跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:惠維翰
研究生(外文):Wei-Han Hui
論文名稱:以分子動力模擬探討膠原蛋白組織中交聯鍵的分佈對膠原纖維機械行為和結構特性的影響
論文名稱(外文):The influence of crosslink on the mechanical and structural properties of collagen fibril in tissues: A molecular dynamics approach
指導教授:張書瑋張書瑋引用關係
指導教授(外文):Shu-Wei Chang
口試委員:陳俊杉鄒年棣
口試委員(外文):Chuin-Shan ChenNien-Ti Tsou
口試日期:2019-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:第一型膠原蛋白交聯鍵老化分子動力學組織
DOI:10.6342/NTU201903738
相關次數:
  • 被引用被引用:1
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一型膠原蛋白是人體中一種重要的蛋白質,它構成人體中很多重要的組織,像是骨頭,軟骨,肌腱和韌帶等。在組織中,第一型膠原蛋白透過分子間的交聯鍵連接,來改變組織的物理性質。一般而言,膠原蛋白組織的強度會隨著交聯密度的提升而增加,並且增加其組織的勁度。先前的研究證實了老化現象和交聯的密度有正向的關係。除此之外,在實驗上發現非酵素所形成的交聯和一些疾病有關,如糖尿病。
在本研究中,藉由膠原蛋白纖維的全原子模型進行模擬及分析,著重在纖維、分子結構特徵以及降解區域特性。膠原蛋白纖維的overlap 和 gap的分佈可以分析滑動與變形機制,膠原蛋白分子的unit height 和 radius來分析分子的結構以及變形的機制。本研究提供膠原蛋白分子的變形機制,可以更深入了解組織老化在纖維尺度下的表現。
Type I collagen is one of important proteins in the human body. It is rich in human tissues such as bone, cartilage, tendon, ligament, which gives crucial support in human tissues. In tissues, type I collagen molecules form linkage by “Crosslinks”, which utilize covalent bonds to form. Moreover, it can change the physical properties of tissues. In general, tissues can be strengthened with increasing density of cross-links within collagen, which would further higher the stiffness of tissues. However, previous studies have indicated that is a positive correlation between exceeding cross-links’ density and aging problem. In addition, abundant amounts of Crosslinks within non-enzyme structures in tissues were discovered to induce fatal diseases, such as diabetes.
In this study, we focus on structural characteristics of collagen and biological function in fibril through full atomic approach. To analyze the deforming and sliding mechanism of collagen, we analyzed the distribution of overlap and gap within collagen fibril. We further studied the unit height and radius of collagen molecule to understand its structural characteristics and deformation mechanism. Our results provided fundamental insights into the molecular mechanism of collagen, which further give possible explanation of tissue aging.
口試委員會審定書 #
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第1章、 緒論 1
1.1 背景介紹 1
1.2 文獻回顧 2
1.2.1 膠原蛋白分子和纖維的力學行為 2
1.2.2 交聯對膠原蛋白組織的影響 3
1.2.3 膠原蛋白纖維的新陳代謝 7
1.2.4 分子動力模擬 9
1.3 論文目的 10
1.4 論文方向 10
第2章、 理論與方法 11
2.1 模擬方法 11
2.1.1 分子動力模擬 11
2.1.2 生物分子的勢能參數 14
2.1.3 模擬系統 15
2.1.4 週期性邊界 17
2.2 模型介紹 18
2.2.1 膠原蛋白分子模型 18
2.2.2 膠原蛋白分子間的交聯鍵建立 20
2.2.3 模型資訊 21
2.2.4 模擬的設置及環境條件 23
2.3 分析方法 25
2.3.1 方均根偏移(root-mean-square deviation)分析 25
2.3.2 Unit cell 長度分析 25
2.3.3 頭尾端距(end to end distance)分析 25
2.3.4 overlap and gap 分析 26
2.3.5 Unit height and radius 分析 27
2.3.6 Hydrogen bond分析 28
第3章、 交聯鍵在膠原蛋白纖維到分子的影響 30
3.1 纖維尺度 30
3.1.1 方均根偏移分析 30
3.1.2 Unit cell長度分析 32
3.1.3 分子頭尾端距分析 33
3.1.4 Overlap and gap 分析 35
3.2 分子尺度 44
3.2.1 分子的unit height 分析 44
3.2.2 分子的radius 分析 48
3.3 結果與討論 51
第4章、 交聯鍵對膠原蛋白的降解區域的影響 54
4.1 降解區域頭尾端距分析 55
4.2 降解區域 unit height 分析 57
4.3 降解區域 radius 分析 63
4.4 降解區域 hydrogen bond 分析 67
4.5 結果與討論 70
第5章、 結論與未來展望 72
5.1 總結 72
5.2 未來展望 73
參考資料 74
1.Buehler, M.J. and Y.C.J.N.m. Yung, Deformation and failure of protein materials in physiologically extreme conditions and disease. 2009. 8(3): p. 175.
2.Gautieri, A., et al., Mechanical properties of physiological and pathological models of collagen peptides investigated via steered molecular dynamics simulations. 2008. 41(14): p. 3073-3077.
3.Rainey, J.K., C.K. Wen, and M.C.J.M.b. Goh, Hierarchical assembly and the onset of banding in fibrous long spacing collagen revealed by atomic force microscopy. 2002. 21(8): p. 647-660.
4.Gronau, G., et al., A review of combined experimental and computational procedures for assessing biopolymer structure–process–property relationships. 2012. 33(33): p. 8240-8255.
5.De Simone, A., et al., Role of hydration in collagen triple helix stabilization. 2008. 372(1): p. 121-125.
6.Brodsky, B. and J.A.J.M.B. Ramshaw, The collagen triple-helix structure. 1997. 15(8-9): p. 545-554.
7.Chen, M.L., J.W. Ruberti, and T.D.J.J.o.t.m.b.o.b.m. Nguyen, Increased stiffness of collagen fibrils following cyclic tensile loading. 2018. 82: p. 345-354.
8.Quinn, T., V.J.B. Morel, and m.i. mechanobiology, Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage. 2007. 6(1-2): p. 73-82.
9.Bell, J., et al., The hierarchical response of human corneal collagen to load. 2018. 65: p. 216-225.
10.Holmes, D.F., et al., Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization. 2001. 98(13): p. 7307-7312.
11.Bancelin, S., et al., Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy. 2015. 5: p. 17635.
12.Gautieri, A., et al., Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. 2011. 11(2): p. 757-766.
13.Nair, A.K., et al., Molecular mechanics of mineralized collagen fibrils in bone. 2013. 4: p. 1724.
14.McNally, E.A., et al., A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. 2012. 7(1): p. e29258.
15.Orgel, J.P., et al., The in situ supermolecular structure of type I collagen. 2001. 9(11): p. 1061-1069.
16.Tao, J., et al., Energetic basis for the molecular-scale organization of bone. 2015. 112(2): p. 326-331.
17.Yang, W., M.A. Meyers, and R.O.J.P.i.M.S. Ritchie, Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. 2019.
18.Brodsky, B., et al., Triple‐helical peptides: An approach to collagen conformation, stability, and self‐association. 2008. 89(5): p. 345-353.
19.Li, M.H., et al., Two-dimensional NMR assignments and conformation of (Pro-Hyp-Gly) 10 and a designed collagen triple-helical peptide. 1993. 32(29): p. 7377-7387.
20.Punitha, V., et al., Molecular dynamics investigations on the effect of D amino acid substitution in a triple-helix structure and the stability of collagen. 2009. 113(26): p. 8983-8992.
21.Raman, S.S., et al., A molecular dynamics analysis of ion pairs formed by lysine in collagen: implication for collagen function and stability. 2008. 851(1-3): p. 299-312.
22.Fratzl, P., Collagen: structure and mechanics, an introduction, in Collagen. 2008, Springer. p. 1-13.
23.Minary-Jolandan, M. and M.-F.J.B. Yu, Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity. 2009. 10(9): p. 2565-2570.
24.Prockop, D.J. and A.J.J.o.s.b. Fertala, The collagen fibril: the almost crystalline structure. 1998. 122(1-2): p. 111-118.
25.Veis, A.J.C.O.i.S.S. and M. Science, Collagen fibrillar structure in mineralized and nonmineralized tissues. 1997. 2(3): p. 370-378.
26.Fratzl, P., et al., Fibrillar structure and mechanical properties of collagen. 1998. 122(1-2): p. 119-122.
27.Habelitz, S., et al., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. 2002. 138(3): p. 227-236.
28.Van Der Rijt, J.A., et al., Micromechanical testing of individual collagen fibrils. 2006. 6(9): p. 697-702.
29.Shen, Z.L., et al., Stress-strain experiments on individual collagen fibrils. 2008. 95(8): p. 3956-3963.
30.Graham, J.S., et al., Structural changes in human type I collagen fibrils investigated by force spectroscopy. 2004. 299(2): p. 335-342.
31.Avery, N., A.J.S.j.o.m. Bailey, and s.i. sports, Enzymic and non‐enzymic cross‐linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. 2005. 15(4): p. 231-240.
32.Wang, X., et al., Age-related changes in the collagen network and toughness of bone. Bone, 2002. 31(1): p. 1-7.
33.Verzijl, N., et al., Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: A possible mechanism through which age is a risk factor for osteoarthritis. 2002. 46(1): p. 114-123.
34.Chen, A.C., et al., Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. 2002. 46(12): p. 3212-3217.
35.Karim, L. and M.L. Bouxsein, Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties. Bone, 2016. 82: p. 21-27.
36.Robins, S.P., Biochemistry and functional significance of collagen cross-linking. Biochemical Society Transactions, 2007. 35(5): p. 849.
37.Eyre, D.R., M.A. Paz, and P.M. Gallop, CROSS-LINKING IN COLLAGEN AND ELASTIN. 1984. 53(1): p. 717-748.
38.Tierney, C.M., et al., The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2009. 2(2): p. 202-209.
39.Buehler, M.J., Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies. Journal of the Mechanical Behavior of Biomedical Materials, 2008. 1(1): p. 59-67.
40.Depalle, B., et al., Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. Journal of the Mechanical Behavior of Biomedical Materials, 2015. 52: p. 1-13.
41.Lin, S. and L. Gu, Influence of Crosslink Density and Stiffness on Mechanical Properties of Type I Collagen Gel. 2015. 8(2): p. 551-560.
42.Kwansa, A.L., R. De Vita, and J.W. Freeman, Tensile mechanical properties of collagen type I and its enzymatic crosslinks. Biophysical Chemistry, 2016. 214-215: p. 1-10.
43.Kwansa, A.L., R. De Vita, and J.W. Freeman, Mechanical recruitment of N- and C-crosslinks in collagen type I. Matrix Biology, 2014. 34: p. 161-169.
44.Uzel, S.G.M. and M.J. Buehler, Molecular structure, mechanical behavior and failure mechanism of the C-terminal cross-link domain in type I collagen. Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(2): p. 153-161.
45.Francis-Sedlak, M.E., et al., Characterization of type I collagen gels modified by glycation. Biomaterials, 2009. 30(9): p. 1851-1856.
46.Fu, M.-X., et al., Glycation, Glycoxidation, and Cross-Linking of Collagen by Glucose: Kinetics, Mechanisms, and Inhibition of Late Stages of the Maillard Reaction. Diabetes, 1994. 43(5): p. 676.
47.Van Nguyen, C., Toxicity of the AGEs generated from the Maillard reaction: On the relationship of food-AGEs and biological-AGEs. 2006. 50(12): p. 1140-1149.
48.Saito, M. and K.J.O.i. Marumo, Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. 2010. 21(2): p. 195-214.
49.Monnier, V.M., et al., Cross‐linking of the extracellular matrix by the maillard reaction in aging and diabetes: an update on “a puzzle nearing resolution”. 2005. 1043(1): p. 533-544.
50.Sell, D.R., et al., Glucosepane Is a Major Protein Cross-link of the Senescent Human Extracellular Matrix: RELATIONSHIP WITH DIABETES. 2005. 280(13): p. 12310-12315.
51.Reiser, K.M., Nonenzymatic Glycation of Collagen in Aging and Diabetes. 1991. 196(1): p. 17-29.
52.Baynes, J.W., The role of AGEs in aging: causation or correlation. Experimental Gerontology, 2001. 36(9): p. 1527-1537.
53.Snedeker, J.G., A.J.M. Gautieri, ligaments, and t. journal, The role of collagen crosslinks in ageing and diabetes-the good, the bad, and the ugly. 2014. 4(3): p. 303.
54.Schmidt, F., et al., Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. 2017. 97: p. 243-251.
55.Haus, J.M., et al., Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. 2007. 103(6): p. 2068-2076.
56.Bai, P., et al., Glycation alters collagen fibril organization. 1992. 28(1-2): p. 1-12.
57.Vashishth, D., et al., Influence of nonenzymatic glycation on biomechanical properties of cortical bone. 2001. 28(2): p. 195-201.
58.Couppe, C., et al., Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. 2009. 107(3): p. 880-886.
59.Monnier, V.M., et al., The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution. 1996. 45(Supplement 3): p. S67-S72.
60.Saito, M., et al., Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. 2006. 17(10): p. 1514-1523.
61.Andreassen, T., K. Seyer-Hansen, and A.J.B.e.B.A.-G.S. Bailey, Thermal stability, mechanical properties and reducible cross-links of rat tail tendon in experimental diabetes. 1981. 677(2): p. 313-317.
62.Zimmermann, E.A., et al., Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. 2011. 108(35): p. 14416-14421.
63.Viguet-Carrin, S., et al., Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. 2006. 39(5): p. 1073-1079.
64.Hernandez, C.J., et al., Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. 2005. 37(6): p. 825-832.
65.Collier, T., et al., Effect on the mechanical properties of type I collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking. 2018. 67: p. 55-61.
66.Collier, T.A., et al., Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study. 2015. 48: p. 78-88.
67.Reddy, G.K.J.E.D.R., Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon. 2004. 5(2): p. 143-153.
68.Li, Y., et al., Advanced glycation end-products diminish tendon collagen fiber sliding. 2013. 32(3-4): p. 169-177.
69.Gautieri, A., et al., Age- and diabetes-related nonenzymatic crosslinks in collagen fibrils: Candidate amino acids involved in Advanced Glycation End-products. Matrix Biology, 2014. 34: p. 89-95.
70.McCarthy, A.D., et al., Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress. BMC Cell Biology, 2001. 2(1): p. 16.
71.Perumal, S., O. Antipova, and J.P.J.P.o.t.N.A.o.S. Orgel, Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. 2008. 105(8): p. 2824-2829.
72.Riley, G.P., et al., Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology. 2002. 21(2): p. 185-195.
73.Manka, S.W., et al., Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. 2012. 109(31): p. 12461-12466.
74.Sweeney, S.M., et al., Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. 2008. 283(30): p. 21187-21197.
75.Chung, L., et al., Collagenase unwinds triple‐helical collagen prior to peptide bond hydrolysis. 2004. 23(15): p. 3020-3030.
76.Chang, S.-W. and M.J.J.M.T. Buehler, Molecular biomechanics of collagen molecules. 2014. 17(2): p. 70-76.
77.Chang, S.-W., et al., Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown. 2012. 33(15): p. 3852-3859.
78.Gautieri, A., M.J. Buehler, and A.J.J.o.t.M.B.o.B.M. Redaelli, Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. 2009. 2(2): p. 130-137.
79.Huang, C. and I.J.J.o.b.m.r. Yannas, Mechanochemical studies of enzymatic degradation of insoluble collagen fibers. 1977. 11(1): p. 137-154.
80.Pashley, D.H., et al., Collagen degradation by host-derived enzymes during aging. 2004. 83(3): p. 216-221.
81.Bourne, J.W., J.M. Lippell, and P.A.J.M.B. Torzilli, Glycation cross-linking induced mechanical–enzymatic cleavage of microscale tendon fibers. 2014. 34: p. 179-184.
82.Bourne, J.W. and P.A.J.M.B. Torzilli, Molecular simulations predict novel collagen conformations during cross-link loading. 2011. 30(5-6): p. 356-360.
83.Alder, B.J. and T.E.J.T.J.o.C.P. Wainwright, Studies in molecular dynamics. I. General method. 1959. 31(2): p. 459-466.
84.Rahman, A.J.P.r., Correlations in the motion of atoms in liquid argon. 1964. 136(2A): p. A405.
85.Irving, J. and J.G.J.T.J.o.c.p. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. 1950. 18(6): p. 817-829.
86.Pearlman, D.A., et al., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 1995. 91(1): p. 1-41.
87.MacKerell, A.D., et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. The Journal of Physical Chemistry B, 1998. 102(18): p. 3586-3616.
88.Buehler, M.J., Atomistic modeling of materials failure. 2008: Springer Science & Business Media.
89.Andersen, H.C.J.T.J.o.c.p., Molecular dynamics simulations at constant pressure and/or temperature. 1980. 72(4): p. 2384-2393.
90.Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 2017: Oxford university press.
91.Frenkel, D., et al., Understanding molecular simulation. 1997. 11(4): p. 351-354.
92.Fang, M. and M.M.B.J.B.r. Holl, Variation in type I collagen fibril nanomorphology: the significance and origin. 2013. 2.
93.Hulmes, D., et al., Radial packing, order, and disorder in collagen fibrils. 1995. 68(5): p. 1661-1670.
94.Orgel, J.P., et al., Microfibrillar structure of type I collagen in situ. 2006. 103(24): p. 9001-9005.
95.Chang, S.-W., S.J. Shefelbine,Markus J. Buehler Structural and mechanical differences between collagen homo-and heterotrimers: relevance for the molecular origin of brittle bone disease. 2012. 102(3): p. 640-648.
96.Seales, E.C., et al., Hypersialylation of β1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. 2005. 65(11): p. 4645-4652.
97.Wei, S.C., et al., Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. 2015. 17(5): p. 678.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top