跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃敬豪
研究生(外文):Huang, Jing-Hao
論文名稱:利用銀奈米顆粒與雙曲超穎材料複合基板探討表面電漿增強螢光之研究
論文名稱(外文):Surface Plasmon Enhanced Fluorescence by Silver Nanoparticle on Hyperbolic Metamaterial
指導教授:江海邦
指導教授(外文):Chang, Hai-Pang
口試委員:江海邦賴志賢廖駿偉曾賢德
口試委員(外文):Chang, Hai-PangLai, Chih-HsienLiaw, Jiunn-WoeiTzeng, Shien-Der
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:55
中文關鍵詞:表面電漿共振表面增強拉曼散射表面增強螢光超穎材料雙曲超穎材料銀奈米顆粒
外文關鍵詞:Surface plasmon resonancesurface-enhanced Raman scatteringsurface-enhanced fluorescencemetamaterialHyperbolic metamaterialsilver nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文實驗主要利用磁控濺鍍系統(sputter system)及熱蒸鍍機(Thermal coater)製作出銀奈米顆粒於雙曲超穎材料複合基板,並量測進行相關研究。

實驗中使用原子力顯微鏡(Atomic Force Microscope,AFM)量測蒸鍍出的銀奈米顆粒的表面與掃描式電子顯微鏡(scanning electron microscope,SEM),觀察銀奈米顆粒與複合基板結構與均勻性。

量測方面包含光吸收波長(Absorption)確認結構的光吸收波段。

探討銀奈米顆粒與雙曲超穎材料不同SiO2厚度對於表面增強拉曼散射(Surface Enhanced Raman Spectroscopy,SERS)的影響。

再利用濺鍍機鍍上氧化矽再用熱蒸鍍鍍上有機染料Alq3及DCJTB後,進行光激發螢光(Photoluminescence,PL)螢光強度相較比較下增強數倍及時間解析光激發螢光(Time-Resolved Photoluminescence,TRPL)下的生命週期有明顯的縮短。
Silver nanoparticles on hyperbolic metamaterial (HMM) fabricated by thermal deposition and sputter system respectively have been studied.

Surface morphology and uniformity of the structure were observed by Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM).

The light absorption band of the structure was measured by spectrometer.

The influences of different SiO2 thickness between silver nanoparticles and hyperbolic metamaterial on Surface Enhanced Raman Spectroscopy (SERS) have been investigated.

Afterwards, the samples were sputtered different thickness of SiO2 followed by thermal deposited Alq3 and DCJTB, respectively.

The increasing intensity of Photoluminescence (PL) and the significantly decreased life time of Time-Resolved Photoluminescence (TRPL) were observed.
第一章 簡介 1
1-1 研究動機與目的 1
1-2 表面電漿共振 7
1-3 表面增強拉曼散射 12
1-4 表面增強螢光 13
1-5 超穎材料 14
1-6 雙曲超穎材料 14
第二章 儀器介紹 17
2-1 原子力顯微鏡(Atomic Force Microscpoic;AFM) 17
2-2 掃描式電子顯微鏡(Scanning Electron Microscope;SEM) 19
2-3 拉曼光譜儀 (Raman Spectrometer) 20
2-4 光激發螢光光譜 (Photoluminescence, PL)與時間解析光激發螢光(Time-Resolved Photoluminescence; TRPL) 21
2-5 可見光光譜儀(VIS Spectrometer) 22
2-6 熱蒸鍍機(Thermal Coater) 23
2-7 磁控濺鍍系統(Sputter System) 25
2-7-1 濺鍍原理 25
2-7-2 濺鍍機抽高真空步驟 25
2-7-3 濺鍍機鍍膜步驟 26
2-8 COMSOL 模擬軟體 28
2-8-1 模擬設定 28
第三章 實驗方法 29
3-1基板清洗 29
3-2濺鍍機鍍膜 29
3-3蒸鍍銀顆粒及有機染料層 30
第四章 結果與討論 31
4-1 銀奈米顆粒在雙曲超穎材料複合基板之SEM圖 31
4-2 銀奈米顆粒在雙曲超穎材料複合基板之粒徑分析 33
4-3 COMSOL 模擬吸收與電場 34
4-4 吸收量測 37
4-5 拉曼散射量測 38
4-6 光激發螢光光譜與時間解析光激發螢光量測 40
4-6-1 Alq3染料 40
4-6-2 DCJTB染料 45
第五章 結論 49
參考文獻 50
[1] 王思皓, “銀奈米顆粒子修飾超穎材料基板於金屬增強螢光知研究”國立台灣海洋大學光電科學研究所,碩士論文,(2015)
[2] 呂秉翰, “利用熱退火氧化銀膜製作寬頻表面電漿增強光激螢光基板”國立台灣海洋大學光電科學研究所,碩士論文,(2013)
[3] T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles”, J. Phys. Chem. B 104, 10549-10556 (2000)
[4] Farcau, Cosmin; Astilean, Simion, “Mapping the SERS Efficiency and Hot-Spots Localization on Gold Film over Nanospheres Substrates” Journal Of Physical Chemistry C 114, 11717-11722(2010)
[5] 林汶志, “奈米球微影束志做奈米顆粒陣列於表面增強拉曼散射生物感測應用”國立臺灣海洋大學光電科學研究所,博士論文,(2010)
[6] 張耀軒, “以石墨烯覆蓋金屬奈米粒子為基板之表面增強拉曼散射”,國立臺灣海洋大學光電科學研究所,碩士論文,(2013)
[7] 凌崇凱,“金屬奈米粒子覆蓋在銀膜上表面增強拉曼散射之研究”,國立臺灣海洋大學光電科學研究所,碩士論文,(2014)
[8] Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao JX, Gou L, Hunyadi SE, Li T “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications” J Phys Chem B 109:13857 (2005)
[9] Shuang Wu, Andreas W. Schell, Michael Lublow, Julian Kaiser, Thomas Aichele, Stefan Schietinger, Frank Polzer, Sergei Kühn, Xuhong Guo, Oliver Benson, Matthias Ballauff, Yan Lu , “Silica-coated Au/Ag nanorods with tunable surface plasmon bands for nanoplasmonics with single particles
” Colloid Polym Sci., 291, 585-494 (2013)
[10] Huang X, Neretina S, El-Sayed “MAGold nanorods: from synthesis and properties to biological and biomedical applications” Adv Mater 21:1 (2009)
[11] Xiao Yin, Bin Yang, Beibei Chen, Man He, Bin Hu “Multifunctional Gold Nanocluster Decorated Metal–Organic Framework for Real-Time Monitoring of Targeted Drug Delivery and Quantitative Evaluation of Cellular Therapeutic Response”Analytical Chemistry, Article ASAP(2019)
[12] Huang X, El-Sayed IH, Qian W, El-Sayed MA “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods” J Am Chem Soc 128:2115 (2006)
[13] Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U “Demonstration of a spaser-based nanolaser” Nature 460:1110(2009)
[14] Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzan LM“ Silica coating of silver nanoparticles using a modified Stober method”J Colloid Interface Sci 283(2):392–396(2005)
[15] Fu Tang, Fang He, Huicong Cheng, Lidong Li, “Self-Assembly of Conjugated Polymer-Ag@SiO2 Hybrid Fluorescent Nanoparticles for Application to Cellular Imaging” Langmuir 26 14 11774-11778(2010)
[16] Dressler C, Beuthan J, Mueller G, Zabarylo U, Minet O “Fluorescence imaging of heat-stress induced mitochondrial long-term depolarization in breast cancer cells” J Fluoresc 16(5):689–695(2006)
[17] Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D, Yi T, Huang C “A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging” J Am Chem Soc 129(34):10322–10323(2007)
[18] Frascione N, Gooch J, Daniel B“Enabling fluorescent biosensors for the forensic identification of body fluids” Analyst (Cambridge, U K) 138(24):7279–7288(2013)
[19] Guo K, Achilefu S, Berezin MY“Dating bloodstains with fluorescence lifetime measurements”Chemistry 18(5):1303–1305(2012)
[20] Ranasinghe RT, Brown T “Fluorescence based strategies for genetic analysis” Chem Commun 44:5487–5502(2005)
[21] Hsiang-Lin Huang, Chen Feng Chou, Shi Hua Shiao, Yi-Cheng Liu, Jian-Jang Huang, Shien Uang Jen, and Hai-Pang Chiang, “Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays” Optics Express A901-A908(2013)
[22] Ming Lun Tseng, Bing-Hann Leu, Ping-Yu Li, Kuang Sheng Chung, Hai-Pang Chiang, “Multi-Color Surface Plasmon-Enhanced Photoluminescence of Organic Dyes Using Annealed AgOx Thin Film” Plasmonics 10:1301–1305 (2015)
[23] 劉偉雍,“熱退火氧化銀魚雙曲材料基板以探討表面電漿增強光激螢光之研究”,國立臺灣海洋大學光電科學研究所,碩士論文,(2018)
[24] 彭眥杰,“利用奈米銀顆粒增強表面電漿共振生物感測器之靈敏度”,國立臺灣海洋大學光電科學研究所,碩士論文,(2008)
[25] Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics reports,. 408(3): p. 131-314. (2005)
[26] Liedberg, B., C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and actuators,. 4. 299-304. (1983)
[27] 邱國斌,蔡定平, "金屬表面電漿簡介," 物理雙月刊, 28, 472-485,(2006)
[28] Douglas A. Stuart, Jonathan M. Yuen, Nilam Shah, Olga Lyandres, Chanda R. Yonzon,Matthew R. Glucksberg, Joseph T. Walsh, and Richard P. Van Duyne, “In Vivo Glucose Measurement by Surface-Enhanced Raman Spectroscopy” , Anal. Chem. 78, 7211-7215(2006)
[29] B Gobind Das, Manohar Chirumamilla, Andrea Toma, Anisha Gopalakrishnan, Remo Proietti Zaccaria,Alessandro Alabastri, Marco Leoncini & Enzo Di Fabrizio, “Plasmon based biosensor for distinguishing different peptides mutation states” , Scientific Reports, 3:1792(2012)
[30] Wen-Chi Lin, Hsiao-Chin Jen, Chang-Long Chen, Deng-Fwu Hwang, Railing Chang, Jih-Shang Hwang, Hai-Pang Chiang , “SERS study of tetrodotoxin (TTX) by Using Silver Nanoparticle Arrays”, Plasmonics 4, 178-192(2009)
[31] Ferrari, A. C.;Meyer, J. C.;Scardaci, V.;Casiraghi, C.;Lazzeri, M.;Mauri, F.;Piscanec, S.;Jiang, D.;Novoselov, K. S.;Roth, S.;Geim, A. K. “ Raman Spectrum of Graphene and Graphene Layers” ,Physical Review Letters97,187401(2006)
[32] Yi-Chieh Chen, Robert J. Young, Julie V. Macpherson, andNeil R. Wilson, “Single-walled carbon nanotube networks decorated with silver nanoparticles : A Novel Graded SERS Substrate”, Journal Of Physical Chemistry C 111,16167-16173(2007)
[33] Jianjun Tang, Ting Liang, Weili Shi, Qianqian Zhang, Yong Wang, Jun Liu, Jijun Xiong,“The testing of stress-sensitivity in heteroepitaxy GaN/Si by Raman spectroscopy” , Applied Surface Science,8846-8849(2011)
[34] Moskovits, M. Surface Enhanced Spectroscopy Rev. Mod. Phy , 57, 783– 826(1985)
[35] A.Campion, and P. Kambhampati, “Surface-enhanced Raman scattering”, Chem. Soc. Rev. 27, 241-250 (1998)
[36] A. Campion, J. E. Ivanecky III, C. M. Child, and M. Foster, “On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering”, J. Am. Chem. SOC. 117, 11807-11808 (1995)
[37] Tong, L.; Zhu, T.; Liu, Z “ Approaching the Electromagnetic Mechanism of Surface Enhanced Raman Scattering: From Self Assembled Arrays to Individual Gold Nanoparticles Chem” Soc. Rev., 40, 1296– 1304( 2011)
[38] H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the Substrate-Temperature Dependence of Surface-Enhanced Raman Scattering”, J. Phys. Chem. B 104, 2348-2350 (2000)
[39] R. R. Chance, A. Prock , R. Silbey, “Theory of laser-induced phenomena on conventional and phase-conjugated surfaces” ,Adv.Chem.Phys,37,1(1973)
[40] Kneipp, Katrin, Martin Moskovits, and H. Kneipp. "Surface-enhanced Raman scattering." Physics Today 60.11 (2007)
[41] 吳民耀, 劉威志, “表面電漿子理論與模擬” ,物理雙月刊(二十八卷二期)(2006)
[42] K.H. Drexhage, “Influence of a dielectric interface on fluorescence decay time’’,Journal of luminescence 1, 2, 693-701 (1970)
[43] Martin Bauch, Koji Toma, Mana Toma, Qingwen Zhang and JakubDostalek Plasmonics 9:781-799(2014)
[44] C. D. Geddes, and J. R. Lakowicz, "Metal-enhanced fluorescence,"Journal of Fluorescence, 12, 121-129 (2002)
[45] A.Wei, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission”, Kluwer Academic Plenum Publishers, 337,173-200, (2004)
[46] Bauch, M., et al., Plasmon-Enhanced Fluorescence Biosensors: a Review. Plasmonics,9(4): p. 781-799,(2013)
[47] G. V. Viktor. Soviet Physics Uspekhi 10, 509 (1968)
[48] Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S,“Composite medium withsimultaneously negative permeability and permittivity”. Phys Rev Lett 84,4184-4187(2000)
[49] Walser RM, Electromagnetic metamaterials. In: Lakhtakia A, Weiglhofer WS, Hodgkinson IJ (eds) Complex mediums II: beyond linear isotropic dielectrics, Proc. SPIE 4467,SPIE - International Society for Optical Engineering, San Diego, CA, USA, 1-15(2001)
[50] Lakhtakia A, Mackay TG , “Meet the metamaterials. ”, Opt Photon News 18:32-39(2007)
[51] Pendry, JB, “Negative refraction makes a perfect lens. ”, Physical Review Letters 85,3966-3969 (2000)
[52] .A Kabashin, P Evans, S Pastkovsky, W Hendren, G Wurtz, R Atkinson, R Pollard, V Podolskiy A Zayats,“ Plasmonicnanorodmetamaterialsforbios-ensing,” Nat. Mater. 8(11), 867–871 (2009)
[53] Kai-Lun ZhangXiao-Dong ChengYa-Jing ZhangMingji ChenHaosen ChenYazheng YangWei-Li Song*Daining Fang,“Weather-Manipulated Smart Broadband Electromagnetic Metamaterials,” 40815-40823(2018)
[54] Matteo Burresi,Daniela Diessel,Dries van Oosten,Stefan Linden,Martin Wegener,L. Kuipers, “Negative-Index Metamaterials: Looking into the Unit Cell,” Nano Lett. 2480-2483(2010)
[55] A A Govyadinov, VA Podolskiy,“ Metamaterial photonic funnels forsubdiffraction light compression and propagation,” Phys. Rev. B73(15), 155108 (2006)
[56] Prashant Shekhar, J.A.a.Z.J., “Hyperbolic metamaterials: fundamentals and applications” , Korea Nano Technology Research Society ,03 March (2014)
[57] Joost Duvigneau,Holger Schönherr,G. Julius Vancso, “Nanoscale Thermal AFM of Polymers: Transient Heat Flow Effects” ACS Nano6932-6940 (2010).
[58] Kathryn A. Ramirez-AguilarKathy, L. Rowlen, “Tip Characterization from AFM Images of Nanometric Spherical Particles” Langmuir2562-2566 (1998)
[59] Coelho, J. P.; Tardajos, G.; Stepanenko, V.; Rodle, A.; Fernandez, G.; Guerrero-Martinez, A., “Cooperative Self-Assembly Transfer from Hierarchical Supramolecular Polymers to Gold Nanoparticles.” ACS Nano 9, 11241-11248 (2015)
[60] 陳智偉.“奈米顆粒增強表面電漿共振生物感測器” 國立台灣海洋大學光電科學研究所,碩士論文 (2006)
[61] Butt, H.J., B. Cappella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1-6): p. 1-152. (2005)
[62] 唐乃恩.“氮化鋁鎵表面缺陷之光性和原子力顯微鏡影像特性研究”國立交通大學電子物理系,碩士論文(2001)
[63] 陳義信.“冷壁式有機金屬化學氣相沈積法製備二氧化銥薄膜及其特性分析”國立台灣科技大學工程技術研究所,碩士論文 (2001)
[64] 黃艾雅.“DNA掃描探針奈米解剖技術之研究”國立東華大學生物技術研究所,碩士論文 (2002)
[65] 俄國NT-MDT公司, AFM P47 Pro 操作手冊,鎧柏科技譯 (2003)
[66] 郭瀚介,SEM的微觀世界,益弘儀器股份有限公司 (2012)
[67] John C. Seaman., “Thin-Foil SEM Analysis of Soil and Groundwater Colloids:  Reducing Instrument and Operator Bias” Environ. Sci. Technol. 187-191 (2000)
[68] Michael J. Workman, Alexey Serov, Barr Halevi, Plamen Atanassov, Kateryna Artyushkova, “Application of the Discrete Wavelet Transform to SEM and AFM Micrographs for Quantitative Analysis of Complex Surfaces” Langmuir 4924-4933 (2015)
[69] 羅聖全,各種電子顯微鏡,工業技術研究院材料與化工研究所電鏡技術開發與應用研究室研究主任 (2004)
[70] 利泓科技又限公司,拉曼光譜儀分析原理
[71] Gorgoll, R. M.; Tsubota, T.; Harano, K.; Nakamura, E., “Cooperative Self-Assembly of Gold Nanoparticles on the Hydrophobic Surface of Vesicles in Water” J Am Chem Soc 137, 7568-7571. (2015)
[72] P.A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage and W. L. Barnes,“Surface Plasmon Mediated Emission from Organic Light Emitting Diodes”, Advanced Materials, 14, 1393 (2002)
[73] 林珈豐.“探討鋁與氧化鋁覆蓋奈米狹縫菲諾共振於金屬增強螢光之研究 國立台灣海洋大學光電科學研究所,碩士論文 (2018)
[74] Zilan Wang,Lai Wang,Yuchen Xing,Di Yang,Jiadong Yu,Zhibiao Hao,Changzheng Sun,Bing Xiong,Yanjun Han,Jian Wang,Hongtao LiYi,Luo“Consistency on Two Kinds of Localized Centers Examined from Temperature-Dependent and Time-Resolved Photoluminescence in InGaN/GaN Multiple Quantum Wells” ACS Photonics2078-2084 (2017)
[75] 彭兆祥.“鑽石薄膜、氮化鈦與圖文淡化氮化鎵中間層對III-氮化物半導體光學性質影響之研究”國立台灣海洋大學光電科學研究所,碩士論文(2005)
[76] E. C.LeRu, E. J.Blackie, M. Meyer, and P. G.Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C, vol.111, no.37, pp. 13794-13803, (2007)
[77] R. Que, M. Shao, S. Zhuo, C. Wen, S. Wang, and S. T. Lee, “Highly reproducible surface-enhanced raman scattering on a capillarity-assisted gold nanoparticle assembly,” Adv. Funct. Mater., vol.21, no.17, pp.3337-3343, (2011)
[78] Z. Shi, T. Wang, H. Lin, X. Wang, J. Ding, and M. Shao, “Excellent surface-enhanced Raman scattering (SERS) based on AgFeO2 semiconductor nanoparticles,” Nanoscale, vol.5, no.20, pp. 10029-10033, (2013)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊