跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 00:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝孟融
研究生(外文):Hsieh, Meng-Jung
論文名稱:船舶振動能擷取之機電材研究
論文名稱(外文):A Study on Electromechanical Materials for Ship Vibration Energy Harvesting
指導教授:張宏宜郭俊良郭俊良引用關係
指導教授(外文):Chang, Horng-YiGuo, Jiunn-Liang
口試委員:洪逸明楊永欽張宏宜郭俊良
口試委員(外文):Hon, Yi-MingYang, Yung-ChinChang, Horng-YiGuo, Jiunn-Liang
口試日期:2019-06-14
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:商船學系
學門:運輸服務學門
學類:航海學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:62
中文關鍵詞:機電能轉換鋯鈦酸鉛 (PZT)晶界阻抗共振頻率
外文關鍵詞:electro-mechanical energy transformationlead zirconate titanate (PZT)grain-boundary impedanceresonant frequency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
優異機電 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 能轉換特性的鋯鈦酸鉛 (PZT)添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 添加晶界相的正溫敏電阻 (PTCR)與鐵 電奈米鈦酸鋇 (nano-BT)粒子;摻雜 粒子;摻雜 粒子;摻雜 (Sr,Y)與 Ba取代 ABO3之 PZT的 A位置,有 位置,有 位置,有 效降低晶界阻抗增進機電轉換性能。 效降低晶界阻抗增進機電轉換性能。 PZT+PTCR添加 PbO補償氣氛,在 補償氣氛,在 補償氣氛,在 1250C/2hC/2h C/2h燒結可得到純鈣鈦礦相, PTCR添加可降低 PZT之電阻。 添加 1 wt%與 3 wt% PTCR增加 PZT介電係數、降低容抗, 1 wt%維持共振頻率;添加 3 wt%降低共 振頻率;添加 5 wt% PTCR,介電係數降低、容抗大增加,共振頻率 。
添加 nano-BT之 PZT緻密性與晶粒大小變化不,為沿斷裂特。 緻密性與晶粒大小變化不,為沿斷裂特。 緻密性與晶粒大小變化不,為沿斷裂特。 緻密性與晶粒大小變化不,為沿斷裂特。 Nano-BT顆粒散佈在晶界區域, Pb與 Ba成份較靠近晶界分佈 使 PZT-nano BT具類核 -殼 的晶粒 -晶界關係。 晶界關係。 添加少量奈米級 BT,就有降低阻抗的作用; ,就有降低阻抗的作用; ,就有降低阻抗的作用; 溫度高於 250C, 1 wt% nano-BT使 PZT晶界電阻下降幅度大於 2 wt%添加者。 PZT-BT在相變溫 度 180C以下 仍是鐵電相 ,具有相當的自發偶極量,其複阻 抗之電容性高於具有相當的自發偶極量,其複阻 抗之電容性高於具有相當的自發偶極量,其複阻 抗之電容性高於具有相當的自發偶極量,其複阻 抗之電容性高於性。電容 性。電容 性。電容 (Cp)隨頻率變化,在 隨頻率變化,在 隨頻率變化,在 1 MHz以下產生四組共振利機電能轉換之選擇, 以下產生四組共振利機電能轉換之選擇, 180C以上,共振 -反共振因產生去極化而消失; 反共振因產生去極化而消失; 因船舶主機 外部溫度沒超過 100C,故機電能轉換材 可應用在船舶 具高溫之機艙 振動能擷取 。
添加 (Sr,Y)在 1 mol%以內,影響 以內,影響 以內,影響 以內,影響 PZT結晶度 ,沒第二相 ,沒第二相 析出 ,晶 粒呈現穿,晶 粒呈現穿斷裂 。經 1250C/2h燒結 的 PZT-(Sr,Y)具良好 tetragonal晶相; (Sr,Y)添加 與延長 煆燒時間會造成 PZT晶粒成長。添加 晶粒成長。添加 晶粒成長。添加 (Sr,Y)降低 PZT的殘留極化 (PR)與飽和極化 量(Psat),矯頑電場 (Ec)則維持不變。過量的 Sr (40 mol%),產生第二相,縱使提 高煆燒溫度與延長時間,都大降低 PR與 Psat。PZT-(Sr,Y)的介電係數 的介電係數 (K)雖低於純 PZT,100 kHz以下也有 2600之數值 ;總體阻抗 (|Z|)高於純 PZT;隨著 ;隨著 (Sr,Y)添加 可調整不同的共振頻率,配合船舶 可調整不同的共振頻率,配合船舶 各部位場所產生的振 動頻率擷取各部位場所產生的振 動頻率擷取各部位場所產生的振 動頻率擷取動能。 動能。 450C的 AC阻抗分析, 阻抗分析, (Sr,Y)降低 PZT晶界阻抗值,相同 晶界阻抗值,相同 晶界阻抗值,相同 (Sr,Y)添加量與 煆燒溫度,提升時間可增加 煆燒溫度,提升時間可增加 煆燒溫度,提升時間可增加 PZT的壓電係數 (d33)值,即提升機電轉換效能。 值,即提升機電轉換效能。 值,即提升機電轉換效能。 PZT-Sr0.5Y0.125經 900C/30minC/30min C/30minC/30min煆燒 再 1250C/2h燒結 可得高的 d33值 470 pC/N。 添加少量 (Sr,Y),小於 1 mol%,形成摻雜進入 ,形成摻雜進入 PZT晶格, 無二次相析出過量 添加 (40 mol% Sr),於晶界析出 非低阻值晶 相, 無助於機電轉換效能的提升。
去酯後的 PZT粉體較造粒有分散性顆, 粉體較造粒有分散性顆, 1250C/2hC/2h C/2h有 PbO氣氛補償 下燒結,添加離子性 下燒結,添加離子性 下燒結,添加離子性 Ba可進入 可進入 A位置。 位置。 1~3 mol%的 Ba有效降低晶界阻抗, 有效降低晶界阻抗, 5~7 mol%的 Ba則增加 PZT晶界阻抗。 Ba含量增加, 含量增加, 降低 PZT的 PR與 Psat,但 Ec維持不變。 PZT-Ba的介電係數 (K)高於純 PZT,升高共振頻率,降低 共振 -反共 振大小 。在 200 kHz,PZT-Ba保持穩定 K值 6000以上。 以上。 PZT-Ba的總體阻抗 (|Z|)低於純 PZT,Ba取代性的 添加 有效降低 有效降低 PZT之總體 阻抗 與晶界阻抗 。
The promotion of electro-mechanical transformation performance for lead zirconate titanate (PZT) is using the addition of positive temperature coefficient resistor (PTCR) and ferroelectric nano-barium titanate (nano-BT) particles as the grain-boundary phase, also doping (Sr,Y) and Ba ions to substitute the A-site in ABO3 structure in this study. Such a promotion depends on grain-boundary impedance decrease effectively to enhance the electro-mechanical transformation performance. PZT+PTCR sintered at 1250C/2h with the PbO atmosphere compensation achieves the pure ABO3 perovskite structure to reduce the impedance of PZT. Addition of 1 wt% and 3 wt% PTCR increase the dielectric constant and reduce capacitive reactance. However, the addition of 1 wt% PTCR maintains and 3 wt% PTCR decreases the resonant frequency of PZT. The addition of 5 wt% PTCR reduces the dielectric constant and decreases the capacitive reactance significantly, as well as shifts to lower resonant frequency.
The densification and grain size of PZT are remained after the addition of nano-BT and the PZT-nano BT exhibits characteristics of intergranular fracture. The nano-BT particles disperse around the grain boundaries. The distribution of Pb and Ba composition around out-layer of grain lets the PZT-nano BT become the type of core-shell structure. The addition of nano-BT also reduces the PZT impedance effectively. The grain-boundary impedance reduction by 1 wt% nano-BT addition is significant than by 2 wt% addition. The PZT-BT characterizes ferroelectric phase below 180C, which possesses a relative quantity of spontaneous polarization to result in the capacitive reactance larger than resistance. The capacitance changes with frequency to have four resonant frequencies and facilitate the selection of optimal electro-mechanical energy transformation below 1 MHz. The resonant anti-resonant phenomenon will disappear above 180C due to the de-polarization. Such electro-mechanical energy transformation materials can be applied to harvest the vibration energy of the main engine, which the surface temperature is not higher than 100C.
The dopant (Sr, Y) less than 1 mol% affects PZT crystallinity, no second phase segregation and exhibits transgranular fracture. The PZT-(Sr,Y) has well tetragonal structure after 1250C/2h sintering. The (Sr, Y) doping and calcination time extension result in grain growth of PZT. The (Sr,Y) doping reduces remanent polarization (PR) and saturated polarization (Psat) but maintains the scale of coercive electric field (Ec). High dopant of Sr (40 mol%) generates secondary phase, decreases the values of PR and (Psat) even increasing calcination temperature and time. The PZT-(Sr,Y) has more higher dielectric constant (K) and total impedance (|Z|) than PZT. The (Sr,Y) doping can provide stable K-value of 2600 below 100 kHz and regulate the resonant frequency to fit different vibration frequency in the ship to harvest such mechanical energies. The grain boundary impedance by AC impedance analysis at 450C is reduced by (Sr,Y) doping. Increase the calcination time can obtain high piezoelectric coefficient (d33) value at the same amount of (Sr,Y) dopant and same calcination temperature. That obtained d33 high value of 470 pC/N for PZT-Sr0.5Y0.125 after 900C/30min calcination and sintering means the promotion of the electro-mechanical transformation efficiency. The small amount of (Sr, Y) less than 1 mol% is doped in the PZT lattice without second phase segregation but high Sr (40 mol%) doping will segregate high impedance phase at grain boundary to degrade the electro-mechanical energy transformation.
The debindered PZT powders has more dispersive particles than granulated powders. The ionic Ba addition can enter into the A-site of PZT under the PbO atmosphere compensation at 1250C/2h sintering. The 1~3 mol% Ba can reduce grain boundary impedance effectively. The 5~7 mol% Ba increases grain boundary impedance. The more Ba amount is, the smaller PR and Psat of PZT are, but Ec is maintained. PZT-Ba provides higher K value than PZT, increases resonant frequency and reduces resonant anti-resonant values. PZT-Ba keeps stable K-value of 6000 below 200 kHz. The result of total impedance (|Z|) of PZT-Ba is lower than that of PZT. Therefore, the Ba substitution in PZT can reduce the total and grain-boundary impedances.
目錄
摘要 ................................ ................................ ................................ ........................... Ⅰ
目錄 ................................ ................................ ................................ ........................ Ⅳ
圖目錄 ................................ ................................ ................................ .................... Ⅵ
表目錄 ................................ ................................ ................................ ...................... Ⅹ
第一章 前言 ................................ ................................ ................................ ............. 1
第二章 文獻回顧與探討 ................................ ................................ ......................... 2
2.1. PZT特性概論與應用 ................................ ................................ ................. 2
2.2. 材料之介電、鐵與壓性質 ................................ ................................ 5
2.2.1 介電常數與損失 ................................ ................................ .......... 5
2.2.2 鐵電性質 ................................ ................................ ......................... 5
2.2.3 壓電參數 [5-7] ................................ ................................ .................. 6
2.2.3.1 機電藕合係數 (k) ................................ ................................ ... 6
2.2.3.2 機械品質因數 ................................ ................................ ....... 6
2.2.3.3 壓電參數 ................................ ................................ ............... 7
2.3. 環境條件影響鐵電材料特性 ................................ ................................ .... 8
2.4 摻雜影響鐵電材料特性 ................................ ................................ ............ 11
第三章 研究方法與步驟 ................................ ................................ ....................... 25
3.1. PZT添加正溫敏電阻 (PTCR) ................................ ................................ .. 25
3.2. PZT與 Sr, Y摻雜組合 ................................ ................................ ............ 26
3.3. PZT與奈米 Ba物種組合 ................................ ................................ ........ 26
3.3.1 結合奈米 BaTiO3 ................................ ................................ ........... 26
3.3.2 結合鋇鹽類之摻雜構 ................................ ................................ 27
3.4. 各種特性分析 ................................ ................................ ......................... 28
3.4.1 結晶相分析 ................................ ................................ ................... 28
3.4.2 顯微結構分析 ................................ ................................ ................ 29
3.4.3 鐵電遲滯曲線 (P-E curve)量測 ................................ ...................... 29
3.4.4 相對 介電常數 (K)及介電損失因子 (D, tan)量測 .......................... 30
3.4.5 壓電係數 d33量測 ................................ ................................ .......... 30
3.4.6 電阻率的量測 ................................ ................................ ................ 30
3.4.7 阻抗量測分析 ................................ ................................ ................ 31
第四章 研究結果與討論 ................................ ................................ ....................... 32
4.1. PZT添加正溫敏電阻 (PTCR) ................................ ................................ .. 32
4.1.1 PTCR之基 本特性鑑定 ................................ ................................ .. 32
4.1.2 PZT添加 PTCR ................................ ................................ .............. 34
4.2. PZT與 Sr, Y摻雜組合 ................................ ................................ ............ 38
4.3. PZT與奈米 Ba物種組合 ................................ ................................ ........ 47
V
4.3.1 結合奈米 BaTiO3 ................................ ................................ ........... 47
4.3.2 結合鋇鹽類之取代 ................................ ................................ ........ 54
第五章 結論 ................................ ................................ ................................ ........... 58
參考文獻 ................................ ................................ ................................ ................ 60
[1] B. Jaffe, R. S. Roth and S. Marzullo, “Properties of piezoelectric ceramics in the solid-solution series, lead titanate-lead zirconate-lead oxide: tin oxide and lead titanate-lead hafnate”, J. Res. Nut. Bur: Standards 55[5] (1955) 239-254.
[2] B. Jaffe, W.R. Cook Jr., and H. Jaffe, “Piezoelectric ceramics”, Academic Press, London, U.K. and New York, 1971.
[3] C. A. Randall, N. Kim, J. P. Kucera, W. Cao, and T. R. Shrout, “Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics”, J. Am. Ceram. Soc. 81[3] (1998) 677–688.
[4] A. C. Dent, L. J. Nelson, C. R. Bowen, R. Stevens, M. Cain, M. Stewart, “Characterisation and properties of fine scale PZT fibres”, J. Eur. Ceram. Soc. 25 (2005) 2387–2391.
[5] 周卓明,「壓電力學」,全華科技圖書,2003.
[6] 吳朗,「電子陶瓷─壓電」,全欣科技圖書,1994.
[7] 汪建民,「陶瓷技術手冊(上)」,中華民國科技發展促進會,1994.
[8] L. L. Hench and J. K. West, “Principles of Electronic Ceramics”, Chap. 6, John Wiley & Sons, 1990.
[9] K. H. Cho, C. E. Seo, Y. S. Choi, Y. H. Ko, K. J. Kim, “Effect of pressure on electric generation of PZT(30/70) and PZT(52/48) ceramics near phase transition pressure”, J. Eur. Ceram. Soc. 32 (2012) 457–463.
[10] M. F. Zhang, Y. Wang, K. F. Wang, J. S. Zhu and J. M. Liu, “Characterization of oxygen vacancies and their migration in Ba-doped Pb(Zr0.52Ti0.48)O3 ferroelectrics”, J. Appl. Phys. 105 (2009) 061639 (6 pages).
[11] S. C. Panigrahi, P. R. Das, B. N. Parida, H. B.K. Sharma, R. N. P. Chaudhary, “Effect of Gd-substitution on dielectric and transport properties of lead zirconate titanate ceramics”, J. Mater. Sci.: Mater. Electron. 24 (2013) 3275–3283.
[12] D. Bochenek, R. Skulski, P.Wawrzała, D. Brzezińska, “Dielectric and ferroelectric properties and electric conductivity of sol–gel derived PBZT ceramics”, J. Alloys Compnd. 509 (2011) 5356–5363.
[13] R. Ranjan, R. Kumar, N. Kumar, B. Behera, R. N. P. Choudhary, “Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1−x/4O3 ceramics”, J. Alloys Compnd. 509 (2011) 6388–6394.
[14] R. Zachariasz, D. Bochenek, K. Dziadosz, J. Dudek, J. Ilczuk, “Influence of the Nb and Ba dopants on the Properties of the PZT Type Ceramics”, Archives Metallurgy Mater. 56 (2011) 1217-1222.
[15] C. C. Tsai, S. Y. Chu, C. S. Hong, S. F. Chen, “Effects of ZnO on the dielectric, conductive and piezoelectric properties of low-temperature-sintered PMnN-PZT
61
based hard piezoelectric ceramics”, J. Eur. Ceram. Soc. 31 (2011) 2013–2022.
[16] B. A. Boukamp and D. H. A. Blank, “High-precision impedance spectroscopy: A strategy demonstrated on PZT”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58 (2011) 2521-2530.
[17] M. Cerqueira, R. S. Nasar, E. Longo, J. A. Varela, A. Beltrán, R. Llusar, J. Andrés, “Piezoelectric behaviour of PZT doped with calcium: a combined experimental and theoretical study”, J. Mater. Sci. 32 (1997) 2381-2386.
[18] R. S. Nasar, M. Cerqueira, E. Longo, E. R. Leite, J. A. Varela, A. Beltrán, J. Andrés, “Experimental and theoretical study on the piezoelectric behavior of barium doped PZT”, J. Mater. Sci. 34 (1999) 3659 – 3667.
[19] H. Zheng, I. M. Reaney, W. E. Lee, N. Jones, H. Thomas, “Effects of strontium substitution in Nb-doped PZT ceramics”, J. Eur. Ceram. Soc. 21 (2001) 1371-1375.
[20] A. Garg, D. C. Agrawal, “Effect of rare earth (Er, Gd, Eu, Nd and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics”, Mater. Sci. Eng. B86 (2001) 134–143.
[21] D. K. Mahato, R. K. Chaudhary, S. C. Srivastava, “Effect of Na on microstructure, dielectric and piezoelectric properties of PZT ceramic”, J. Mater. Sci. Lett. 22 (2003) 1613–1615.
[22] N. J. Donnelly, T. R. Shrout, C. A. Randall, “Addition of a Sr, K, Nb (SKN) combination to PZT(53/47) for high strain applications”, J. Am. Ceram. Soc. 90[2] (2007) 490–495.
[23] N. J. Donnelly, T. R. Shrout, C. A. Randall, “Properties of (1-x)PZT–xSKN ceramics sintered at low temperature using Li2CO3”, J. Am. Ceram. Soc. 91[7] (2008) 2182–2188.
[24] B. P. Kumar, S. R. Sangawar, H. H. Kumar, “Structural and electrical properties of double doped (Fe3+ and Ba2+) PZT electroceramics”, Ceram. Int. 40 (2014)3809–3812.
[25] M. P. Zheng, Y. D. Hou, S. Wang, C. H. Duan, M. K. Zhu, H. Yan, “Identification of substitution mechanism in group VIII metal oxides doped Pb(Zn1/3Nb2/3)O3–PbZrO3–PbTiO3 ceramics with high energy density and mechanical performance”, J. Am. Ceram. Soc. 96[8] (2013) 2486–2492.
[26] N. Sahu, S. Panigrahi, “Rietveld analysis, dielectric and impedance behaviour of Mn3+/Fe3+ ion modified Pb(Zr0.65Ti0.35)O3 perovskite”, Bull. Mater. Sci. 36 (2013) 699–708.
[27] T. Frömling, A. Schintlmeister, H. Hutter, J. Fleig, “Oxide ion transport in donor-doped Pb(ZrxTi1-x)O3:the role of grain boundaries”, J. Am. Ceram. Soc. 94[4] (2011) 1173–1181.
62
[28] T. Frömling, H. Hutter, J. Fleig, “Oxide ion transport in donor-doped Pb(ZrxTi1-x)O3:near-surface diffusion properties”, J. Am. Ceram. Soc. 95[5] (2012) 1692–1700.
[29] K. Reichmann, E. Völkl, M.A. Reichmann, J. Fleig, J. Vötsch, “Piezoelectric properties and conductivity of Pb(Zr,Ti)O3 with SrO–WO3 additive”, J. Mater. Sci. 45 (2010) 1473–1477.
[30] J. R. Macdonald, “Impedance Spectroscopy: Emphasizing Solid State Material and Systems”, Wiley New York, pp. 27-127, 1987.
[31] K. C. Kao, “Dielectric Phenomena in Solids”, Elsevier Academic Press, pp. 92-98, 2004.
[32] B. Tiwari, R. N. P. Choudhary, “Study of impedance parameters of cerium modified lead zirconate titanate ceramics”, IEEE Trans. Dielectrics and Electrical Insulation 17 (2010) 5-16.
[33] K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. alternating current characteristics”, J. Chem. Phys. 9 (1941) 341-345.
[34] A. K. Jonscher, “Dielectric relaxation in solids”, Chelsea Dielectric Press, London, pp. 97-101, 1983.
[35] N. J. Donnelly, C. A. Randall, “Impedance spectroscopy of PZT ceramics—measuring diffusion coefficients, mixed conduction, and Pb loss”, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 59 (2012) 1883-1887.
[36] N. J. Donnelly, C. A. Randall, “Mixed conduction and chemical diffusion in a Pb(Zr0.53Ti0.47)O3 buried capacitor structure”, Appl. Phys. Lett. 96[5] (2010) pp. 052906.
[37] N. Texier, C. Courtois, M. Traianidis, A. Leriche, “Powder process influence on the characteristics of Mn, W, Sb, Ni-doped PZT”, J. Eur. Ceram. Soc. 21 (2001) 1499-1502.
[38] S. Y. Chu, T. Y. Chen, I. T. Tsai, W. Water, “Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device”, Sensors and Actuators A 113 (2004) 198–203.
[39] C. Miclea, C. Tanasoiu, C. F. Miclea, L. Amarande, A. Gheorghiu, F. N. Sima, “Effect of iron and nickel substitution on the piezoelectric properties of PZT type ceramics”, J. Eur. Ceram. Soc. 25 (2005) 2397–2400.
[40] J. E. Garcia, R. Pérez, A. Albareda, J. A. Eiras, “Non-linear dielectric and piezoelectric response in undoped and Nb5+ or Fe3+ doped PZT ceramic system”, J. Eur. Ceram. Soc. 27 (2007) 4029–4032.
[41] M. M. S. Pojucan, M. C. C. Santos, F. R. Pereira, M. A. S. Pinheiro, M. C. Andrade, “Piezoelectric properties of pure and (Nb5+ + Fe3+) doped PZT ceramics”, Ceram. Int. 36 (2010) 1851–1855.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top