapy of movement disorders," vol. 9, no. 5, p. 397, 2014. [51] J. Kim et al., "Stretchable silicon nanoribbon electronics for skin prosthesis," vol. 5, p. 5747, 2014. [52] S. Lee et al., "A transparent bending-insensitive pressure sensor," vol. 11, no. 5, p. 472, 2016. [53] D. H. Ho, Q. Sun, S. Y. Kim, J. T. Han, D. H. Kim, and J. H. J. A. M. Cho, "Stretchable and multimodal all graphene electronic skin," vol. 28, no. 13, pp. 2601-2608, 2016. [54] J. Kong et al., "Nanotube molecular wires as chemical sensors," vol. 287, no. 5453, pp. 622-625, 2000. [55] C. Pang et al., "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres," vol. 11, no. 9, p. 795, 2012. [56] F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. J. N. T. Prasad, "Lasing in nanocomposite random media," vol. 10, no. 2, pp. 168-192, 2015. [57] N. M. Lawandy, R. Balachandran, A. Gomes, and E. J. N. Sauvain, "Laser action in strongly scattering media," vol. 368, no. 6470, p. 436, 1994. [58] W.-J. Lin et al., "All-marine based random lasers," vol. 62, pp. 209-215, 2018. [59] H. Cao, Y. Zhao, S.-T. Ho, E. Seelig, Q. Wang, and R. P. J. P. R. L. Chang, "Random laser action in semiconductor powder," vol. 82, no. 11, p. 2278, 1999. [60] R. C. Polson and Z. V. J. A. p. l. Vardeny, "Random lasing in human tissues," vol. 85, no. 7, pp. 1289-1291, 2004. [61] W.-C. Liao et al., "Plasmonic carbon-dot-decorated nanostructured semiconductors for efficient and tunable random laser action," vol. 1, no. 1, pp. 152-159, 2017. [62] H. W. Hu et al., "Wrinkled 2D materials: A versatile platform for low‐threshold stretchable random lasers," vol. 29, no. 43, p. 1703549, 2017. [63] C. M. Raghavan et al., "Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals," vol. 18, no. 5, pp. 3221-3228, 2018. [64] P. K. Roy et al., "Multicolor Ultralow‐Threshold Random Laser Assisted by Vertical‐Graphene Network," vol. 6, no. 16, p. 1800382, 2018. [65] G. Haider et al., "A Highly-Efficient Single Segment White Random Laser," vol. 12, no. 12, pp. 11847-11859, 2018. [66] X. Li et al., "A lotus leaf based random laser," vol. 69, pp. 216-219, 2019. [67] D. S. J. N. p. Wiersma, "The physics and applications of random lasers," vol. 4, no. 5, p. 359, 2008. [68] B. Redding, M. A. Choma, and H. J. N. p. Cao, "Speckle-free laser imaging using random laser illumination," vol. 6, no. 6, p. 355, 2012. [69] S.-W. Chang et al., "A white random laser," vol. 8, no. 1, p. 2720, 2018. [70] Y. M. Liao et al., "Inkjet‐Printed Random Lasers," vol. 3, no. 12, p. 1800214, 2018. [71] M. Díaz et al., "Opto-chemical and laser properties of FLTX1, a novel fluorescent tamoxifen derivative, and its potential applications in breast cancer photodynamic chemotherapy," vol. 84, pp. 442-446, 2018. [72] D. S. Wiersma and S. J. N. Cavalieri, "Light emission: A temperature-tunable random laser," vol. 414, no. 6865, p. 708, 2001. [73] S. Mujumdar, S. Cavalieri, and D. S. J. J. B. Wiersma, "Temperature-tunable random lasing: numerical calculations and experiments," vol. 21, no. 1, pp. 201-207, 2004. [74] Q. Song, L. Liu, L. Xu, Y. Wu, and Z. J. O. l. Wang, "Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity," vol. 34, no. 3, pp. 298-300, 2009. [75] Q. Song et al., "Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity," vol. 32, no. 4, pp. 373-375, 2007. [76] C. Y. Tsai et al., "Magnetically controllable random lasers," vol. 2, no. 12, p. 1700170, 2017. [77] M. Leonetti and C. J. A. P. L. López, "Active subnanometer spectral control of a random laser," vol. 102, no. 7, p. 071105, 2013. [78] K. Hentschel, "Twelve Semantic Layers of ‘Light Quantum’and ‘Photon’," in Photons: Springer, 2018, pp. 39-92. [79] C. S. Long, P. W. Loveday, and A. Forbes, "A piezoelectric deformable mirror for intra-cavity laser adaptive optics," in Industrial and Commercial Applications of Smart Structures Technologies 2008, 2008, vol. 6930, p. 69300Y: International Society for Optics and Photonics. [80] E. Hutter and J. H. J. A. m. Fendler, "Exploitation of localized surface plasmon resonance," vol. 16, no. 19, pp. 1685-1706, 2004. [81] K. A. Williams, D. R. Dreyer, and C. W. J. M. b. Bielawski, "The underlying chemistry of self-healing materials," vol. 33, no. 8, pp. 759-765, 2008. [82] A. Yangui, "Etude des propriétés optiques et structurales des matériaux hybrides organiques-inorganiques à base de Plomb: émission de lumière blanche," Paris Saclay, 2016. [83] Wikipedia contributors. (2019, 17:42, July 31). Transmission electron microscopy. Available: https://en.wikipedia.org/w/index.php?title=Transmission_electron_microscopy&oldid=907563864
|