|
1.Buehler, M.J. and Y.C.J.N.m. Yung, Deformation and failure of protein materials in physiologically extreme conditions and disease. 2009. 8(3): p. 175. 2.Gautieri, A., et al., Mechanical properties of physiological and pathological models of collagen peptides investigated via steered molecular dynamics simulations. 2008. 41(14): p. 3073-3077. 3.Rainey, J.K., C.K. Wen, and M.C.J.M.b. Goh, Hierarchical assembly and the onset of banding in fibrous long spacing collagen revealed by atomic force microscopy. 2002. 21(8): p. 647-660. 4.Gronau, G., et al., A review of combined experimental and computational procedures for assessing biopolymer structure–process–property relationships. 2012. 33(33): p. 8240-8255. 5.De Simone, A., et al., Role of hydration in collagen triple helix stabilization. 2008. 372(1): p. 121-125. 6.Brodsky, B. and J.A.J.M.B. Ramshaw, The collagen triple-helix structure. 1997. 15(8-9): p. 545-554. 7.Chen, M.L., J.W. Ruberti, and T.D.J.J.o.t.m.b.o.b.m. Nguyen, Increased stiffness of collagen fibrils following cyclic tensile loading. 2018. 82: p. 345-354. 8.Quinn, T., V.J.B. Morel, and m.i. mechanobiology, Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage. 2007. 6(1-2): p. 73-82. 9.Bell, J., et al., The hierarchical response of human corneal collagen to load. 2018. 65: p. 216-225. 10.Holmes, D.F., et al., Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization. 2001. 98(13): p. 7307-7312. 11.Bancelin, S., et al., Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy. 2015. 5: p. 17635. 12.Gautieri, A., et al., Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. 2011. 11(2): p. 757-766. 13.Nair, A.K., et al., Molecular mechanics of mineralized collagen fibrils in bone. 2013. 4: p. 1724. 14.McNally, E.A., et al., A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. 2012. 7(1): p. e29258. 15.Orgel, J.P., et al., The in situ supermolecular structure of type I collagen. 2001. 9(11): p. 1061-1069. 16.Tao, J., et al., Energetic basis for the molecular-scale organization of bone. 2015. 112(2): p. 326-331. 17.Yang, W., M.A. Meyers, and R.O.J.P.i.M.S. Ritchie, Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. 2019. 18.Brodsky, B., et al., Triple‐helical peptides: An approach to collagen conformation, stability, and self‐association. 2008. 89(5): p. 345-353. 19.Li, M.H., et al., Two-dimensional NMR assignments and conformation of (Pro-Hyp-Gly) 10 and a designed collagen triple-helical peptide. 1993. 32(29): p. 7377-7387. 20.Punitha, V., et al., Molecular dynamics investigations on the effect of D amino acid substitution in a triple-helix structure and the stability of collagen. 2009. 113(26): p. 8983-8992. 21.Raman, S.S., et al., A molecular dynamics analysis of ion pairs formed by lysine in collagen: implication for collagen function and stability. 2008. 851(1-3): p. 299-312. 22.Fratzl, P., Collagen: structure and mechanics, an introduction, in Collagen. 2008, Springer. p. 1-13. 23.Minary-Jolandan, M. and M.-F.J.B. Yu, Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity. 2009. 10(9): p. 2565-2570. 24.Prockop, D.J. and A.J.J.o.s.b. Fertala, The collagen fibril: the almost crystalline structure. 1998. 122(1-2): p. 111-118. 25.Veis, A.J.C.O.i.S.S. and M. Science, Collagen fibrillar structure in mineralized and nonmineralized tissues. 1997. 2(3): p. 370-378. 26.Fratzl, P., et al., Fibrillar structure and mechanical properties of collagen. 1998. 122(1-2): p. 119-122. 27.Habelitz, S., et al., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. 2002. 138(3): p. 227-236. 28.Van Der Rijt, J.A., et al., Micromechanical testing of individual collagen fibrils. 2006. 6(9): p. 697-702. 29.Shen, Z.L., et al., Stress-strain experiments on individual collagen fibrils. 2008. 95(8): p. 3956-3963. 30.Graham, J.S., et al., Structural changes in human type I collagen fibrils investigated by force spectroscopy. 2004. 299(2): p. 335-342. 31.Avery, N., A.J.S.j.o.m. Bailey, and s.i. sports, Enzymic and non‐enzymic cross‐linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. 2005. 15(4): p. 231-240. 32.Wang, X., et al., Age-related changes in the collagen network and toughness of bone. Bone, 2002. 31(1): p. 1-7. 33.Verzijl, N., et al., Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: A possible mechanism through which age is a risk factor for osteoarthritis. 2002. 46(1): p. 114-123. 34.Chen, A.C., et al., Induction of advanced glycation end products and alterations of the tensile properties of articular cartilage. 2002. 46(12): p. 3212-3217. 35.Karim, L. and M.L. Bouxsein, Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties. Bone, 2016. 82: p. 21-27. 36.Robins, S.P., Biochemistry and functional significance of collagen cross-linking. Biochemical Society Transactions, 2007. 35(5): p. 849. 37.Eyre, D.R., M.A. Paz, and P.M. Gallop, CROSS-LINKING IN COLLAGEN AND ELASTIN. 1984. 53(1): p. 717-748. 38.Tierney, C.M., et al., The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2009. 2(2): p. 202-209. 39.Buehler, M.J., Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies. Journal of the Mechanical Behavior of Biomedical Materials, 2008. 1(1): p. 59-67. 40.Depalle, B., et al., Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. Journal of the Mechanical Behavior of Biomedical Materials, 2015. 52: p. 1-13. 41.Lin, S. and L. Gu, Influence of Crosslink Density and Stiffness on Mechanical Properties of Type I Collagen Gel. 2015. 8(2): p. 551-560. 42.Kwansa, A.L., R. De Vita, and J.W. Freeman, Tensile mechanical properties of collagen type I and its enzymatic crosslinks. Biophysical Chemistry, 2016. 214-215: p. 1-10. 43.Kwansa, A.L., R. De Vita, and J.W. Freeman, Mechanical recruitment of N- and C-crosslinks in collagen type I. Matrix Biology, 2014. 34: p. 161-169. 44.Uzel, S.G.M. and M.J. Buehler, Molecular structure, mechanical behavior and failure mechanism of the C-terminal cross-link domain in type I collagen. Journal of the Mechanical Behavior of Biomedical Materials, 2011. 4(2): p. 153-161. 45.Francis-Sedlak, M.E., et al., Characterization of type I collagen gels modified by glycation. Biomaterials, 2009. 30(9): p. 1851-1856. 46.Fu, M.-X., et al., Glycation, Glycoxidation, and Cross-Linking of Collagen by Glucose: Kinetics, Mechanisms, and Inhibition of Late Stages of the Maillard Reaction. Diabetes, 1994. 43(5): p. 676. 47.Van Nguyen, C., Toxicity of the AGEs generated from the Maillard reaction: On the relationship of food-AGEs and biological-AGEs. 2006. 50(12): p. 1140-1149. 48.Saito, M. and K.J.O.i. Marumo, Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. 2010. 21(2): p. 195-214. 49.Monnier, V.M., et al., Cross‐linking of the extracellular matrix by the maillard reaction in aging and diabetes: an update on “a puzzle nearing resolution”. 2005. 1043(1): p. 533-544. 50.Sell, D.R., et al., Glucosepane Is a Major Protein Cross-link of the Senescent Human Extracellular Matrix: RELATIONSHIP WITH DIABETES. 2005. 280(13): p. 12310-12315. 51.Reiser, K.M., Nonenzymatic Glycation of Collagen in Aging and Diabetes. 1991. 196(1): p. 17-29. 52.Baynes, J.W., The role of AGEs in aging: causation or correlation. Experimental Gerontology, 2001. 36(9): p. 1527-1537. 53.Snedeker, J.G., A.J.M. Gautieri, ligaments, and t. journal, The role of collagen crosslinks in ageing and diabetes-the good, the bad, and the ugly. 2014. 4(3): p. 303. 54.Schmidt, F., et al., Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. 2017. 97: p. 243-251. 55.Haus, J.M., et al., Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. 2007. 103(6): p. 2068-2076. 56.Bai, P., et al., Glycation alters collagen fibril organization. 1992. 28(1-2): p. 1-12. 57.Vashishth, D., et al., Influence of nonenzymatic glycation on biomechanical properties of cortical bone. 2001. 28(2): p. 195-201. 58.Couppe, C., et al., Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. 2009. 107(3): p. 880-886. 59.Monnier, V.M., et al., The mechanism of collagen cross-linking in diabetes: a puzzle nearing resolution. 1996. 45(Supplement 3): p. S67-S72. 60.Saito, M., et al., Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. 2006. 17(10): p. 1514-1523. 61.Andreassen, T., K. Seyer-Hansen, and A.J.B.e.B.A.-G.S. Bailey, Thermal stability, mechanical properties and reducible cross-links of rat tail tendon in experimental diabetes. 1981. 677(2): p. 313-317. 62.Zimmermann, E.A., et al., Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. 2011. 108(35): p. 14416-14421. 63.Viguet-Carrin, S., et al., Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. 2006. 39(5): p. 1073-1079. 64.Hernandez, C.J., et al., Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. 2005. 37(6): p. 825-832. 65.Collier, T., et al., Effect on the mechanical properties of type I collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking. 2018. 67: p. 55-61. 66.Collier, T.A., et al., Preferential sites for intramolecular glucosepane cross-link formation in type I collagen: A thermodynamic study. 2015. 48: p. 78-88. 67.Reddy, G.K.J.E.D.R., Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon. 2004. 5(2): p. 143-153. 68.Li, Y., et al., Advanced glycation end-products diminish tendon collagen fiber sliding. 2013. 32(3-4): p. 169-177. 69.Gautieri, A., et al., Age- and diabetes-related nonenzymatic crosslinks in collagen fibrils: Candidate amino acids involved in Advanced Glycation End-products. Matrix Biology, 2014. 34: p. 89-95. 70.McCarthy, A.D., et al., Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress. BMC Cell Biology, 2001. 2(1): p. 16. 71.Perumal, S., O. Antipova, and J.P.J.P.o.t.N.A.o.S. Orgel, Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. 2008. 105(8): p. 2824-2829. 72.Riley, G.P., et al., Matrix metalloproteinase activities and their relationship with collagen remodelling in tendon pathology. 2002. 21(2): p. 185-195. 73.Manka, S.W., et al., Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. 2012. 109(31): p. 12461-12466. 74.Sweeney, S.M., et al., Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. 2008. 283(30): p. 21187-21197. 75.Chung, L., et al., Collagenase unwinds triple‐helical collagen prior to peptide bond hydrolysis. 2004. 23(15): p. 3020-3030. 76.Chang, S.-W. and M.J.J.M.T. Buehler, Molecular biomechanics of collagen molecules. 2014. 17(2): p. 70-76. 77.Chang, S.-W., et al., Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown. 2012. 33(15): p. 3852-3859. 78.Gautieri, A., M.J. Buehler, and A.J.J.o.t.M.B.o.B.M. Redaelli, Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. 2009. 2(2): p. 130-137. 79.Huang, C. and I.J.J.o.b.m.r. Yannas, Mechanochemical studies of enzymatic degradation of insoluble collagen fibers. 1977. 11(1): p. 137-154. 80.Pashley, D.H., et al., Collagen degradation by host-derived enzymes during aging. 2004. 83(3): p. 216-221. 81.Bourne, J.W., J.M. Lippell, and P.A.J.M.B. Torzilli, Glycation cross-linking induced mechanical–enzymatic cleavage of microscale tendon fibers. 2014. 34: p. 179-184. 82.Bourne, J.W. and P.A.J.M.B. Torzilli, Molecular simulations predict novel collagen conformations during cross-link loading. 2011. 30(5-6): p. 356-360. 83.Alder, B.J. and T.E.J.T.J.o.C.P. Wainwright, Studies in molecular dynamics. I. General method. 1959. 31(2): p. 459-466. 84.Rahman, A.J.P.r., Correlations in the motion of atoms in liquid argon. 1964. 136(2A): p. A405. 85.Irving, J. and J.G.J.T.J.o.c.p. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. 1950. 18(6): p. 817-829. 86.Pearlman, D.A., et al., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 1995. 91(1): p. 1-41. 87.MacKerell, A.D., et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. The Journal of Physical Chemistry B, 1998. 102(18): p. 3586-3616. 88.Buehler, M.J., Atomistic modeling of materials failure. 2008: Springer Science & Business Media. 89.Andersen, H.C.J.T.J.o.c.p., Molecular dynamics simulations at constant pressure and/or temperature. 1980. 72(4): p. 2384-2393. 90.Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 2017: Oxford university press. 91.Frenkel, D., et al., Understanding molecular simulation. 1997. 11(4): p. 351-354. 92.Fang, M. and M.M.B.J.B.r. Holl, Variation in type I collagen fibril nanomorphology: the significance and origin. 2013. 2. 93.Hulmes, D., et al., Radial packing, order, and disorder in collagen fibrils. 1995. 68(5): p. 1661-1670. 94.Orgel, J.P., et al., Microfibrillar structure of type I collagen in situ. 2006. 103(24): p. 9001-9005. 95.Chang, S.-W., S.J. Shefelbine,Markus J. Buehler Structural and mechanical differences between collagen homo-and heterotrimers: relevance for the molecular origin of brittle bone disease. 2012. 102(3): p. 640-648. 96.Seales, E.C., et al., Hypersialylation of β1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. 2005. 65(11): p. 4645-4652. 97.Wei, S.C., et al., Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis through a TWIST1–G3BP2 mechanotransduction pathway. 2015. 17(5): p. 678.
|