跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 21:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁士昕
研究生(外文):Shi-Xin Weng
論文名稱:應用教與學演算法於零售貨架空間最適配置問題之研究
論文名稱(外文):Teaching Learning Based Optimization for Retail Shelf Space Allocation Problem
指導教授:陳彥匡陳彥匡引用關係
學位類別:碩士
校院名稱:國立臺中科技大學
系所名稱:流通管理系碩士班
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:74
中文關鍵詞:貨架空間配置教與學演算法基因演算法變動鄰域搜尋法
外文關鍵詞:Shelf-Space Allocation Problem (SSAP)Teaching-Learning-Based Optimization (TLBO)Genetic Algorithm (GA)Variable Neighborhood Search (VNS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
貨架空間規劃問題(Shelf-space allocation problem, SSAP)為零售商營運上最重要的課題之一。本研究以Yang and Chen(1999)提出的SSAP模型為基礎,應用近年來較新穎的教與學(Teaching-and-learning based optimization, TLBO)演算法進行解題,並與Yang啟發式演算法、Yang改良啟發式演算法、GA演算法以及GA-VNS演算法進行解題品質之比較分析,以驗證其求解之表現。緊接,本研究結合TLBO與變動鄰域搜尋法(Variable neighborhood search, VNS)強化 TLBO的求解品質。經實驗分析結果得知,所提出的TLBO-VNS演算法除所需設定控制參數少外,其求解品質顯著地優於現有其他演算法。
Shelf-space allocation problem (SSAP) is one of the most important issues in retail operations management. In this paper, we use the SSAP model proposed by Yang and Cheng (1999) as the foundation and apply a relatively newer algorithm, Teaching-Learning-Based Optimization (TLBO), to solve the problem. We also compare the solution quality of this method with Yang’s heuristic algorithm, Yang’s improved heuristic algorithm, Genetic Algorithm (GA) and Genetic Algorithm-Variable Neighborhood Search (GA-VNS). Further, we integrate TLBO and VNS methods to enhance the solution quality of TLBO. The experimental results indicate that in addition to use of fewer control parameters, the proposed TLBO-VNS algorithm is also superior to other algorithms in solution quality.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 研究範圍與限制 6
1.4 研究流程 6
第二章 文獻探討 8
2.1 貨架空間配置 8
2.1.1 貨架空間配置理論 8
2.2 基因演算法 13
2.2.1 基因演算法概述 13
2.2.2 基因演算法相關研究 16
2.3 教與學演算法(TLBO)及相關研究學習成效 17
2.3.1 教與學演算法概述 17
2.3.2 教與學演算法相關研究 19
第三章 研究方法 20
3.1 數學模型 Yang’s SSAP 模型 20
3.1.1 數學符號定義 20
3.1.2 Yang’s SSAP 模型目標函數 21
3.1.3 Yang’s SSAP 模型限制式 21
3.2 啟發式演算法介紹 22
3.2.1 Yang 啟發式演算法(H1) 22
3.2.2 Yang 改良啟發式演算法(H2) 23
3.2.3 基因演算法(H3) 25
3.2.4 基因演算法混合變動鄰域演算法(H4) 27
3.3 教與學演算法(H5) 30
第四章 實驗分析 34
4.1 參數設定 34
4.2 數值範例 36
4.3 TLBO-VNS 演算法 59
第五章 結論及未來研究建議 67
5.1 結論 67
5.2 研究貢獻 68
5.3 未來研究建議 69
參考文獻 70
Bai, R., Van Woensel, T., Kendall, G., & Burke, E. K. (2013). A new model and a hyper-heuristic approach for two-dimensional shelf space allocation. 4OR, 11(1), 31-55.
Baker, B. M. & Ayechew, M. A. (2003). A genetic algorithm for the vehicle routing problem. Computers & Operations Research, 30(5), 787-800.
Binguler, A. H. E., Bulkan, S., & Agaoğlu, M. (2016). A Heuristic Approach for Shelf Space Allocation Problem. Journal of Management and Information Science, 4(1), 38-44.
Borin, N., Farris, P. W., & Freeland, J. R. (1994). A model for determining retail product category assortment and shelf space allocation. Decision sciences, 25(3), 359-384.
Buckley, J. J. & Hayashi, Y. (1994). Fuzzy genetic algorithm and applications. Fuzzy sets and systems, 61(2), 129-136.
Castelli, M. & Vanneschi, L. (2014). Genetic algorithm with variable neighborhood search for the optimal allocation of goods in shop shelves. Operations Research Letters, 42(5), 355-360.
Chen, Y. K., Chiu, F. R., Liao, H. C., & Yeh, C. H. (2016). Joint optimization of inventory control and product placement on e-commerce websites using genetic algorithms. Electronic Commerce Research, 16(4), 479-502.
Chu, P. C. & Beasley, J. E. (1997). A genetic algorithm for the generalised assignment problem. Computers & Operations Research, 24(1), 17-23.
Corstjens, M. & Doyle, P. (1981). A model for optimizing retail space allocations. Management Science, 27(7), 822-833.
Corstjens, M. & Doyle, P. (1983). A dynamic model for strategically allocating retail space. Journal of the Operational Research Society, 34(10), 943-951.
Curhan, R. C. (1972). The relationship between shelf space and unit sales in supermarkets. Journal of Marketing Research, 9(4), 406-412.
Dreze, X., Hoch, S. J., & Purk, M. E. (1994). Shelf management and space elasticity. Journal of Retailing, 70(4), 301-326.
Eben-Chaime, M. (1996). Parametric solution for linear bicriteria knapsack models. Management Science, 42(11), 1565-1575.
Glass, C. A. & Prügel-Bennett, A. (2003). Genetic algorithm for graph coloring: exploration of Galinier and Hao''s algorithm. Journal of Combinatorial Optimization, 7(3), 229-236.
Güçyetmez, M. & Çam, E. (2016). A new hybrid algorithm with genetic-teaching learning optimization (G-TLBO) technique for optimizing of power flow in wind-thermal power systems. Electrical Engineering, 98(2), 145-157.
Hansen, P. & Heinsbroek, H. (1979). Product selection and space allocation in supermarkets. European Journal of Operational Research, 3(6), 474-484.
Holland, J. H. (1975). Adaptation in natural and artificial systems Ann Arbor. The University of Michigan Press, 1, 975.
Hwang, H., Choi, B., & Lee, M-J. (2005). A model for shelf space allocation and inventory control considering location and inventory level effects on demand.International Journal of Production Economics, 97(2), 185–195.
Huang, S. J., Chiu, N. H., & Chen, L. W. (2008). Integration of the grey relational analysis with genetic algorithm for software effort estimation. European Journal of Operational Research, 188(3), 898-909.
Hübner, A. H. & Kuhn, H. (2012). Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management. Omega, 40(2), 199-209.
Jakobović, D. & Golub, M. (1999). Adaptive genetic algorithm. Journal of Computing and Information Technology, 7(3), 229-235.
Levy, M., Grewal, D., Kopalle, P. K., & Hess, J. D. (2004). Emerging Trends in Pricing Practice: Implications for Research Journal of Retailing, 84 (3) (2004), pp. xiii-xxi
Levy, M., Weitz, B. A., & Grewal, D. (2012). Retailing management (Vol. 6). New York: McGraw-Hill/Irwin.
Liu, X. C. & Liu, Q. (2014). A discrete teaching-learning-based optimization algorithm for the capacitated vehicle routing problem. Open J. Transp. Technol, 3, 16-21.
Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097-1100.
Moon, C., Kim, J., Choi, G., & Seo, Y. (2002). An efficient genetic algorithm for the traveling salesman problem with precedence constraints. European Journal of Operational Research, 140(3), 606-617.
Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Genetic algorithms for flowshop scheduling problems. Computers & Industrial Engineering, 30(4), 1061-1071.
Murray, C. C., Talukdar, D., & Gosavi, A. (2010). Joint optimization of product price, display orientation and shelf-space allocation in retail category management. Journal of Retailing, 86(2), 125-136.
Ouyang, H. B., Gao, L. Q., Kong, X. Y., Zou, D. X., & Li, S. (2015). Teaching-learning based optimization with global crossover for global optimization problems. Applied Mathematics and Computation, 265, 533-556.
Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315.
Savsani, P., Jhala, R. L., & Savsani, V. J. (2013, April). Optimized trajectory planning of a robotic arm using teaching learning based optimization (TLBO) and artificial bee colony (ABC) optimization techniques. In Systems Conference (SysCon), 2013 IEEE International (pp. 381-386). IEEE.
Schaal, K. & Hübner, A. (2018). When does cross-space elasticity matter in shelf-space planning? A decision analytics approach. Omega, 80, 135-152.
Urban, T. L. (1998). An inventory-theoretic approach to product assortment and shelf-space allocation. Journal of Retailing, 74(1), 15.
Wu, L., Zoua, F., & Chen, D. (2017). Discrete Teaching-learning-based optimization Algorithm for Traveling Salesman Problem. In MATEC Web of Conferences, 128, 02022. EDP Sciences.
Yang, M. H. (2001). An efficient algorithm to allocate shelf space. European Journal of Operational Research, 131(1), 107-118.
Yang, M. H. & Chen, W. C. (1999). A study on shelf space allocation and management. International Journal of Production Economics, 60, 309-317.
Zufryden, F. S. (1986). A dynamic programming approach for product selection and supermarket shelf-space allocation. Journal of the Operational Research Society, 37(4), 413-422.
Hadi Susanto(民 99)。Shelf Space Optimization Considering Product Price, Display Orientation, Cost Factor, and Economic Order Quantity.國立臺灣科技大學工業管理系碩士論文,台北市。
李益銘(民 107)。應用離散型教與學演算法求解電商網站商品圖片配置及庫存管理問題之研究. 臺中科技大學流通管理系碩士班學位論文, 1-58。
林家平(民 92)。以資料探勘為基礎之貨架管理決策模式,國立台北科技大學商業自動化與管理研究所碩士論文,台北市。
財團法人商業發展研究院(民 107)。互動式經濟統計圖表。經濟部商業司。取自 http://dmz21.moea.gov.tw/GA/#/b03
中華民國財政部統計處(民 106)。營利事業家數及銷售額-第7次修訂。取自https://reurl.cc/eZbxK
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊