|
1. Ariathurai, R., and Arulanandan, K. (1978). Erosion rates of cohesive soils. Journal of the hydraulics division, 104(2), 279-283. 2. Beauchard, O., Jacobs, S., Cox, T.J., Maris, T., Vrebos, D., Van Braeckel, A., and Meire, P. (2011). A new technique for tidal habitat restoration: Evaluation of its hydrological potentials. Ecological Engineering, 37(11), 1849-1858. 3. Beauchard, O., Jacobs, S., Ysebaert, T., and Meire, P. (2013). Avian response to tidal freshwater habitat creation by controlled reduced tide system. Estuarine, Coastal and Shelf Science, 131, 12-23. 4. Bishop, J.K., Ketten, D.R., and Edmond, J.M. (1978). The chemistry, biology and vertical flux of particulate matter from the upper 400 m of the Cape Basin in the southeast Atlantic Ocean. Deep Sea Research, 25(12), 1121-1161. 5. Blum, L.K., and Christian, R.R. (2004). Belowground production and decomposition along a tidal gradient in a Virginia salt marsh. The Ecogeomorphology of Tidal Marshes, 59, 47-73. 6. Boon III, J.D. (1975). Tidal discharge asymmetry in a salt marsh drainage system 1, 2. Limnology and Oceanography, 20(1), 71-80. 7. Carniello, L., Defina, A., Fagherazzi, S., and D''Alpaos, L. (2005). A combined wind wave–tidal model for the Venice lagoon, Italy. Journal of Geophysical Research: Earth Surface, 110(F4). 8. Chow, V.T., (1973). Open-Channel Hydraulics, MacGraw Hill International Editions. 9. Cole, P., and Miles, G.V. (1983). Two-dimensional model of mud transport. Journal of Hydraulic Engineering, 109(1), 1-12. 10. Collins, M.B., Ke, X., and Gao, S. (1998). Tidally-induced flow structure over intertidal flats. Estuarine, Coastal and Shelf Science, 46(2), 233-250. 11. Cox, T., Maris, T., De Vleeschauwer, P., De Mulder, T., Soetaert, K., and Meire, P. (2006). Flood control areas as an opportunity to restore estuarine habitat. Ecological Engineering, 28(1), 55-63. 12. D''Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S., and Rinaldo, A. (2005). Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research: Earth Surface, 110(F2). 13. D''Alpaos, A., Lanzoni, S., Mudd, S. M., and Fagherazzi, S. (2006). Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuarine, Coastal and Shelf Science, 69(3-4), 311-324. 14. D''Alpaos, A., Lanzoni, S., Marani, M., Bonometto, A., Cecconi, G., and Rinaldo, A. (2007a). Spontaneous tidal network formation within a constructed salt marsh: Observations and morphodynamic modelling. Geomorphology, 91(3-4), 186-197. 15. D''Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. (2007b). Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research: Earth Surface, 112(F1). 16. D''Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. (2010). On the tidal prism–channel area relations. Journal of Geophysical Research: Earth Surface, 115(F1). 17. D''Alpaos, A. (2011). The mutual influence of biotic and abiotic components on the long-term ecomorphodynamic evolution of salt-marsh ecosystems. Geomorphology, 126(3-4), 269-278. 18. Day, J.H., Chadwick, H., Day Jr, J.W., Hall, C.A., Kemp, W.M., Kemp, W.M., and Yáñez-Arancibia, A. (1989). Estuarine ecology: John Wiley and Sons. 19. Donato, D.C., Kauffman, J.B., Mackenzie, R.A., Ainsworth, A., and Pfleeger, A.Z. (2012). Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. Journal of Environmental Management, 97, 89-96. 20. Einstein, H.A., and Krone, R.B. (1962). Experiments to determine modes of cohesive sediment transport in salt water. Journal of Geophysical Research, 67(4), 1451-1461. 21. Fagherazzi, S., and Furbish, D.J. (2001). On the shape and widening of salt marsh creeks. Journal of Geophysical Research: Oceans, 106(C1), 991-1003. 22. Fagherazzi, S., Kirwan, M.L., Mudd, S.M., Guntenspergen, G.R., Temmerman, S., D''Alpaos, A., Koppel, J., Rybczyk, J.M., Reyes, E., Craft, C., and Clough, J. (2012). Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics, 50(1). 23. French, J.R., and Spencer, T. (1993). Dynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk, UK. Marine Geology, 110(3-4), 315-331. 24. Froneman, A., Mangnall, M.J., Little, R.M., and Crowe, T.M. (2001). Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa. Biodiversity and Conservation, 10(2), 251-270. 25. Garofalo, D. (1980). The influence of wetland vegetation on tidal stream channel migration and morphology. Estuaries, 3(4), 258-270. 26. Gibbs, R.J. (1985). Estuarine flocs: their size, settling velocity and density. Journal of Geophysical Research: Oceans, 90(C2), 3249-3251. 27. Gibbs, R.J., Konwar, L., and Terchunian, A. (1983). Size of flocs suspended in Delaware Bay. Canadian Journal of Fisheries and Aquatic Sciences, 40(S1), s102-s104. 28. Hood, W. G. (2002a). Landscape allometry: From tidal channel hydraulic geometry to benthic ecology. Canadian Journal of Fisheries and Aquatic Sciences, 59(8), 1418-1427. 29. Hood, W.G. (2002b). Application of landscape allometry to restoration of tidal channels. Restoration Ecology, 10(2), 213-222. 30. Hood, W.G. (2004). Indirect environmental effects of dikes on estuarine tidal channels: thinking outside of the dike for habitat restoration and monitoring. Estuaries, 27(2), 273-282. 31. Hood, W.G. (2006). Indirect environmental effects of dikes on estuarine tidal channels: thinking outside of the dike for habitat restoration and monitoring. Estuaries, 27(2), 273-282. 32. Hood, W.G. (2007). Scaling tidal channel geometry with marsh island area: A tool for habitat restoration, linked to channel formation process. Water Resources Research, 43(3). 33. Hood, W.G. (2010). Tidal channel meander formation by depositional rather than erosional processes: examples from the prograding Skagit River Delta (Washington, USA). Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 35(3), 319-330. 34. Hood, W.G. (2012). Beaver in tidal marshes: dam effects on low-tide channel pools and fish use of estuarine habitat. Wetlands, 32(3), 401-410. 35. Hood, W.G. (2015). Geographic variation in Puget Sound tidal channel planform geometry. Geomorphology, 230, 98-108. 36. Hoque, A., Sharma, S., and Hagihara, A. (2011). Above and belowground carbon acquisition of mangrove Kandelia obovata trees in Manko wetland, Okinawa, Japan. International Journal of Environment, 1(1), 7-13. 37. Huang, S.C., Shih, S.S., Ho, Y.S., Chen, C.P., and Hsieh, H.L. (2012). Restoration of shorebird‐roosting mudflats by partial removal of estuarine mangroves in northern Taiwan. Restoration Ecology, 20(1), 76-84. 38. Jacobs, S., Beauchard, O., Struyf, E., Cox, T., Maris, T., and Meire, P. (2009). Restoration of tidal freshwater vegetation using controlled reduced tide (CRT) along the Schelde Estuary (Belgium). Estuarine, Coastal and Shelf Science, 85(3), 368-376. 39. Kandiah, A., and Arulanandan, K. (1974). Hydraulic erosion of cohesive soils. Transportation Research Record, 497, 60-68. 40. Khan, M. N. I., Suwa, R., and Hagihara, A. (2005). Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candel (L.) Druce trees in the Manko Wetland, Okinawa Island, Japan. Trees, 19(3), 266-272. 41. Khan, M.N.I., Suwa, R., and Hagihara, A. (2009). Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management, 17(6), 585-599. 42. Kirwan, M.L., and Murray, A.B. (2007). A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences, 104(15), 6118-6122. 43. Kirwan, M.L., and Murray, A.B. (2008a). Tidal marshes as disequilibrium landscapes? Lags between morphology and Holocene sea level change. Geophysical Research Letters, 35(24). 44. Kirwan, M.L., and Murray, A.B. (2008b). Ecological and morphological response of brackish tidal marshland to the next century of sea level rise: Westham Island, British Columbia. Global and Planetary Change, 60(3-4), 471-486. 45. Kirwan, M., and Temmerman, S. (2009a). Coastal marsh response to historical and future sea-level acceleration. Quaternary Science Reviews, 28(17-18), 1801-1808. 46. Kirwan, M.L., Guntenspergen, G.R., and Morris, J.T. (2009). Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Global change biology, 15(8), 1982-1989. 47. Kirwan, M.L., Guntenspergen, G.R., D''Alpaos, A., Morris, J.T., Mudd, S.M., and Temmerman, S. (2010). Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 37(23). 48. Komiyama, A., Ong, J.E., and Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128-137. 49. Kuijper, C., Cornelisse, J.M., and Winterwerp, J.C. (1989). Research on erosive properties of cohesive sediments. Journal of Geophysical Research: Oceans, 94(C10), 14341-14350. 50. LeBlond, P.H. (1978). On tidal propagation in shallow rivers. Journal of Geophysical Research: Oceans, 83(C9), 4717-4721. 51. Lee, H.Y., and Shih, S.S., (2003). The environment characteristic investigations and the researches of operating tactics in Guandu Natural Reserve (II). No. 486 Report of Hydrotech Research Institute, National Taiwan University, Chi-Seng Water Management Research and Development Foundation, Taiwan. 52. Lee, H.Y., and Shih, S.S. (2004). Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland. Ecological Engineering, 23(2), 85-94. 53. Leonard, L.A., and Luther, M.E. (1995). Flow hydrodynamics in tidal marsh canopies. Limnology and oceanography, 40(8), 1474-1484. 54. Leonard, L.A., and Reed, D.J. (2002). Hydrodynamics and sediment transport through tidal marsh canopies. Journal of Coastal Research, 36(sp1), 459-469. 55. Li, R.M., and Shen, H.W. (1973). Effect of tall vegetations on flow and sediment. Journal of the Hydraulics Division, 99(hy5). 56. Li, S.B., Chen, P.H., Huang, J.S., Hsueh, M.L., Hsieh, L.Y., Lee, C.L., and Lin, H.J. (2018). Factors regulating carbon sinks in mangrove ecosystems. Global change biology, 24(9), 4195-4210. 57. Long, C. E., Wiberg, P.L., and Nowell, A.R. (1993). Evaluation of von Karman''s constant from integral flow parameters. Journal of Hydraulic Engineering, 119(10), 1182-1190. 58. López, F., and García, M.H. (2001). Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. Journal of Hydraulic Engineering, 127(5), 392-402. 59. Marani, M., Lanzoni, S., Zandolin, D., Seminara, G., and Rinaldo, A. (2002). Tidal meanders. Water Resources Research, 38(11), 1225-1233. 60. Marani, M., Ursino, N., and Silvestri, S. (2005). Reply to comment by Alicia M. Wilson and Leonard Robert Gardner on “Subsurface flow and vegetation patterns in tidal environments”. Water Resources Research, 41(7). 61. Marani, M., Silvestri, S., Belluco, E., Ursino, N., Comerlati, A., Tosatto, O., and Putti, M. (2006a). Spatial organization and ecohydrological interactions in oxygen‐limited vegetation ecosystems. Water Resources Research, 42(6). 62. Maris, T., Cox, T., Temmerman, S., De Vleeschauwer, P., Van Damme, S., De Mulder, T., Van den Bergh, E., Meire, P. (2007). Tuning the tide: creating ecological conditions for tidal marsh development in a flood control area. Hydrobiologia, 588(1), 31-43. 63. Morris, J.T., and Haskin, B. (1990). A 5‐yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology, 71(6), 2209-2217. 64. Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., and Cahoon, D.R. (2002). Responses of coastal wetlands to rising sea level. Ecology, 83(10), 2869-2877. 65. Mudd, S.M., Fagherazzi, S., Morris, J.T., and Furbish, D.J. (2004). Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. The Ecogeomorphology of Tidal Marshes, Coastal Estuarine Stud, 59, 165-187. 66. Nepf, H.M. (1999). Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research, 35(2), 479-489. 67. Nezu, I., and Rodi, W. (1986). Open-channel flow measurements with a laser Doppler anemometer. Journal of Hydraulic Engineering, 112(5), 335-355. 68. Nikuradse, J. (1933). Strömungsgesetze in rauhen Rohren. VDI-Verlag. 69. O''Connor, D.J. (1995). Inner region of smooth pipes and open channels. Journal of Hydraulic Engineering, 121(7), 555-560. 70. Odum, W.E. (1984). Dual-gradient concept of detritus transport and processing in estuaries. Bulletin of Marine Science, 35(3), 510-521. 71. Palmer, M.R., Nepf, H.M., Pettersson, T.J., and Ackerman, J.D. (2004). Observations of particle capture on a cylindrical collector: Implications for particle accumulation and removal in aquatic systems. Limnology and oceanography, 49(1), 76-85. 72. Parchure, T.M., and Mehta, A.J. (1985). Erosion of soft cohesive sediment deposits. Journal of Hydraulic Engineering, 111(10), 1308-1326. 73. Pethick, J.S. (1980). Velocity surges and asymmetry in tidal channels. Estuarine and Coastal Marine Science, 11(3), 331-345. 74. Pethick, J.S. (1992). Saltmarsh geomorphology. Saltmarshes: morphodynamics, conservation and engineering significance, 41-62. 75. Pizzuto, J.E. (1990). Numerical simulation of gravel river widening. Water Resources Research, 26(9), 1971-1980. 76. Prandtl, L., and Noether, F. (1926). Zuschriften an den Herausgeber. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 6(4), 339-340. 77. Randerson, P.F. (1979). A simulation model of salt-marsh development and plant ecology. Estuarine and coastal land reclamation and water storage, 48-67. 78. Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W.E. (1999a). Tidal networks: 2. Watershed delineation and comparative network morphology. Water Resources Research, 35(12), 3905-3917. 79. Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W.E. (1999b). Tidal networks: 3. Landscape‐forming discharges and studies in empirical geomorphic relationships. Water Resources Research, 35(12), 3919-3929. 80. Rodi, W. (1993). Turbulence models and their application in hydraulics, IAHR Monograph. Balkema, Rotterdam, Brookfield. 81. Rozas, L.P., McIvor, C.C., and Odum, W.E. (1988). Intertidal rivulets and creekbanks: corridors between tidal creeks and marshes. Marine ecology progress series. Oldendorf, 47(3), 303-307. 82. Sanford, L.P., and Halka, J.P. (1993). Assessing the paradigm of mutually exclusive erosion and deposition of mud, with examples from upper Chesapeake Bay. Marine Geology, 114(1-2), 37-57. 83. Savenije, H. (2001). A simple analytical expression to describe tidal damping or amplification. Journal of Hydrology, 243(3-4), 205-215. 84. Shanks, A.L., and Trent, J.D. (1980). Marine snow: sinking rates and potential role in vertical flux. Deep Sea Research Part A. Oceanographic Research Papers, 27(2), 137-143. 85. Shih, S.S., Hsieh, H.L., Chen, P.H., Chen, C.P., and Lin, H.J. (2015a). Tradeoffs between reducing flood risks and storing carbon stocks in mangroves. Ocean and Coastal Management, 105, 116-126. 86. Shih, S.S., Hwang, G.W., Hsieh, H.L., Chen, C.P., and Chen, Y.C. (2015b). Geomorphologic dynamics and maintenance following mudflat, creek and pond formation in an estuarine mangrove wetland, Ecological Engineering. 82, 590-595. 87. Simenstad, C. A. (1983). Ecology of estuarine channels of the Pacific Northwest coast: a community profile. Retrieved from 88. Teal, J.M. (1962). Energy flow in the salt marsh ecosystem of Georgia. Ecology, 43(4), 614-624. 89. Teuchies, J., Jacobs, S., Oosterlee, L., Bervoets, L., and Meire, P. (2013). Role of plants in metal cycling in a tidal wetland: Implications for phytoremidiation. Science of The Total Environment, 445, 146-154. 90. Thorn, M.F.C., and Parsons, J.G. (1979). Properties of Belawan mud. Report No. EX, 880. 91. Vandenbruwaene, W., Meire, P., and Temmerman, S. (2012). Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology, 151, 114-125. 92. Wang, M., Zhang, J., Tu, Z., Gao, X., and Wang, W. (2010). Maintenance of estuarine water quality by mangroves occurs during flood periods: a case study of a subtropical mangrove wetland. Marine Pollution Bulletin, 60(11), 2154-2160. 93. Whitehouse, U.G., Jeffrey, L.M., and Debbrecht, J.D. (1960). Differential settling tendencies of clay minerals in saline waters. Clays and Clay Minerals, 8, 1-79. 94. Wood, R., and Widdows, J. (2002). A model of sediment transport over an intertidal transect, comparing the influences of biological and physical factors. Limnology and oceanography, 47(3), 848-855. 95. Yalin, M.S. (1992). River Mechanics. Pergamon Press. 96. Yang, S.C., Shih, S.S., Hwang, G.W., Adams, J.B., Lee, H.Y., and Chen, C.P. (2013). The salinity gradient influences on the inundation tolerance thresholds of mangrove forests. Ecological engineering, 51, 59-65. 97. 林幸助、施上粟(2015)。石門水庫排洪減淤操作對下游河道生態影響及改善方案研究。行政院經濟部專題研究成果報告(編號:WRANB102C65)。臺北市:經濟部。 98. 施上粟、袁孝維、黃國文、盧道杰、洪崇航(2011)。新北市挖子尾自然保留區100年度生態資源監測作業委託服務。新北市挖子尾自然保留區100年度生態資源監測作業委託服務成果報告(編號:AGR1000520)。新北市:農業局。 99. 施上粟、黃國文、黃守忠(2015)。102年薪北市挖子尾自然保留區生態資源監測工作(後續擴充案)。新北市:農業局。 100. 經濟部水利署(2008)。中華民國九十六年臺灣水文年報。行政院經濟部水利署。
|