(3.231.29.122) 您好!臺灣時間:2021/02/25 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏嘉盈
研究生(外文):Chia-Ying Wei
論文名稱:使用基於圖形跟蹤器的AR於工程教育之概念框架
論文名稱(外文):A Conceptual Framework of Utilizing Pictorial Tracker-Based AR Application for Engineering Education.
指導教授:謝尚賢謝尚賢引用關係
指導教授(外文):Shang-Hsien Hsieh
口試委員:韓仁毓曾敬梅
口試委員(外文):Jen-Yu HanChing-Mei Tseng
口試日期:2019-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:34
中文關鍵詞:擴增實境空間學習工程教育圖形跟蹤器AR 教育
DOI:10.6342/NTU201903867
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在工程教育中,三維空間認知學習佔有重要的地位。然而多數實際教學僅提 供二維圖片或文字描述來闡釋三維空間概念。過去的研究推薦以擴增實境(AR) 來解決這方面問題,且已證實該技術能夠輔助學生在三維空間概念相關的科目的 學習,並透過提升教學互動提升學生學習動機。過去致力於 AR 技術於教學之應 用系統與設備之研究多以評估學生學習成效較多,而通用的應用框架卻較少。因 此,本研究提出一個基於圖形跟蹤之 AR 教學應用的概念框架,供未來應用 AR 技術於教育做參考。本概念框架包含三個模組分別是 AR 圖形跟蹤器模組、AR 互動模組、以及 AR 檢視模組。該三個模組是經由已回顧的文獻中所歸納的 AR 互動教育應用常用模組。在本研究中,設計了一套基於圖形追蹤器之 AR 互動教 育應用程式的原型,其中包含網頁、可攜帶裝置應用程式、以及資料儲存庫。該 應用程式原型測試於教室互動、自學、以及實驗室等三種不同的教育情境。在三 種測試情境中,教師透過網頁準備教材,學生透過應用程式增加學習成效。經過 測試得出:選用圖形做為 AR 之追蹤器可減輕教師導入 AR 教材的工作量;應用 程式能夠提升學生對三維空間的認知,並能促進學習動機。
Education is always one of the essential topics in all fields in the world. The engineering education contains lots of 3D implementing practices which require spatial abilities while most of the courses only provide 2D diagrams for students to learn 3D scenarios. The augmented reality (AR) has been suggested to implement into education for decades to improve the learners’ spatial abilities and the motivation of learnings. However, most of the AR learning implementations result in more instructor’ preparation which usually needs the technical skill of developing. In order to implement AR in education, this research proposed a conceptual framework of the pictorial tracker-based AR into engineering education. This framework provides the implementation levels of different needs and lowering the thresholds of technical skill. This framework utilizes three phases: 1) the pictorial tracker-based AR module, 2) the AR interaction module, and 3) the AR viewer module. This research suggests that both the instructors and the learners need the user interface to ultimate the pictorial tracker- based AR application. The prototype application is designed in this research and is implemented in three kinds of scenarios as demonstrations, in-class lectures, self- learning with textbooks, laboratory courses. Through the demonstrations, this research concludes two concepts: using the pictorial tracker as AR tracker can reduce the workload of instructors while importing AR technology; the application can enhance students'' perception of 3D space and promote learning motivation.
1. Introduction (1)
2. Related works (4)
3. The Conceptual Framework (7)
3.1 The Pictorial Tracker-Based AR Module (10)
3.2 The AR Interactive Module (11)
3.3 The AR Viewer Module (12)
4. Designing of the Prototype Pictorial Tracker-Based AR Application (13)
4.1 System Framework of the Prototype Application (13)
4.2 Web (15)
4.3 Mobile Device (16)
4.4 Data Repository (17)
5. Demonstrations in three scenarios (19)
5.1 Preparing of Demonstrations (19)
5.2 In-Class Activity - Building Design Course (20)
5.3 Self-Learning with Textbooks – BIM Textbook (23)
5.4 Laboratory Lectures – Operating a Total Station (26)
5.5 Results and Discussions of the Demonstrations (26)
6. Conclusion and Future Works (29)
6.1 Conclusion (29)
6.2 Future Works (29)
7. References (31)
[1] Arashpour, M., & Aranda-Mena, G.(2017). Curriculum renewal in architecture, engineering, and construction education: Visualizing building information modeling via augmented reality. In 9th International Structural Engineering and Construction Conference: Resilient Structures and Sustainable Construction, ISEC 2017. ISEC Press.
[2] Andujar, J. M., Mejías, A., & Márquez, M. A. (2010). Augmented reality for the improvement of remote laboratories: an augmented remote laboratory. In IEEE transactions on education, 54(3), 492-500.
[3] Behzadan, A. H., Iqbal, A., & Kamat, V. R. (2011). A Collaborative Augmented Reality Based Modeling Environment for Construction Engineering and Management Education. In the 2011 Winter Simulation Conference (WSC), 3568- 3576, IEEE. doi:10.1109/wsc.2011.6148051
[4] Behzadan, A. H., Menassa, C. C., & Kamat, V. R. (2018). Georeferenced Augmented Reality for Discovery-Based Learning in Civil Engineering. In Transforming Engineering Education, 199–228.
[5] Baloch, S., Qadeer, S., & Memon K. (2018). Augmented Reality, a Tool to Enhance Conceptual Understanding for Engineering Students. In International Journal of Electrical Engineering & Emerging Technology, 1(1), 41-48.
[6] Carbonell, C. C., & Bermejo, L.A. (2016A). Augmented Reality as a Digital Teaching Environment to Develop Spatial Thinking. In Cartography and Geographic Information Science, 44(3), 259–270. doi:10.1080/15230406.2016.1145556
[7] Carbonell, C.C., & Bermejo, L.A. (2016B). Landscape Interpretation with Augmented Reality and Maps to Improve Spatial Orientation Skill. In Journal of Geography in Higher Education, 41(1), 119–133. doi:10.1080/03098265.2016.1260530
[8] Carbonell, C.C., Saorin, J.L., & ; De la Torre Cantero, J. (2017). Teaching With AR as a Tool for Relief Visualization: Usability and Motivation Study. In International Research in Geographical and Environmental Education, 27(1), 69– 84. doi:10.1080/10382046.2017.1285135
[9] Carter, G., M. Patrick, E. N. Wiebe, J. C. Park, and S. M. Butler. (2005). Middle Grade Students’ Interpretation of Topographic Maps. In Proceedings of the National Association for Research in Science Teaching NARST, Dallas, TX.
[10] Chen, P., Liu, X., Cheng, W., & Huang, R. (2017). A Review of Using Augmented Reality in Education from 2011 to 2016. In Innovations in smart learning, 13-18, Springer, Singapore
[11] Chen, Y.-C., Chi, H.-L., Hung, W.-H., & Kang, S.-C. (2011). Use of Tangible and Augmented Reality Models in Engineering Graphics Courses. In Journal of Professional Issues in Engineering Education and Practice, 137(4), 267–276.
[12] Cheng, K. H. (2017). Reading an augmented reality book: An exploration of learners'' cognitive load, motivation, and attitudes. In Australasian Journal of Educational Technology, 33(4). doi: https://doi.org/10.14742/ajet.2820
[13] Chinowsky, P. S., Brown, H., Szajnman, A., & Realph, A. (2006). Developing Knowledge Landscapes through Project-Based Learning. In Journal of Professional Issues in Engineering Education and Practice, 132(2), 118–124.
[14] Dinis, F. M., Guimaraes, A. S., Carvalho, B. R., & Martins, J. P. P. (2017). Virtual and Augmented Reality Game-Based Applications to Civil Engineering Education. In 2017 IEEE Global Engineering Education Conference (EDUCON).
[15] Fauzi, A., Ali, K., & Amirudin, R. (2019). Evaluating students readiness, expectancy, acceptance and effectiveness of augmented reality based construction technology education. In International Journal of Built Environment and Sustainability, 6(1), 7-13.
[16] Feisel, L. D., & Rosa, A. J. (2005). The role of the laboratory in undergraduate engineering education. In Journal of Engineering Education, 94(1), 121-130.
[17] Hadim, H. A., & Esche, S. K. (2002). Enhancing the engineering curriculum through project-based learning. In 32nd Annual Frontiers in Education. 2, F3F- F3F, IEEE.
[18] Horváth, I. (2018). Evolution of teaching roles and tasks in VR/AR-based education. In 2018 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), 355-360, IEEE.
[19] Martín-Gutiérrez, J., Saorín, J. L., Contero, M., Alcañiz, M., Pérez-López, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. In Computers & Graphics, 34(1), 77-91.
[20] Le, H., & Nguyen, M. (2017). Enhancing Textbook Study Experiences with Pictorial Bar-Codes and Augmented Reality. In International Conference on Computer Analysis of Images and Patterns, 139-150, Springer, Cham.
[21] Le,Q.T.,Pedro,A.K.E.E.M.,Lim,C.R.,Park,H.T.,Park,C.S.,&Kim,H.K. (2015). A framework for using mobile based virtual reality and augmented reality for experiential construction safety education. In International Journal of Engineering Education, 31(3), 713-725.
[22] Neges, M., Wolf, M., Kuska, R., & Frerich, S. (2019). Framework for Augmented Reality Scenarios in Engineering Education. In International Conference on Remote Engineering and Virtual Instrumentation, 620-626, Springer, Cham.
[23] Shirazi, A., & Behzadan, A. H. (2015). Content Delivery Using Augmented Reality to Enhance Students'' Performance in a Building Design and Assembly Project. In Advances in Engineering Education, 4(3), n3.
[24] Turkan, Y., Radkowski, R., Karabulut-Ilgu, A., Behzadan, A. H., & Chen, A. (2017). Mobile augmented reality for teaching structural analysis. In Advanced Engineering Informatics, 34, 90-100. doi:10.1016/j.aei.2017.09.005
[25] Wolf, P. R., & Ghilani, C. D. (2002). Elementary Surveying: An introduction to geomatics. [13th Edition]. Upper Saddle River, New Jersey: Prentice Hall.
[26] 謝尚賢、郭榮欽、陳奐廷、蔡沅澔(2014):《透過案例演練學習 BIM: 基礎篇》。國立臺灣大學出版中心。 [Hsieh, S. S., Kuo, R. C., Chen, H. T., Tsai, Y. H. (2014). Learning BIM Through Project Exercise: Basics. Taipei, Taiwan: National Taiwan University Press.]
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔