(34.201.11.222) 您好!臺灣時間:2021/02/25 05:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:阮清彰
研究生(外文):THANH-CHUONG NGUYEN
論文名稱:整合 BIM 與 Web Map Service 於綠建築之地理位置與交通分析
論文名稱(外文):INTEGRATION OF BUILDING INFORMATION MODELING AND WEB MAP SERVICE FOR GREEN BUILDING’S LOCATION AND TRANSPORTATION ANALYSES
指導教授:陳 柏 翰
指導教授(外文):Po-Han Chen
口試委員:張 陸 滿郭 斯 傑荷 世 平曾 惠 斌詹 瀅 潔謝 尚 賢
口試委員(外文):Luh-Maan ChangShi-Jie GuoShi-Ping HoHui-Ping TserngYing-Jie ChanHsieh Shang-Hsien
口試日期:2019-07-07
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:145
中文關鍵詞:BIMWeb Map ServiceGreen buildingLEEDTransportation
DOI:10.6342/NTU201903287
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Green Building and Building Information Modeling (BIM) are two emerging trends in the construction industry nowadays. Traditionally, in green building analyses, location and transportation analyses usually require a lot of manual works, which are very time and cost consuming. Although AEC professionals have been exploring the potential applications of Building Information Modeling (BIM) in green building design and construction, the application of BIM in location and transportation analyses is usually considered impractical due to the lack of a powerful map application in present BIM products. This research aims to solve this problem by establishing an integration model of BIM and Web Map Service (WMS) technologies in green building analyses. Using Autodesk Revit API and Google Maps API as the development tools, this research converts the integration model into the BIM-integrated plugins in Autodesk Revit. To verify the results of the integration model, two showcases of the BIM plugins are presented in a popular green building certification (the LEED standard), and in the management of sustainable material’s logistics system.
TABLE OF CONTENTS
ACKNOWLEGMENTS II
ABSTRACT III
LIST OF TABLES IV
LIST OF FIGURES V
TABLE OF CONTENTS VIII
CHAPTER 1 : INTRODUCTION 12
1.1. BACKGROUND 12
1.2. RESEARCH PROBLEMS 14
1.2.1. Lack of BIM integrations in green building analyses 15
1.2.2. Problems in location and transportation analyses 16
1.2.3. Challenges in green building certification process 18
1.3. RESEARCH MOTIVATION 20
1.4. RESEARCH OBJECTIVES 23
1.5. ORGANIZATION OF THE DISSERTATION 24
CHAPTER 2 : LITERATURE REVIEW 27
2.1 BASICS OF GREEN BUILDING 27
2.1.1 Introduction to green building 27
2.1.2 The LEED certification system 29
2.2 BUILDING INFORMATION MODELING 35
2.3 WEB MAP SERVICE (WMS) 39
2.4 APPLICATION PROGRAMMING INTERFACE (API) 43
2.4.1 Introduction to Application Programming Interface 43
2.4.2 Revit API 46
2.4.3 Google Maps API 47
2.5 REVIEW OF EXISTING BIM AND GIS INTEGRATION SOLUTIONS 48
2.5.1 Autodesk BIM 360 49
2.5.2 Autodesk Forge 51
2.5.3 ESRI ArcGIS 52
2.6 BIM APPLICATIONS IN CONSTRUCTION 53
2.6.1 BIM for Green Building’s performance analyses 53
2.6.2 BIM for Green Building Certifications 55
2.6.3 BIM in Location and Transportation Analyses in Green Building certifications 58
2.7 GIS APPLICATIONS IN CONSTRUCTION 59
2.7.1 GIS applications in construction, supply-chain and logistics management 59
2.7.2 Traditional material shipping route identification and distance calculation 59
2.7.3 Potentials for BIM and GIS integration 63
CHAPTER 3 : RESEARCH METHODOLOGY AND THE BIM-WMS-GB INTEGRATION FRAMEWORK 64
3.1 RESEARCH METHODOLOGY 64
3.1.1 Technical foundation for the integration of BIM and WMS in green building 64
3.1.2 Approach to develop the BIM integration in green building analyses 66
3.1.3 Research methodology procedure 67
3.2 BIM-WMS-GB INTEGRATION FRAMEWORK 69
3.2.1 Integration of BIM and WMS using APIs 69
3.2.2 The BIM-WMS-GB integration model 70
CHAPTER 4 : INTEGRATING BIM AND WMS IN GREEN BUILDING’S SUSTAINABLE SITE ANALYSES 76
4.1 INTRODUCTION TO THIS CHAPTER 76
4.1.1 Project’s location and transportation analyses in LEED Sustainable Sites 76
4.1.2 Conventional location and transportation analysis in green building standards 79
4.1.3 BIM applications in SSc2 and SSc4.1 credit 80
4.1.4 Objectives of the software development 81
4.2 AUTODESK REVIT LEED PLUGINS 81
4.2.1 SS Credit 2 (SSc2): Development Density and Community Connectivity 82
4.2.2 SS Credit 4.1 (SSc4.1): Alternative Transportation – Public Transportation Access 90
4.2.3 Migration capability to LEED version 4.0 92
4.3 CASE STUDY 92
4.3.1 Credit SSc2.1 94
4.3.2 Credit SSc4.1 97
CHAPTER 5 : INTEGRATING BIM AND WMS FOR GREEN BUILDING''S CONSTRUCTION MATERIAL ASSESSMENT AND LOGISTICS 100
5.1 INTRODUCTION TO THE CHAPTER 100
5.1.1 Location and transportation analyses for LEED’s sustainable materials 100
5.1.2 The role of material location and transportation in a project’s cost and schedule 103
5.1.3 Motivations and objective of this case-study 103
5.2 DEVELOPMENT OF BIM-WMS-GB INTEGRATION MODEL 105
5.2.1 BIM and Web Map Service applications 105
5.2.2 BIM-WMS integration framework 106
5.2.3 Development of the BIM-WMS-GB plugin 108
5.3 MATERIAL SELECTION USING THE BIM-WMS-GB PLUGIN 110
5.4 CHECKING COMPLIANCE WITH GREEN BUILDING STANDARD 114
5.5 OPTIMIZATION OF MATERIAL TRANSPORTATION PLAN USING THE BIM-WMS-GB PLUGIN 115
5.6 TEST CASE 117
5.6.1 Scenario 1: Comparing different material options 117
5.6.2 Scenario 2: Adjusting transportation plans to fit the project’s cost and schedule 120
5.7 RESULT AND DISCUSSION 122
CHAPTER 6 : CONCLUSIONS 125
6.1 CONCLUSIONS 125
6.2 RESEARCH CONTRIBUTIONS 126
6.3 POTENTIAL APPLICATIONS OF THE BIM-WMS-GB INTEGRATION 129
6.3.1 Use of BIM-WMS-GB integration to enhance the collaboration in green building certification process 129
6.3.2 Use of BIM-WMS-GB integration for Integrated Project Delivery 131
6.3.3 Proposed framework for green building certification with BIM-WMS-GB application 133
6.4 LIMITATIONS OF THE RESEARCH 135
REFERENCES 136
1.Ahmadian, F.F.A., Akbarnezhad, A., Rashidi, T.H., Waller, S.T., 2016. Accounting for Transport Times in Planning Off-Site Shipment of Construction Materials. J. Constr. Eng. Manag. 142, 04015050. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001030
2.Ahmadian, F.F.A., Akbarnezhada, A., Rashidi, T.H., Wallera, S.T., 2014. Importance of Planning for the Transport Stage in Procurement of Construction Materials. ISARC Proc. 2014 Proceedings of the 31st ISARC, Sydney, Australia, 466–473. https://doi.org/10.22260/ISARC2014/0062
3.Akadiri, P.O., 2015. Understanding barriers affecting the selection of sustainable materials in building projects. J. Build. Eng. 4, 86–93. https://doi.org/10.1016/j.jobe.2015.08.006
4.Akadiri, P.O., Olomolaiye, P.O., Chinyio, E.A., 2013. Multi-criteria evaluation model for the selection of sustainable materials for building projects. Autom. Constr. 30, 113–125. https://doi.org/10.1016/j.autcon.2012.10.004
5.Albiñana, J.C., Vila, C., 2012. A framework for concurrent material and process selection during conceptual product design stages. Mater. Des. 41, 433–446. https://doi.org/10.1016/j.matdes.2012.05.016
6.American Institute of Architects, 2007. Integrated Project Delivery – A Working Definition.
7.Autodesk, 2019a. What Is BIM | Building Information Modeling [WWW Document]. URL https://www.autodesk.com/solutions/bim (accessed 3.16.19).
8.Autodesk, 2019b. Autodesk BIM 360 [WWW Document]. BIM 360. URL https://www.autodesk.com/bim-360/ (accessed 6.28.19).
9.Autodesk, 2019c. Autodesk Forge [WWW Document]. Autodesk Forge. URL https://forge.autodesk.com/ (accessed 6.29.19).
10.Autodesk, I., 2014. Green Building Studio [WWW Document]. Autodesk Green Build. Studio. URL https://gbs.autodesk.com/GBS/ (accessed 12.16.14).
11.Autodesk, I., 2005. Building Information Modeling for Sustainable Design, Autodesk Revit White Paper.
12.Azhar, S., Brown, J., Farooqui, R., 2009. BIM-based Sustainability Analysis: An Evaluation of Building Performance Analysis Software. Presented at the Proceedings of the 45th Annual ASC Conference, Associated Schools of Construction, Gainesville, FL, p. 9.
13.Azhar, S., Brown, J., Sattineni, A., 2010. A case study of building performance analyses using building information modeling, in: Proceedings of the 27th International Symposium on Automation and Robotics in Construction (ISARC-27), Bratislava, Slovakia.
14.Azhar, S., Carlton, W.A., Olsen, D., Ahmad, I., 2011. Building information modeling for sustainable design and LEED® rating analysis. Autom. Constr. 20, 217–224. https://doi.org/10.1016/j.autcon.2010.09.019
15.Baharetha, S.M., Al-Hammad, A.A., Alshuwaikhat, H.M., 2012. Towards a Unified Set of Sustainable Building Materials Criteria, in: ICSDEC 2012. Presented at the International Conference on Sustainable Design, Engineering, and Construction 2012, American Society of Civil Engineers, Fort Worth, Texas, United States, pp. 732–740. https://doi.org/10.1061/9780784412688.088
16.Bank, L.C., McCarthy, M., Thompson, B.P., Menassa, C.C., 2010. Integrating BIM with system dynamics as a decision-making framework for sustainable building design and operation, in: First International Conference on Sustainable Urbanization. Presented at the ICSU 2010, Hong Kong, China.
17.Bansal, V.K., Pal, M., 2011. Geographic Information Systems Based Quantity Takeoffs in Buildings Construction 01, 3.
18.Bansal, V.K., Pal, M., 2006. GIS BASED PROJECTS INFORMATION SYSTEM FOR CONSTRUCTION MANAGEMENT. ASIAN J. Civ. Eng. Build. Hous. 7, 115–124.
19.BillWagner, 2015. Introduction to the C# Language and the .NET Framework [WWW Document]. URL https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework (accessed 3.27.19).
20.Biswas, T., Krishnamurti, R., 2009. Framework for Supporting Sustainable Design. https://doi.org/10.1184/R1/6075806.v1
21.Bryde, D., Broquetas, M., Volm, J.M., 2013. The project benefits of Building Information Modelling (BIM). Int. J. Proj. Manag. 31, 971–980. https://doi.org/10.1016/j.ijproman.2012.12.001
22.Bynum, P., Issa, R., Olbina, S., 2013. Building Information Modeling in Support of Sustainable Design and Construction. J. Constr. Eng. Manag. 139, 24–34. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000560
23.Chegu Badrinath, A., Chang, Y., Hsieh, S., 2016. A review of tertiary BIM education for advanced engineering communication with visualization. Vis. Eng. 4. https://doi.org/10.1186/s40327-016-0038-6
24.Chegu Badrinath Amarnath, Hsieh Shang-Hsien, 2019. Empirical Approach to Identify Operational Critical Success Factors for BIM Projects. J. Constr. Eng. Manag. 145, 04018140. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001607
25.Chen, P.-H., Nguyen, T.C., 2019. A BIM-WMS integrated decision support tool for supply chain management in construction. Autom. Constr. 98, 289–301. https://doi.org/10.1016/j.autcon.2018.11.019
26.Chen, P.-H., Nguyen, T.C., 2017. Integrating web map service and building information modeling for location and transportation analysis in green building certification process. Autom. Constr. 77, 52–66. https://doi.org/10.1016/j.autcon.2017.01.014
27.Cheng, J.C.P., Law, K.H., Bjornsson, H., Jones, A., Sriram, R., 2010. A service oriented framework for construction supply chain integration. Autom. Constr. 19, 245–260. https://doi.org/10.1016/j.autcon.2009.10.003
28.Cheng, M.-Y., Chen, J.-C., 2002. Integrating barcode and GIS for monitoring construction progress. Autom. Constr. 11, 23–33. https://doi.org/10.1016/S0926-5805(01)00043-7
29.Cheng, M.-Y., Yang, S.-C., 2001. GIS-Based Cost Estimates Integrating with Material Layout Planning. J. Constr. Eng. Manag. 127, 291–299. https://doi.org/10.1061/(ASCE)0733-9364(2001)127:4(291)
30.de Boer, L., Labro, E., Morlacchi, P., 2001. A review of methods supporting supplier selection. Eur. J. Purch. Supply Manag. 7, 75–89. https://doi.org/10.1016/S0969-7012(00)00028-9
31.Dodge Data & Analytics, 2018. World Green Building Trends 2018.
32.Eastman, C.M., 2008. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. Wiley.
33.Enshassi, A.A., Hamra, L.A.A., Alkilani, S., 2018. Studying the Benefits of Building Information Modeling (BIM) in Architecture, Engineering and Construction (AEC) Industry in the Gaza Strip. Jordan J. Civ. Eng. 12, 12.
34.Eric Pimpler, 2019. Introduction to Developing with Google Maps [WWW Document]. directionsmag.com. URL https://www.directionsmag.com/article/2987 (accessed 5.22.19).
35.Esri, Autodesk, 2017. Autodesk and Esri Partnering to Advance Infrastructure Planning and Design [WWW Document]. ESRI News Room. URL https://www.esri.com/esri-news/releases/17-4qtr/autodesk-and-esri-partnering-to-advance-infrastructure-planning-and-design (accessed 6.29.19).
36.Florez, L., Castro-Lacouture, D., 2013. Optimization model for sustainable materials selection using objective and subjective factors. Mater. Des. 46, 310–321. https://doi.org/10.1016/j.matdes.2012.10.013
37.GBCA, 2016. Green Star - Multi Unit Residential v1 - Rating Tools - Green Building Council Australia (GBCA) [WWW Document]. Green Build. Counc. Aust. URL https://www.gbca.org.au/green-star/rating-tools/green-star-multi-unit-residential-v1/1930.htm (accessed 1.20.16).
38.gbXML.org, 2014. About gbXML [WWW Document]. Welcome - Green Build. XML Schema. URL http://www.gbxml.org/aboutgbxml.php (accessed 2.4.15).
39.Google Inc., 2019. Google Maps Platform [WWW Document]. Google Maps Dev. URL https://developers.google.com/maps/documentation/ (accessed 5.5.19).
40.Google Inc., 2015. Google Maps Embed API [WWW Document]. Google Dev. URL https://developers.google.com/maps/documentation/embed/guide (accessed 4.26.14).
41.Govindan, K., Madan Shankar, K., Kannan, D., 2016. Sustainable material selection for construction industry – A hybrid multi criteria decision making approach. Renew. Sustain. Energy Rev. 55, 1274–1288. https://doi.org/10.1016/j.rser.2015.07.100
42.Guo, S.-J., Chiang, L.-W., Chong, U.-O., Chen, J.-Y., 2017. Empirical Research on BIM Application for Cost Estimation of HVAC System in Buildings. Presented at the 34th International Symposium on Automation and Robotics in Construction, Taipei, Taiwan. https://doi.org/10.22260/ISARC2017/0111
43.Guo, S.-J., Wei, T., 2016. Cost-effective energy saving measures based on BIM technology: Case study at National Taiwan University. Energy Build. 127, 433–441. https://doi.org/10.1016/j.enbuild.2016.06.015
44.Hiermann, G., Hartl, R.F., Puchinger, J., Vidal, T., 2019. Routing a mix of conventional, plug-in hybrid, and electric vehicles. Eur. J. Oper. Res. 272, 235–248. https://doi.org/10.1016/j.ejor.2018.06.025
45.Jalaei, F., 2015. INTEGRATE BUILDING INFORMATION MODELING (BIM) AND SUSTAINABLE DESIGN AT THE CONCEPTUAL STAGE OF BUILDING PROJECTS. University of Ottawa.
46.Jalaei, F., Jrade, A., 2014. INTEGRATING BUILDING INFORMATION MODELING (BIM) AND ENERGY ANALYSIS TOOLS WITH GREEN BUILDING CERTIFICATION SYSTEM TO CONCEPTUALLY DESIGN SUSTAINABLE BUILDINGS 26.
47.Krygiel, E., Nies, B., 2008. Green BIM: Successful Sustainable Design with Building Information Modeling. Wiley.
48.Kuo, R.-C., Hsieh, S.-H., Chen, Y.-W., Yang, C.-E., Jean, T.-F., 2014. Design and implementation of BIM collaboration cloud platform. J. Chin. Inst. Civ. Hydraul. Eng. 26, 309–321.
49.Leite, F., Akcamete, A., Akinci, B., Atasoy, G., Kiziltas, S., 2011. Analysis of modeling effort and impact of different levels of detail in building information models. Autom. Constr. 20, 601–609. https://doi.org/10.1016/j.autcon.2010.11.027
50.Li, H., Chen, Z., Yong, L., Kong, S.C.W., 2005. Application of integrated GPS and GIS technology for reducing construction waste and improving construction efficiency. Autom. Constr., International Conference for Construction Information Technology 2004 14, 323–331. https://doi.org/10.1016/j.autcon.2004.08.007
51.Lu, W.W.S., Li, H., 2011. Building information modeling and changing construction practices. Autom. Constr. 20, 99–100. https://doi.org/10.1016/j.autcon.2010.09.006
52.McGraw-Hill Construction, 2013. Smart Market Report: World Green Building Trends, Smart Market Report.
53.McGraw-Hill Construction, 2009. The Business value of BIM, Smart Market Report.
54.McKinsey, 2019. Imagining construction’s digital future [WWW Document]. URL https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/imagining-constructions-digital-future (accessed 3.16.19).
55.Mom, M., Tsai, M.-H., Hsieh, S.-H., 2014. Developing critical success factors for the assessment of BIM technology adoption: Part II. Analysis and results. J. Chin. Inst. Eng. 37, 859–868. https://doi.org/10.1080/02533839.2014.888798
56.Noorizadegan, M., Chen, B., 2018. Vehicle routing with probabilistic capacity constraints. Eur. J. Oper. Res. 270, 544–555. https://doi.org/10.1016/j.ejor.2018.04.010
57.O’Keeffe, S.E., 2013. Synergy of the developed 6D BIM framework and conception of the nD BIM framework and nD BIM process ontology (Ph.D.). The University of Southern Mississippi, United States -- Mississippi.
58.O’Keeffe, S.E., Shiratuddin, M.F., Fletcher, D., 2009. LEED certification review in a virtual environment, in: 9th International Conference on Construction Applications of Virtual Reality. Presented at the CONVR 2009, University of Sydney, Sydney, Australia.
59.Open Geospatial Consortium, 2014a. Web Map Service [WWW Document]. Web Map Serv. - Overv. URL http://www.opengeospatial.org/standards/wms (accessed 4.5.14).
60.Open Geospatial Consortium, 2014b. Introduction to Web Map Service (WMS) [WWW Document]. Eb Map Serv. WMS — Introd. OpenGeo Suite. URL http://presentations.opengeo.org/2012_FOSSGIS/suiteintro/geoserver/wms.html (accessed 2.4.15).
61.Park, S.-H., Kim, E., 2016. Middleware for Translating Urban GIS Information for Building a Design Society Via General BIM Tools. J. Asian Archit. Build. Eng. 15, 447–454. https://doi.org/10.3130/jaabe.15.447
62.Peter O. Akadiri, Paul O. Olomolaiye, 2012. Development of sustainable assessment criteria for building materials selection. Eng. Constr. Archit. Manag. 19, 666–687. https://doi.org/10.1108/09699981211277568
63.Quyen, N.T., Chen, P.-H., 2018. Applying BIM and Energy Simulation Tools to LEED Certification (Master Thesis). National Taiwan University, Taipei, Taiwan.
64.Roderick, Y., Wheatley, C., Mcewan, D., Alonso, C., 2009. A comparative study of building energy performance assessment between LEED, BREEAM and Green Star schemes, in: 11th International Building Performance Simulation Association Conference. Presented at the International IBPSA Conference, University of Strathclyde, Glasgow, Scotland, pp. 1167–1176.
65.Safa, M., Shahi, A., Haas, C.T., Hipel, K.W., 2014. Supplier selection process in an integrated construction materials management model. Autom. Constr. 48, 64–73. https://doi.org/10.1016/j.autcon.2014.08.008
66.Scholman, H.S.A., 1997. Subcontracting by main contractors (Uitbesteding door hoofdaannemers). Economic Institute for the Building Industry, Amsterdam, Netherlands.
67.Shi, Q., Ding, X., Zuo, J., Zillante, G., 2016. Mobile Internet based construction supply chain management: A critical review. Autom. Constr. 72, 143–154. https://doi.org/10.1016/j.autcon.2016.08.020
68.Sousa Matos, M.R., Frota, Y., Ochi, L.S., 2018. Green Vehicle Routing and Scheduling Problem with Split Delivery. Electron. Notes Discrete Math., Joint EURO/ALIO International Conference 2018 on Applied Combinatorial Optimization (EURO/ALIO 2018) 69, 13–20. https://doi.org/10.1016/j.endm.2018.07.003
69.Stavropoulou, F., Repoussis, P.P., Tarantilis, C.D., 2018. The Vehicle Routing Problem with Profits and Consistency Constraints. Eur. J. Oper. Res. https://doi.org/10.1016/j.ejor.2018.09.046
70.The Building and Construction Authority (BCA), 2013. BCA Green Mark for New Non-Residential Buildings Version NRB/4.1.
71.Tsai, M.-H., Mom, M., Hsieh, S.-H., 2014a. Developing critical success factors for the assessment of BIM technology adoption: part I. Methodology and survey. J. Chin. Inst. Eng. 37. https://doi.org/10.1080/02533839.2014.888811
72.Tsai, M.-H., Mom, M., Hsieh, S.-H., 2014b. Developing critical success factors for the assessment of BIM technology adoption: part I. Methodology and survey. J. Chin. Inst. Eng. 37, 845–858. https://doi.org/10.1080/02533839.2014.888811
73.Tserng, H.P., Yin, S.Y.L., Li, S., 2006. Developing a Resource Supply Chain Planning System for Construction Projects. J. Constr. Eng. Manag. 132, 393–407. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:4(393)
74.U.S. Green Building Council, 2015. Green Building Facts [WWW Document]. URL http://www.usgbc.org/articles/green-building-facts (accessed 2.24.15).
75.U.S. Green Building Council, 2013a. LEED 2009 for New Construction and Major Renovations Rating System.
76.U.S. Green Building Council, 2013b. LEED 2009 to LEED v4 - BD+C [WWW Document]. Summ. Chang. URL http://www.usgbc.org/resources/summary-changes-leed-2009-leed-v4-bdc (accessed 2.11.15).
77.U.S. National BIM Standard, 2013. WHAT IS A BIM? [WWW Document]. Freq. Asked Quest. Natl. BIM Stand. URL http://www.nationalbimstandard.org/faq.php#faq1 (accessed 4.7.14).
78.USGBC, 2019. What is LEED? | U.S. Green Building Council [WWW Document]. www.usgbc.org. URL http://www.usgbc.org/help/what-leed (accessed 3.16.19).
79.WBDG, 2018. Green Building Standards and Certification Systems [WWW Document]. Whole Build. Des. Guide. URL http://www.wbdg.org/resources/green-building-standards-and-certification-systems (accessed 3.7.19).
80.Wikipedia, 2019a. Green building [WWW Document]. Green Build. - Wikipedia. URL https://en.wikipedia.org/w/index.php?title=Green_building&oldid=887818395 (accessed 6.21.19).
81.Wikipedia, 2019b. Google Maps [WWW Document]. Wikipedia. URL https://en.wikipedia.org/w/index.php?title=Google_Maps&oldid=888770486 (accessed 6.21.19).
82.Wikipedia, 2015. Application programming interface [WWW Document]. Wikipedia Free Encycl. URL http://en.wikipedia.org/w/index.php?title=Application_programming_interface&oldid=651758426 (accessed 6.21.19).
83.Wong, J.K.-W., Kuan, K.-L., 2014. Implementing ‘BEAM Plus’ for BIM-based sustainability analysis. Autom. Constr. 44, 163–175. https://doi.org/10.1016/j.autcon.2014.04.003
84.Wong, K., Fan, Q., 2013. Building information modelling (BIM) for sustainable building design. Facilities 31, 138–157. https://doi.org/10.1108/02632771311299412
85.Woolley, T., Kimmins, S., Harrison, R., Harrison, P., 1998. Green Building Handbook: Volume 1. Routledge, London.
86.World Green Building Council, 2019a. What is green building? [WWW Document]. Green Build. URL https://www.worldgbc.org/what-green-building (accessed 3.5.19).
87.World Green Building Council, 2019b. Rating tools | World Green Building Council [WWW Document]. Rat. Tools. URL https://www.worldgbc.org/rating-tools (accessed 5.15.19).
88.Wu, W., 2010. Integrating Building Information Modeling and Green Building Certification: Bim-Leed application Model Development. University of Florida, Florida.
89.Wu, W., Issa, R.R.A., 2010. Feasibility of integrating building information modeling and LEED® certification process 7.
90.Wu Wei, Yang Xiaoming, Fan Qin, 2014. GIS-BIM Based Virtual Facility Energy Assessment (VFEA)-Framework Development and Use Case of California State University, Fresno. Comput. Civ. Build. Eng., Proceedings. https://doi.org/10.1061/9780784413616.043
91.Xue, X., Li, X., Shen, Q., Wang, Y., 2005. An agent-based framework for supply chain coordination in construction. Autom. Constr., International Conference for Construction Information Technology 2004 14, 413–430. https://doi.org/10.1016/j.autcon.2004.08.010
92.Yudelson, J., 2009. Sustainable Retail Development: New Success Strategies, 2nd ed. Springer Science & Business Media.
93.Zhou, C.-C., Yin, G.-F., Hu, X.-B., 2009. Multi-objective optimization of material selection for sustainable products: Artificial neural networks and genetic algorithm approach. Mater. Des. 30, 1209–1215. https://doi.org/10.1016/j.matdes.2008.06.006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔