(3.235.108.188) 您好!臺灣時間:2021/02/27 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭庭宇
研究生(外文):Ting-Yu Cheng
論文名稱:潮溝與潮灘地形地貌演變之模擬
論文名稱(外文):Simulations for Geomorphologic Dynamics of Tidal Creeks and Mudflats
指導教授:施上粟施上粟引用關係
指導教授(外文):Shang-Shu Shih
口試委員:俞維昇黃國文
口試委員(外文):Gwo-Wen Hwang
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:124
中文關鍵詞:潮溝紅樹林地貌水動力泥砂河口濕地
DOI:10.6342/NTU201903339
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
河口濕地是全世界最高生產力的生態系統之一,也是許多生物賴以維生的重要棲地。但因其為處河川下游,濕地生態系統品質及棲地樣貌同時受到上游河川及潮汐影響。濕地內重要地景如潮溝、潮灘之形貌變化直接影響河口植物競爭、棲地條件、物質能量傳輸效率,故瞭解潮溝潮灘的形貌演化動態及與植物的互動機制,有助於建立河口濕地的經營管理策略。臺灣北部淡水河流域的紅樹林濕地提供豐富的營養鹽類吸引水陸生動物覓食,並成為河口生態系中重要的棲息環境之一。但紅樹林過度的擴張,將影響水理以及泥砂運移之特性,逐漸使濕地陸域化,也造成紅樹林濕地環境單一化。過去曾為了增加濕地的生物多樣性,藉由適當地人為疏伐與營造潮溝與潮灘地之工法維持紅樹林濕地地貌。然而,紅樹林濕地內的潮溝潮灘地貌之變化機制尚未釐清,因此本研究建立垂直二維潮溝潮灘演化模式,且考慮紅樹林與水理及泥砂的交互作用,並以淡水河社子島紅樹林濕地為主要研究地點。本研究發展之河口濕地潮溝潮灘演化模式包含三個模組:水理模組、泥砂模組、植生模組,「植生模組」在本研究中主要針對水筆仔紅樹林(Kandelia obovata),但可擴充或替換為草澤植物或其他紅樹林植物;本模式以Exner equation作為主要的統御方程式,以Fourth Order Runge-Kutta數值方法解算,用以預測不同邊界條件、不同參數條件或不同植生情況下的潮溝及周邊潮灘形貌變化。模式的水位邊界條件是藉由SRH-2D模擬社子島水位變化作為模式的邊界入流條件,模擬平常潮汐以及颱洪時期水動力對於紅樹林濕地地貌演變過程。研究發現潮汐水位對於濕地地貌泥砂沉積速率約為0.0046~0.0108 m/month之間,颱洪時期的泥砂沉積速率約為0.01~0.024 m/day,由此可知河川在颱洪時期夾帶的大量泥砂可造成河口濕地潮溝潮灘短期內形貌大幅度變化。模式的驗證結果顯示此模式現階段已具有預測能力,可反應整體地貌的垂向抬升,但尚無法有效的模擬潮溝最低點橫向位置的變化。本研究也針對模式中泥砂參數與植生參數進行敏感度分析,發現孔隙率的改變將影響整體橫斷面地貌的變化,而侵蝕常數越大則潮溝的垂向侵蝕現象越明顯,有無植生的改變使潮灘的泥沙沉積量增加。本研究也嘗試分析模式的應用價值,假想案例為於社子島引進控制與減少潮差的工法(controlled reduced tidal, CRT),模擬長時間有無應用CRT工法控制潮汐水位情況下,整體潮溝橫斷面之演變,結果顯示若無應用CRT工法,經過五年後潮溝將逐漸淤積成為潮灘,而應用CRT工法後,經過五年依然能維持潮溝與潮灘地形貌及功能,主要原因除了CRT可藉由設計堤防上下開口位置而控制潮差外,也能在洪汛時期控制進入濕地的泥砂量,因而可讓潮溝形貌維持較久的時間。本研究所發展的潮溝演化模式能依據不同地區的水位條件、泥砂參數條件以及植生參數變化,模擬潮溝地形長時間之變化,亦能展示水理對於地貌之影響並計算泥沙沉積速率,預期未來有機會作為潮溝與潮灘營造工程效益評估的有效工具。
Tidal creeks and mudflats serve as critical habitat areas for shorebirds and fish in subtropical coastal wetlands. Construction efforts for mangrove deforestation, mudflat maintenance, and tidal creek construction, can promote a greater diversity of habitat types and attract shorebirds. The study aims to develop an evaluation model for quantifying the geomorphological changes of tidal creeks and mudflat in coastal wetlands. This study established a vertical 2D mathematical model using the conservation equation and the Exner equation to simulate the evolution of a tidal creek. Variant plant biomass was also incorporated in the model to consider the growth effects of mangroves on the deposition rate of the marsh platform. The boundary conditions of the model were input through a hydrodynamic package, SRH-2D. Simulating geomorphology of wetland under tidal period and typhoon period, it indicated that sedimentation rate in the tidal period ranges from 0.0046 m/month to0.0108 m/month and sedimentation rate in the typhoon period is between 0.01 m/day and 0.024 m/day. A large amount of sediment entrained into the wetland during the typhoon period can cause a substantial change in the tidal creeks of the tidal flats. Sensitivity analysis of the sediment parameters points out that the changes in porosity affect overall cross-sectional geomorphology, and erosion rate affect tidal creek incision. The emergence of vegetation increases deposition in the tidal marsh. Model verification showed that the model is reliable on the prediction of the amount of the deposition but fails on forecasting the horizontal position of the thalweg. The model application on CRT scenarios reveals that the CRT could sustain the geomorphology of the tidal creek and tidal marsh for a more extended period, indicating a useful alternative for constructing and maintaining a riverine wetland. Tidal creek evolution model was proved that it was capable of simulating long-term geomorphologic dynamics based on hydrodynamic parameters, sediment parameters, and vegetation parameters in different regions. The model is thus expected that there will be opportunities in the future to provide as a quantitative tool for evaluating the benefits of tidal creeks and tidal flats.
口試委員會審定書 #
誌謝 i
中文摘要 ii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xiii
符號表 xiv
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究內容 3
第二章 文獻回顧 4
2.1 河口濕地形貌演化機制發展過程 4
2.2 Hood潮溝理論發展概述 5
2.3 Kirwan潮溝理論發展概述 11
2.4 D’Alpaos潮溝理論發展概述 14
第三章 研究方法 18
3.1 研究區域 18
3.2 模式理論 19
3.2.1 水理模組 21
3.2.2 泥砂模組 26
3.2.3 植生模組 31
3.3 數值方法 36
3.4 SRH-2D模式理論 38
第四章 結果與討論 40
4.1 SRH-2D水理模式 40
4.1.1 SRH-2D模式 41
4.2 演化模式 46
4.2.1 水理邊界條件 46
4.2.2 泥砂邊界條件 48
4.2.3 初始地形條件 50
4.2.4 演化模式參數 52
4.2.5 演化模式校驗 53
4.3 演化模式敏感度分析 54
4.3.1 泥砂參數 54
4.3.2 植物參數 61
4.4 演化模式驗證 65
4.5 演化模式結果 68
4.6 演化模式應用 103
第五章 結論與建議 115
5.1 結論 115
5.2 建議 116
參考文獻 118
1. Ariathurai, R., and Arulanandan, K. (1978). Erosion rates of cohesive soils. Journal of the hydraulics division, 104(2), 279-283.
2. Beauchard, O., Jacobs, S., Cox, T.J., Maris, T., Vrebos, D., Van Braeckel, A., and Meire, P. (2011). A new technique for tidal habitat restoration: Evaluation of its hydrological potentials. Ecological Engineering, 37(11), 1849-1858.
3. Beauchard, O., Jacobs, S., Ysebaert, T., and Meire, P. (2013). Avian response to tidal freshwater habitat creation by controlled reduced tide system. Estuarine, Coastal and Shelf Science, 131, 12-23.
4. Bishop, J.K., Ketten, D.R., and Edmond, J.M. (1978). The chemistry, biology and vertical flux of particulate matter from the upper 400 m of the Cape Basin in the southeast Atlantic Ocean. Deep Sea Research, 25(12), 1121-1161.
5. Blum, L.K., and Christian, R.R. (2004). Belowground production and decomposition along a tidal gradient in a Virginia salt marsh. The Ecogeomorphology of Tidal Marshes, 59, 47-73.
6. Boon III, J.D. (1975). Tidal discharge asymmetry in a salt marsh drainage system 1, 2. Limnology and Oceanography, 20(1), 71-80.
7. Carniello, L., Defina, A., Fagherazzi, S., and D''Alpaos, L. (2005). A combined wind wave–tidal model for the Venice lagoon, Italy. Journal of Geophysical Research: Earth Surface, 110(F4).
8. Chow, V.T., (1973). Open-Channel Hydraulics, MacGraw Hill International Editions.
9. Cole, P., and Miles, G.V. (1983). Two-dimensional model of mud transport. Journal of Hydraulic Engineering, 109(1), 1-12.
10. Collins, M.B., Ke, X., and Gao, S. (1998). Tidally-induced flow structure over intertidal flats. Estuarine, Coastal and Shelf Science, 46(2), 233-250.
11. Cox, T., Maris, T., De Vleeschauwer, P., De Mulder, T., Soetaert, K., and Meire, P. (2006). Flood control areas as an opportunity to restore estuarine habitat. Ecological Engineering, 28(1), 55-63.
12. D''Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S., and Rinaldo, A. (2005). Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research: Earth Surface, 110(F2).
13. D''Alpaos, A., Lanzoni, S., Mudd, S. M., and Fagherazzi, S. (2006). Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuarine, Coastal and Shelf Science, 69(3-4), 311-324.
14. D''Alpaos, A., Lanzoni, S., Marani, M., Bonometto, A., Cecconi, G., and Rinaldo, A. (2007a). Spontaneous tidal network formation within a constructed salt marsh: Observations and morphodynamic modelling. Geomorphology, 91(3-4), 186-197.
15. D''Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. (2007b). Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research: Earth Surface, 112(F1).
16. D''Alpaos, A., Lanzoni, S., Marani, M., and Rinaldo, A. (2010). On the tidal prism–channel area relations. Journal of Geophysical Research: Earth Surface, 115(F1).
17. D''Alpaos, A. (2011). The mutual influence of biotic and abiotic components on the long-term ecomorphodynamic evolution of salt-marsh ecosystems. Geomorphology, 126(3-4), 269-278.
18. Day, J.H., Chadwick, H., Day Jr, J.W., Hall, C.A., Kemp, W.M., Kemp, W.M., and Yáñez-Arancibia, A. (1989). Estuarine ecology: John Wiley and Sons.
19. Donato, D.C., Kauffman, J.B., Mackenzie, R.A., Ainsworth, A., and Pfleeger, A.Z. (2012). Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. Journal of Environmental Management, 97, 89-96.
20. Einstein, H.A., and Krone, R.B. (1962). Experiments to determine modes of cohesive sediment transport in salt water. Journal of Geophysical Research, 67(4), 1451-1461.
21. Fagherazzi, S., and Furbish, D.J. (2001). On the shape and widening of salt marsh creeks. Journal of Geophysical Research: Oceans, 106(C1), 991-1003.
22. Fagherazzi, S., Kirwan, M.L., Mudd, S.M., Guntenspergen, G.R., Temmerman, S., D''Alpaos, A., Koppel, J., Rybczyk, J.M., Reyes, E., Craft, C., and Clough, J. (2012). Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics, 50(1).
23. French, J.R., and Spencer, T. (1993). Dynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk, UK. Marine Geology, 110(3-4), 315-331.
24. Froneman, A., Mangnall, M.J., Little, R.M., and Crowe, T.M. (2001). Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa. Biodiversity and Conservation, 10(2), 251-270.
25. Garofalo, D. (1980). The influence of wetland vegetation on tidal stream channel migration and morphology. Estuaries, 3(4), 258-270.
26. Gibbs, R.J. (1985). Estuarine flocs: their size, settling velocity and density. Journal of Geophysical Research: Oceans, 90(C2), 3249-3251.
27. Gibbs, R.J., Konwar, L., and Terchunian, A. (1983). Size of flocs suspended in Delaware Bay. Canadian Journal of Fisheries and Aquatic Sciences, 40(S1), s102-s104.
28. Hood, W. G. (2002a). Landscape allometry: From tidal channel hydraulic geometry to benthic ecology. Canadian Journal of Fisheries and Aquatic Sciences, 59(8), 1418-1427.
29. Hood, W.G. (2002b). Application of landscape allometry to restoration of tidal channels. Restoration Ecology, 10(2), 213-222.
30. Hood, W.G. (2004). Indirect environmental effects of dikes on estuarine tidal channels: thinking outside of the dike for habitat restoration and monitoring. Estuaries, 27(2), 273-282.
31. Hood, W.G. (2006). Indirect environmental effects of dikes on estuarine tidal channels: thinking outside of the dike for habitat restoration and monitoring. Estuaries, 27(2), 273-282.
32. Hood, W.G. (2007). Scaling tidal channel geometry with marsh island area: A tool for habitat restoration, linked to channel formation process. Water Resources Research, 43(3).
33. Hood, W.G. (2010). Tidal channel meander formation by depositional rather than erosional processes: examples from the prograding Skagit River Delta (Washington, USA). Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 35(3), 319-330.
34. Hood, W.G. (2012). Beaver in tidal marshes: dam effects on low-tide channel pools and fish use of estuarine habitat. Wetlands, 32(3), 401-410.
35. Hood, W.G. (2015). Geographic variation in Puget Sound tidal channel planform geometry. Geomorphology, 230, 98-108.
36. Hoque, A., Sharma, S., and Hagihara, A. (2011). Above and belowground carbon acquisition of mangrove Kandelia obovata trees in Manko wetland, Okinawa, Japan. International Journal of Environment, 1(1), 7-13.
37. Huang, S.C., Shih, S.S., Ho, Y.S., Chen, C.P., and Hsieh, H.L. (2012). Restoration of shorebird‐roosting mudflats by partial removal of estuarine mangroves in northern Taiwan. Restoration Ecology, 20(1), 76-84.
38. Jacobs, S., Beauchard, O., Struyf, E., Cox, T., Maris, T., and Meire, P. (2009). Restoration of tidal freshwater vegetation using controlled reduced tide (CRT) along the Schelde Estuary (Belgium). Estuarine, Coastal and Shelf Science, 85(3), 368-376.
39. Kandiah, A., and Arulanandan, K. (1974). Hydraulic erosion of cohesive soils. Transportation Research Record, 497, 60-68.
40. Khan, M. N. I., Suwa, R., and Hagihara, A. (2005). Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candel (L.) Druce trees in the Manko Wetland, Okinawa Island, Japan. Trees, 19(3), 266-272.
41. Khan, M.N.I., Suwa, R., and Hagihara, A. (2009). Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management, 17(6), 585-599.
42. Kirwan, M.L., and Murray, A.B. (2007). A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences, 104(15), 6118-6122.
43. Kirwan, M.L., and Murray, A.B. (2008a). Tidal marshes as disequilibrium landscapes? Lags between morphology and Holocene sea level change. Geophysical Research Letters, 35(24).
44. Kirwan, M.L., and Murray, A.B. (2008b). Ecological and morphological response of brackish tidal marshland to the next century of sea level rise: Westham Island, British Columbia. Global and Planetary Change, 60(3-4), 471-486.
45. Kirwan, M., and Temmerman, S. (2009a). Coastal marsh response to historical and future sea-level acceleration. Quaternary Science Reviews, 28(17-18), 1801-1808.
46. Kirwan, M.L., Guntenspergen, G.R., and Morris, J.T. (2009). Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Global change biology, 15(8), 1982-1989.
47. Kirwan, M.L., Guntenspergen, G.R., D''Alpaos, A., Morris, J.T., Mudd, S.M., and Temmerman, S. (2010). Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 37(23).
48. Komiyama, A., Ong, J.E., and Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128-137.
49. Kuijper, C., Cornelisse, J.M., and Winterwerp, J.C. (1989). Research on erosive properties of cohesive sediments. Journal of Geophysical Research: Oceans, 94(C10), 14341-14350.
50. LeBlond, P.H. (1978). On tidal propagation in shallow rivers. Journal of Geophysical Research: Oceans, 83(C9), 4717-4721.
51. Lee, H.Y., and Shih, S.S., (2003). The environment characteristic investigations and the researches of operating tactics in Guandu Natural Reserve (II). No. 486 Report of Hydrotech Research Institute, National Taiwan University, Chi-Seng Water Management Research and Development Foundation, Taiwan.
52. Lee, H.Y., and Shih, S.S. (2004). Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland. Ecological Engineering, 23(2), 85-94.
53. Leonard, L.A., and Luther, M.E. (1995). Flow hydrodynamics in tidal marsh canopies. Limnology and oceanography, 40(8), 1474-1484.
54. Leonard, L.A., and Reed, D.J. (2002). Hydrodynamics and sediment transport through tidal marsh canopies. Journal of Coastal Research, 36(sp1), 459-469.
55. Li, R.M., and Shen, H.W. (1973). Effect of tall vegetations on flow and sediment. Journal of the Hydraulics Division, 99(hy5).
56. Li, S.B., Chen, P.H., Huang, J.S., Hsueh, M.L., Hsieh, L.Y., Lee, C.L., and Lin, H.J. (2018). Factors regulating carbon sinks in mangrove ecosystems. Global change biology, 24(9), 4195-4210.
57. Long, C. E., Wiberg, P.L., and Nowell, A.R. (1993). Evaluation of von Karman''s constant from integral flow parameters. Journal of Hydraulic Engineering, 119(10), 1182-1190.
58. López, F., and García, M.H. (2001). Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. Journal of Hydraulic Engineering, 127(5), 392-402.
59. Marani, M., Lanzoni, S., Zandolin, D., Seminara, G., and Rinaldo, A. (2002). Tidal meanders. Water Resources Research, 38(11), 1225-1233.
60. Marani, M., Ursino, N., and Silvestri, S. (2005). Reply to comment by Alicia M. Wilson and Leonard Robert Gardner on “Subsurface flow and vegetation patterns in tidal environments”. Water Resources Research, 41(7).
61. Marani, M., Silvestri, S., Belluco, E., Ursino, N., Comerlati, A., Tosatto, O., and Putti, M. (2006a). Spatial organization and ecohydrological interactions in oxygen‐limited vegetation ecosystems. Water Resources Research, 42(6).
62. Maris, T., Cox, T., Temmerman, S., De Vleeschauwer, P., Van Damme, S., De Mulder, T., Van den Bergh, E., Meire, P. (2007). Tuning the tide: creating ecological conditions for tidal marsh development in a flood control area. Hydrobiologia, 588(1), 31-43.
63. Morris, J.T., and Haskin, B. (1990). A 5‐yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology, 71(6), 2209-2217.
64. Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., and Cahoon, D.R. (2002). Responses of coastal wetlands to rising sea level. Ecology, 83(10), 2869-2877.
65. Mudd, S.M., Fagherazzi, S., Morris, J.T., and Furbish, D.J. (2004). Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. The Ecogeomorphology of Tidal Marshes, Coastal Estuarine Stud, 59, 165-187.
66. Nepf, H.M. (1999). Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resources Research, 35(2), 479-489.
67. Nezu, I., and Rodi, W. (1986). Open-channel flow measurements with a laser Doppler anemometer. Journal of Hydraulic Engineering, 112(5), 335-355.
68. Nikuradse, J. (1933). Strömungsgesetze in rauhen Rohren. VDI-Verlag.
69. O''Connor, D.J. (1995). Inner region of smooth pipes and open channels. Journal of Hydraulic Engineering, 121(7), 555-560.
70. Odum, W.E. (1984). Dual-gradient concept of detritus transport and processing in estuaries. Bulletin of Marine Science, 35(3), 510-521.
71. Palmer, M.R., Nepf, H.M., Pettersson, T.J., and Ackerman, J.D. (2004). Observations of particle capture on a cylindrical collector: Implications for particle accumulation and removal in aquatic systems. Limnology and oceanography, 49(1), 76-85.
72. Parchure, T.M., and Mehta, A.J. (1985). Erosion of soft cohesive sediment deposits. Journal of Hydraulic Engineering, 111(10), 1308-1326.
73. Pethick, J.S. (1980). Velocity surges and asymmetry in tidal channels. Estuarine and Coastal Marine Science, 11(3), 331-345.
74. Pethick, J.S. (1992). Saltmarsh geomorphology. Saltmarshes: morphodynamics, conservation and engineering significance, 41-62.
75. Pizzuto, J.E. (1990). Numerical simulation of gravel river widening. Water Resources Research, 26(9), 1971-1980.
76. Prandtl, L., and Noether, F. (1926). Zuschriften an den Herausgeber. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 6(4), 339-340.
77. Randerson, P.F. (1979). A simulation model of salt-marsh development and plant ecology. Estuarine and coastal land reclamation and water storage, 48-67.
78. Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W.E. (1999a). Tidal networks: 2. Watershed delineation and comparative network morphology. Water Resources Research, 35(12), 3905-3917.
79. Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., and Dietrich, W.E. (1999b). Tidal networks: 3. Landscape‐forming discharges and studies in empirical geomorphic relationships. Water Resources Research, 35(12), 3919-3929.
80. Rodi, W. (1993). Turbulence models and their application in hydraulics, IAHR Monograph. Balkema, Rotterdam, Brookfield.
81. Rozas, L.P., McIvor, C.C., and Odum, W.E. (1988). Intertidal rivulets and creekbanks: corridors between tidal creeks and marshes. Marine ecology progress series. Oldendorf, 47(3), 303-307.
82. Sanford, L.P., and Halka, J.P. (1993). Assessing the paradigm of mutually exclusive erosion and deposition of mud, with examples from upper Chesapeake Bay. Marine Geology, 114(1-2), 37-57.
83. Savenije, H. (2001). A simple analytical expression to describe tidal damping or amplification. Journal of Hydrology, 243(3-4), 205-215.
84. Shanks, A.L., and Trent, J.D. (1980). Marine snow: sinking rates and potential role in vertical flux. Deep Sea Research Part A. Oceanographic Research Papers, 27(2), 137-143.
85. Shih, S.S., Hsieh, H.L., Chen, P.H., Chen, C.P., and Lin, H.J. (2015a). Tradeoffs between reducing flood risks and storing carbon stocks in mangroves. Ocean and Coastal Management, 105, 116-126.
86. Shih, S.S., Hwang, G.W., Hsieh, H.L., Chen, C.P., and Chen, Y.C. (2015b). Geomorphologic dynamics and maintenance following mudflat, creek and pond formation in an estuarine mangrove wetland, Ecological Engineering. 82, 590-595.
87. Simenstad, C. A. (1983). Ecology of estuarine channels of the Pacific Northwest coast: a community profile. Retrieved from
88. Teal, J.M. (1962). Energy flow in the salt marsh ecosystem of Georgia. Ecology, 43(4), 614-624.
89. Teuchies, J., Jacobs, S., Oosterlee, L., Bervoets, L., and Meire, P. (2013). Role of plants in metal cycling in a tidal wetland: Implications for phytoremidiation. Science of The Total Environment, 445, 146-154.
90. Thorn, M.F.C., and Parsons, J.G. (1979). Properties of Belawan mud. Report No. EX, 880.
91. Vandenbruwaene, W., Meire, P., and Temmerman, S. (2012). Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology, 151, 114-125.
92. Wang, M., Zhang, J., Tu, Z., Gao, X., and Wang, W. (2010). Maintenance of estuarine water quality by mangroves occurs during flood periods: a case study of a subtropical mangrove wetland. Marine Pollution Bulletin, 60(11), 2154-2160.
93. Whitehouse, U.G., Jeffrey, L.M., and Debbrecht, J.D. (1960). Differential settling tendencies of clay minerals in saline waters. Clays and Clay Minerals, 8, 1-79.
94. Wood, R., and Widdows, J. (2002). A model of sediment transport over an intertidal transect, comparing the influences of biological and physical factors. Limnology and oceanography, 47(3), 848-855.
95. Yalin, M.S. (1992). River Mechanics. Pergamon Press.
96. Yang, S.C., Shih, S.S., Hwang, G.W., Adams, J.B., Lee, H.Y., and Chen, C.P. (2013). The salinity gradient influences on the inundation tolerance thresholds of mangrove forests. Ecological engineering, 51, 59-65.
97. 林幸助、施上粟(2015)。石門水庫排洪減淤操作對下游河道生態影響及改善方案研究。行政院經濟部專題研究成果報告(編號:WRANB102C65)。臺北市:經濟部。
98. 施上粟、袁孝維、黃國文、盧道杰、洪崇航(2011)。新北市挖子尾自然保留區100年度生態資源監測作業委託服務。新北市挖子尾自然保留區100年度生態資源監測作業委託服務成果報告(編號:AGR1000520)。新北市:農業局。
99. 施上粟、黃國文、黃守忠(2015)。102年薪北市挖子尾自然保留區生態資源監測工作(後續擴充案)。新北市:農業局。
100. 經濟部水利署(2008)。中華民國九十六年臺灣水文年報。行政院經濟部水利署。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔