跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠鴻
研究生(外文):Chen, Kuan-Hung
論文名稱:利用電漿蝕刻製作週期性銀奈米柱陣列進行環境折射率感測之研究
論文名稱(外文):Fabrication of Periodic Silver Nanorod Arrays by Plasma Etching for Refractive Index Sensing
指導教授:江海邦
指導教授(外文):Chang, Hai-Pang
口試委員:江海邦賴志賢廖駿偉
口試委員(外文):Chang, Hai-PangLai, Chih-HsienLiaw, Jiunn-Woei
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:表面電漿奈米球微影術奈米柱陣列環境折射率 感測
外文關鍵詞:Surface PlasmonicNanosphere lithographyNanopillarsRefractive Index Sensing
相關次數:
  • 被引用被引用:2
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文實驗主要製作週期性實心奈米柱陣列,並針對於其製程方面以及光學吸收(Absorption)量測部分進行相關研究。

實驗使用自組裝奈米球微影術(Self-Assembled Nanosphere Lithography, NSL)與反應離子蝕刻(Reactive Ion Etching, RIE)配合感應耦合電漿反應離子蝕刻(Inductively Coupled Plasma-Reactive Ion Etching, ICP-RIE)在矽基板鋪上奈米球後蝕刻製作出週期性陣列的奈米柱,過程使用掃描式電子顯微鏡(Scanning Electron Microscope, SEM)詳細紀錄每個實驗步驟及實驗樣品的表面以及剖面結構。並進行量測及觀察實驗結果。

奈米柱製作完成後,先使用Comsol模擬軟體進行銀奈米柱的吸收光譜以及電場分布等分析;而在量測結果方面,使用熱蒸鍍鍍上30nm厚度的銀(Ag),再浸泡在不同環境折射率的匹配液中(Reflective Index Liquid),最後使用反射式光譜儀(Reflective Spectrometer, RS)對樣品量測其光學吸收波長,進而探討金屬以及介電材料的實心奈米柱陣列對於表面電漿(Surface Plasmon, SP)與環境折射率感測所帶來的影響。

最後從量測及模擬中可以觀察到吸收光譜內的λres隨著周圍環境RI增加有明顯的紅移,量測靈敏度約在300nm/RIU。

關鍵字:表面電漿、奈米球微影術、奈米柱陣列、環境折射率感測
In this paper, periodic solid nano-pillar arrays have been fabricated and the related fabrication processes and the measurement of absorption spectrum were investigated.

Self-assembled nano-sphere Lithography (NSL) followed by Reactive Ion Etching (RIE) with Inductively Coupled Plasma-Reactive Ion Etching (ICP-RIE) has been conducted in experiment. After the nanospheres were assembled on the silicon substrate, the samples were etched and then the periodic nano-pillar arrays were fabricated. In each experimental step, the surface and the cross-sectional view of the structure were recorded in detail by Scanning Electron Microscope (SEM). Afterwards, the measurements were conducted and then experimental results were analyzed.

After the fabrication of the nano-pillars, the absorption spectrum and electric field distribution of the silver nano-pillars are analyzed using the Comsol simulation software.

Silver (Ag) with a thickness of 30 nm was deposited by thermal evaporation, and then the sample was immersed in different reflective index liquids and followed by the absorption spectrum of the sample measured by Reflective Spectrometer (RS).

The influences of the solid nano-pillar arrays of metal and dielectric material on Surface Plasmon(SP) and environmental refractive index sensing were investigated.

Finally, according to the experiment and simulation, it can be observed that the λres in the absorption spectrum has a significant red shift with the increase of the surrounding environment RI, and the experiment sensitivity is about 300nm/RIU.

Keywords: Surface Plasmonic, Nanosphere lithography, Nanopillars, Refractive Index Sensing
第一章 緒論.....1
1.1前言 1
1.2表面電漿共振簡介.....2
1.3 研究動機及文獻回顧.....3
第二章 基礎理論.....9
2.1表面電漿共振理論.....9
2.1.1 介電質與金屬表面之表面電漿模態.....9
2.1.2侷域表面電漿共振.....10
2.1.3 菲諾共振.....14
2.1.4 金屬表面電漿之激發.....15
2.2 自組裝奈米球微影術結合反應離子蝕刻.....18
第三章 實驗方法.....21
3.1實驗儀器介紹.....21
3.1.1 自組裝奈米球塗佈機 (CSA)/旋轉塗佈機 (Spin-Coating) .....21
3.1.2 反應式離子蝕刻 (Reactive-Ion Etching, RIE).....24
3.1.3 感應耦合電漿-反應離子蝕刻.....27
(Inductively-Coupled Plasma Reactive-Ion Etching, ICP-RIE).....27
3.1.4熱蒸鍍 (Thermal Evaporation Deposition).....29
3.1.5掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) .....32
3.1.6可見光/近紅外光譜儀 (VIS/NIR Spectrometer).....33
3.1.7 COMSOL模擬軟體 (COMSOL Multiphysics).....34
3.2實驗流程.....36
3.2.1 樣品製備流程.....36
3.2.2 樣品基板清洗.....37
3.2.3 奈米球溶液調配.....37
3.2.4 基板表面電漿改質 (Atmospheric-Pressure Plasma/Plasma Jet).....39
3.2.5 奈米球塗佈流程.....40
3.2.6反應離子蝕刻縮小奈米球.....41
3.2.7感應耦合電漿蝕刻奈米柱.....41
3.2.8反應離子蝕刻奈米球舉離.....42
3.2.9熱蒸鍍鍍銀.....42
第四章 結果與討論.....43
4.1 奈米球遮罩製作.....43
4.2 奈米柱製程.....47
4.3奈米柱鍍銀.....51
4.4環境折射率之量測.....53
4.4.1 實驗量測.....53
4.4.2 實驗模擬.....54
4.4.3 實驗吸收光譜.....55
第五章 結論.....70
5.1 結論.....70
5.2 未來展望.....71
參考文獻.....72
[1] A. Artar, A. A. Yanik, and H. Altug, "Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing," Applied Physics Letters, vol. 95, no. 5, p. 051105, 2009.

[2] Y.-F. Chau, "Surface Plasmon Effects Excited by the Dielectric Hole in a Silver-Shell Nanospherical Pair," Scientific Reports, vol. 4, pp. 253-259, 2009.

[3] Y.-F. Chau and Z.-H. Jiang, "Plasmonics Effects of Nanometal Embedded in a Dielectric Substrate," Plasmonics, journal article vol. 6, no. 3, pp. 581-589, 2011.

[4] F. Miyamaru et al., "Ultrafast Optical Control of Group Delay of Narrow-Band Terahertz Waves," Scientific Reports, Article vol. 4, p. 4346, 2014.

[5] Y. Sonnefraud et al., "Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities," ACS Nano, vol. 4, no. 3, pp. 1664-1670, 2010.

[6] R. K. Vinnakota and D. A. Genov, "Terahertz Optoelectronics with Surface Plasmon Polariton Diode," Scientific Reports, Article vol. 4, p. 4899, 2014.

[7] M.-l. Wan, Y. Song, L. Zhang, and F. Zhou, "Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings," Opt. Express, vol. 23, pp. 27361-27368, 2015.

[8] J. He, P. Ding, J. Wang, C. Fan, and E. Liang, "Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption," Opt. Express, vol. 23, no. 5, pp. 6083-6091, 2015.

[9] M.-S. Kwon, B. Ku, and Y. Kim, "Plasmofluidic Disk Resonators," Scientific Reports, Article vol. 6, p. 23149, 2016.

[10] D. Sikdar and A. A. Kornyshev, "Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces," Scientific Reports, Article vol. 6, p. 33712, 2016.


[11] J. Zhao et al., "Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber," Sensors and Actuators B: Chemical, vol. 230, pp. 206-211, 2016.

[12] H.-H. Jeong et al., "Dispersion and shape engineered plasmonic nanosensors," Nature Communications, Article vol. 7, p. 11331, 2016.

[13] Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, and S. Pan, "Plasmonic induced triple-band absorber for sensor application," Opt. Express, vol. 23, no. 13, pp. 17607-17612, 2015.

[14] S. Murai, H. Sakamoto, K. Fujita, and K. Tanaka, "Mesoporous silica layer on plasmonic array: light trapping in a layer with a variable index of refraction," Opt. Mater. Express, vol. 6, no. 9, pp. 2736-2744, 2016.

[15] E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization Model for the Plasmon Response of Complex Nanostructures," Science, vol. 302, no. 5644, p. 419, 2003.

[16] H. Wei and H. Xu, "Plasmonics in composite nanostructures," Materials Today, vol. 17, no. 8, pp. 372-380, 2014.

[17] D. Wu et al., "Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor," Scientific Reports, Article vol. 7, p. 45210, 2017.

[18] R. W. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, no. 21, pp. 396-402, 1902.

[19]  U. Fano, "The Theory of Anomalous Diffraction Gratings and of
   Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)," J. Opt.
Soc. Am., vol. 31, no. 3, pp. 213-222, 1941.

[20] A. Hessel and A. A. Oliner, "A New Theory of Wood’s Anomalies on Optical Gratings," Appl. Opt., vol. 4, no. 10, pp. 1275-1297, 1965.

[21] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, no. 6668, pp. 667-669, 1998.

[22] J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Physical Review Letters, vol. 83, no. 14, pp. 2845-2848, 1999.

[23] L. Martín-Moreno et al., "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Physical Review Letters, vol. 86, no. 6, pp. 1114-1117, 2001.

[24] E. Kretschmann and H. Raether, "Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light," in Zeitschrift für Naturforschung A vol. 23, ed, 1968, p. 2135.

[25] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and nuclei, vol. 216, no. 4, pp. 398-410, 1968.

[26] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag Berlin An, 2013.

[27] 邱國斌、蔡定平, "金屬表面電漿簡介," 物理雙月刊, 二十八卷二期, 2006.

[28] J. Jana, M. Ganguly, and T. Pal, "Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application," RSC Advances, 10.1039/C6RA14173K vol. 6, no. 89, pp. 86174-86211, 2016.

[29] M. R. C. Mahdy, T. Zhang, M. Danesh, and W. Ding, "Substrate and Fano Resonance Effects on the Reversal of Optical Binding Force between Plasmonic Cube Dimers," Scientific Reports, vol. 7, no. 1, p. 6938, 2017.

[30] J. Cambiasso, M. König, E. Cortés, S. Schlücker, and S. A. Maier, "Surface-Enhanced Spectroscopies of a Molecular Monolayer in an All-Dielectric Nanoantenna," ACS Photonics, vol. 5, no. 4, pp. 1546-1557, 2018.

[31] N. Large et al., "Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter," Opt. Express, vol. 19, no. 6, pp. 5587-5595, 2011.

[32] P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, and Z. M. Wang, "Design and fabrication of silicon nanowires towards efficient solar cells," Nano Today, vol. 11, no. 6, pp. 704-737, 2016.

[33] C. Yue et al., "Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays," Nanoscale, vol. 6, no. 3, pp. 1817-1822, 2014.

[34] Nanostructures, Inc. "Microfabrication," 2016.

[35] Y.-F. C. Chau, C.-T. Chou Chao, C. M. Lim, H. J. Huang, and H.-P. Chiang, "Depolying Tunable Metal-Shell/Dielectric Core Nanorod Arrays as the Virtually Perfect Absorber in the Near-Infrared Regime," ACS Omega, vol. 3, no. 7, pp. 7508-7516, 2018.

[36] Yuan-Fong Chou Chau, Chan-Kuang Wang, Linfang Shen, Chee Ming Lim, Hai-Pang Chiang, Chung-Ting Chou Chao, Hung Ji Huang, Chun-Ting Lin, N. T. R. N. Kumara & Nyuk Yoong Voo., "Simultaneous Realization of High Sensing Sensitivity and Tunability in Plasmonic Nanostructures Arrays," Scientific Reports, vol. 7, no. 1, p. 16817, 2017.

[37] Y.-F. C. Chau, "Plasmonic Effects in the Enclosed and Opened Metallodielectric Bowtie Nanostructures," Journals in Optics - Elsevier, 2019.

[38] 彭眥杰, "利用奈米銀顆粒增強表面電漿共振生物感應器之靈敏度," 碩士論文, 光電科學研究所, 國立臺灣海洋大學, 2008.

[39] X. Xu et al., "Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures," ACS Nano, vol. 11, no. 10, pp. 10384-10391, 2017.

[40] 吳民耀、劉威志, "表面電漿子理論與模擬," 物理雙月刊, 二十八卷二期, 2006.

[41] C. F. Bohren and D. R. Huffman, "Absorption and scattering of light by small particles," John Wiley & Sons, 2008.

[42] H.-A. Chen, H.-Y. Lin, and H.-N. Lin, "Localized surface plasmon resonance in lithographically fabricated single gold nanowires," The Journal of Physical Chemistry C, vol. 114, no. 23, pp. 10359-10364, 2010.

[43] H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Applied physics letters, vol. 83, no. 22, pp. 4625-4627, 2003.

[44] J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," The Journal of Chemical Physics, vol. 116, no. 15, pp. 6755-6759, 2002.

[45] A. Bianconi, "Ugo Fano and shape resonances," AIP Conference Proceedings, vol. 652, no. 1, pp. 13-18, 2003.

[46] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, "Fano resonances in photonics," Nature Photonics, Review Article vol. 11, p. 543, 2017.

[47] A. Vittorini-Orgeas and A. Bianconi, "From Majorana Theory of Atomic Autoionization to Feshbach Resonances in High Temperature Superconductors," Journal of Superconductivity and Novel Magnetism, journal article vol. 22, no. 3, pp. 215-221, 2009.

[48] 房孟漢, "奈米銀顆粒陣列的製作與其在金屬增強螢光之研究," 碩士論文, 光電科學研究所, 國立臺灣海洋大學, 2015.

[49] R. Ulrich and R. Torge, "Measurement of Thin Film Parameters with a Prism Coupler," Appl. Opt., vol. 12, no. 12, pp. 2901-2908, 1973.

[50] S. AùTILEAN, "Fabrication of periodic metallic nanostructures by using nanosphere lithogaphy," Romanian Reports in Physics, vol. 56, no. 3, pp. 340-345, 2004.
[51] P. Colson, C. Henrist, and R. Cloots, "Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials," Journal of Nanomaterials, vol. 2013, p. 21, 2013.

[52] A. Frommhold, A. P. G. Robinson, and E. Tarte, "High aspect ratio silicon and polyimide nanopillars by combination of nanosphere lithography and intermediate mask pattern transfer," Microelectronic Engineering, vol. 99, pp. 43-49, 2012.

[53] J. C. Hulteen and R. P. V. Duyne, "Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces," Journal of Vacuum Science & Technology A, vol. 13, no. 3, pp. 1553-1558, 1995.

[54] C.-C. Lai, Y.-J. Lee, P.-H. Yeh, and S.-W. Lee, "Formation mechanism of SiGe nanorod arrays by combining nanosphere lithography and Au-assisted chemical etching," Nanoscale Research Letters, journal article vol. 7, no. 1, p. 140, 2012.

[55] L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando, and D. Golberg, "Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications," Journal of Materials Chemistry, 10.1039/C0JM02230F vol. 21, no. 1, pp. 40-56, 2011.

[56] V. Lotito and T. Zambelli, "Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene," Journal of Colloid and Interface Science, vol. 447, pp. 202-210, 2015.

[57] Y. Yu and G. Zhang, "Colloidal lithography," in Updates in Advanced Lithography: IntechOpen, 2013.

[58] 黃榮俊、李宗勳, "奈米球自組裝-微影術蝕刻製作," in 南區 人才巡迴演講, ed, p.16, 2013.

[59] 蘇郁捷、邱瑩庭、吳仲卿, "奈米球排排站-奈米微粒的自我組裝及應用," 科學研習期刊52-1期, 2013.

[60] G. M. Whitesides and B. Grzybowski, "Self-Assembly at All Scales," Science, vol. 295, no. 5564, pp. 2418-2421, 2002.

[61] J. W. Yang, Sim, J. I., An, H. M., & Kim, T. G., "Fabrication of nanometer-scale pillar structures by using nanosphere lithography," Journal of the Korean Physical Society, vol. 58, no. 42, pp. 994-997, 2011.

[62] X. Yan et al., "Fabrication of Non-Close-Packed Arrays of Colloidal Spheres by Soft Lithography," Journal of the American Chemical Society, vol. 127, no. 21, pp. 7688-7689, 2005.

[63] H.-L. Huang et al., "Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays," Opt. Express, vol. 21, no. S5, pp. A901-A908, 2013.

[64] X. Liu, W. Liu, L. Fang, S. Ye, H. Shen, and B. Yang, "Highly sensitive deep-silver-nanowell arrays (d-AgNWAs) for refractometric sensing," Nano Research, journal article vol. 10, no. 3, pp. 908-921, 2017.


[65] 陳沂蓉, "奈米球微影術應用於建構奈米等級之二維金球陣列," 碩士論文, 奈米工程與微系統研究所, 國立清華大學, 2008.

[66] Z. Yi et al., "Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate," Scientific Reports, Article vol. 6, p. 32314, 2016.

[67] X. Dai et al., "Fabrication and optical characterisation of InGaN/GaN nanorods," SPIE Micro+Nano Materials, Devices, and Applications, 2015.

[68] A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, "Nanosphere Lithography:  Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV−Visible Extinction Spectroscopy," Langmuir, vol. 20, no. 16, pp. 6927-6931, 2004.

[69] 朱柏豪, "什麼是蝕刻 (Etching)?," 國家奈米元件實驗室奈米通訊, vol. 24, no. 2, pp. 29-32, 2017.

[70] CORIAL A Plasma-Therm Company, "ICP-RIE technology," 2019.

[71] 蕭廷凱, "利用感應耦合電漿製作週期性三維中空圓柱之研究," 碩士論文, 光電科學研究所, 國立臺灣海洋大學, 2017.

[72] R. W. Pryor, "Multiphysics modeling using COMSOL®: a first principles approach," Jones & Bartlett Publishers, 2009.

[73] K. Watanabe, J. Yamamoto, and R. Tsuchiya, "Broadband-antireflective hybrid nanopillar array for photovoltaic application," Journal of Applied Physics, vol. 118, no. 8, p. 085102, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊