(44.192.112.123) 您好!臺灣時間:2021/03/06 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林聖凱
研究生(外文):Shen-Kai Lin
論文名稱:台灣地區巨積混凝土配比之早期溫度場模擬與分析
論文名稱(外文):Simulation and Analysis of Early Temperature Field of Mass Concrete Mix Design in Taiwan
指導教授:詹穎雯詹穎雯引用關係
指導教授(外文):Yin-Wen Chan
口試委員:楊仲家廖文正
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:264
中文關鍵詞:巨積混凝土有限元素分析成熟度法水化度台灣巨積混凝土配比ANSYS
DOI:10.6342/NTU201903024
相關次數:
  • 被引用被引用:1
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文使用 ANSYS 建立了一套以有限元素法模擬巨積混凝土早齡期溫度場的方法。由於國內既往之巨積混凝土工程往往忽略最高心溫與心表溫差對巨積混凝土構件於養護初期以及長齡期下的劣化影響,或是常以分層施工等方式避免溫度裂縫的產生,但卻衍伸出更多力學性質改變的問題,因此應該回歸至巨積混凝土的配比上重新檢討,從降低配比的水化熱出發,始可有效解決巨積混凝土可能產生之問題。
透過絕熱溫升試驗結果來預測混凝土早期水化反應速率,並以成熟度法推導出可同時考慮齡期及溫度效應之混凝土單位體積生熱率,將其設定為模型中的可隨齡期及溫度修正的熱荷載,另外由於巨積混凝土構件內各部分水化程度並不均勻,所以將混凝土的熱傳性質設定為水化度的函數,在每一步階重新計算水化度,以得到更接近真實混凝土水化反應的模型。
以長寬高為 4m×3m×3m 之實尺寸現地試體作為模擬對象,比對模擬結果與監測結果後,確認模型的正確性,再代入透過試驗及計算得到台灣常見巨積混凝土配比之參數進行模擬與分析,建立一個可供工程師設計巨積混凝土配比的參考資料表。
In this paper, ANSYS is used to establish a method for simulating the early age temperature field of the mass concrete by finite element method. Due to the fact that the previous mass concrete projects in Taiwan usually ignore the deterioration effect of the maximum center temperature and the center-surface temperature difference on the mass concrete members during early-curing age and long-term period, they often avoid the occurrence of temperature cracks by layering construction, etc. However, there are more problems in the change of mechanical properties. Therefore, it should be re-examined to the concrete design. Starting from the reduction of hydration heat of the concrete design, it can effectively solve the issues that may occur in the mass concrete.
The early hydration reaction rate of concrete is predicted by the adiabatic temperature rise test results, and the heat generation rate of the concrete is derived by the maturity method which can simultaneously consider the age and temperature effect, which is set as age-and-temperature-corrected thermal load in the model. Besides, the hydration degree of each part of the mass concrete members is not uniform, so all the thermal properties of the concrete are set as a function of the degree of hydration, and the degree of hydration will be recalculated at each time step to obtain a model that is closer to the real concrete hydration behavior.
The test piece with the size of 4m×3m×3m is used as the simulation object. After comparing the simulation and measurement results, the correctness of the model is confirmed, and then the parameters of the common concrete designs in Taiwan obtained through the tests and calculations will be input to the model for the simulation and analysis. Therefore, a reference sheet for engineers to design mass concrete will be established.
誌謝 I
摘要 II
ABSTRACT III
表目錄 V
圖目錄 V
第一章、 緒論 14
1.1. 研究動機 14
1.2. 研究目的 15
1.3. 研究範圍與內容 16
第二章、 文獻回顧 17
2.1. 材料介紹 17
2.1.1 卜特蘭水泥 17
2.1.2 卜特蘭水泥的組成 18
2.2. 卜作嵐材料 19
2.2.1 水淬高爐爐碴粉 20
2.2.2 飛灰 21
2.3. 巨積混凝土特性 21
2.3.1 巨積混凝土定義 24
2.3.2 巨積混凝土熱應力理論 25
2.3.3 巨積混凝土熱應力種類 26
2.4. 混凝土水化熱 27
2.4.1 影響混凝土水化熱之膠結材料因子 27
2.4.2 影響混凝土水化熱之膠結材料細度因子 35
2.4.3 影響混凝土水化熱之膠結材料用量影響因子 36
2.4.4 影響混凝土水化熱之水膠比影響因子 38
2.4.5 影響混凝土水化熱之新拌溫度影響因子 39
2.5. 混凝土水化度 41
2.5.1 水化度定義 41
2.5.2 水化度之量測方法 42
2.5.3 極限水化度 42
2.5.4 成熟度法(Maturity Method) 45
2.5.5 計算成熟度 47
2.5.6 表徵活化能 48
2.6. 混凝土熱傳導性質 51
2.6.1 熱傳導係數 51
2.6.2 比熱 55
2.6.3 硬固中混凝土熱學性質 55
2.7. 巨積混凝土溫升預測模式 56
2.7.1 Schmidt Method 56
2.7.2 PCA Method 60
2.7.3 Graphical Method of ACI 207.2R 61
第三章、 混凝土性質與試驗 64
3.1. 膠結料之物化性質 64
3.2. 混凝土配比設計 65
3.3. 混凝土新拌性質試驗 67
3.3.1 新拌性質試驗方法 67
3.3.2 新拌性質試驗結果 68
3.4. 混凝土基本力學性質試驗 70
3.4.1 基本力學試驗方法 70
3.4.2 基本力學試驗結果 70
3.5. 混凝土熱擴散係數試驗 73
3.5.1 熱擴散係數試驗方法 73
3.5.2 熱擴散係數試驗結果 74
3.6. 混凝土絕熱溫升試驗 79
3.6.1 絕熱溫升試驗原理及方法 79
3.6.2 絕熱溫升試驗結果 81
3.7. 混凝土比熱及單位重計算 91
3.7.1 比熱及單位重計算方法 91
3.7.2 比熱及單位重計算結果 93
3.8. 混凝土水化度成長曲線 94
3.8.1 各配比水化度成長曲線計算方法 94
3.8.2 極限水化度計算方法 98
3.8.3 各配比水化度成長曲線計算結果 104
3.9. 混凝土水化度與熱傳性質之關係 111
3.9.1 熱傳性質計算方法 111
3.9.2 各配比熱傳性質計算結果 113
第四章、 分析計畫與方法 114
4.1. 分析計畫背景 114
4.2. 實尺寸試體試驗 117
4.2.1 試體規劃與施作 117
4.2.2 現地混凝土溫度量測 122
4.3. 溫度場分析程序 125
4.4. 溫度場有限元素分析 128
4.4.1 有限元素分析假設 128
4.4.2 定義元素種類 129
4.4.3 材料性質設定 129
4.4.4 幾何模型建立 130
4.4.5 劃分元素網格與時間步階 132
4.4.6 定義分析類型 133
4.4.7 初始條件、邊界條件設定 134
4.4.8 水化熱生熱率 138
4.4.9 APDL語言二次開發 148
4.5. 溫度場分析之變因探討 149
第五章、 分析結果與討論 151
5.1. 溫度場分析結果 151
5.1.1 實體模型早齡期溫度模擬結果 151
5.1.2 早齡期心表溫差 158
5.1.3 降雨對溫度模擬結果之影響 163
5.2. 溫度場內部變因分析結果 164
5.2.1 不同水泥種類結果 164
5.2.2 不同飛灰取代率影響結果 168
5.2.3 不同爐碴粉取代率影響結果 177
5.2.4 不同水膠比影響結果 185
5.2.5 相同取代率下爐碴粉取代與爐灰取代影響結果 193
5.3. 溫度場外部變因分析結果 194
5.3.1 不同環境溫度在飛灰配比之影響結果 195
5.3.2 不同環境溫度在爐碴粉配比之影響結果 204
5.3.3 不同環境溫度在不同水膠比爐灰配比之影響結果 214
5.3.4 不同環境溫度在相同取代率之爐碴粉、爐灰配比影響結果 223
5.4. 台灣巨積混凝土配比模擬結果 224
第六章、 結論與建議 227
6.1. 結論 227
6.2. 建議 229
參考文獻 230
附錄A、清水營造巨積混凝土現地資料 237
附錄B、台灣巨積混凝土配比溫度場模擬所需參數 245
[1] “Standard Specification for Portland Cement”, ASTM C 150 , 2007.
[2] Bogue, R.H., “The Chemistry of Portland Cement”, Reinhold Publishing Corporation, New York, 1947, pp.572.
[3] Swaddiwudhipong et al. , ”Simulation of the exothermic hydration of Portland Cement”, Advances in Cement Researches, Vol. 14 ,No. 2 , 2002.
[4] 爐石利用推廣手冊,2000,中鋼集團,高雄市。
[5] Feldman, R.E., and Sereda, P.J.,”Engineering Journal(Canada)”, vol.53,No. 8/9, pp.53-59, 1970.
[6] 李銘智,「巨積混凝土絕熱溫升之量測與控制」,營建知訊/每月專題/巨積混凝土施工、溫控守則,2017。
[7] 朱柏芳,「大體積混凝土溫度應力與溫度控制」,中國電力出版社1999。
[8] 邱暉仁,陳誌慶,鍾鴻書,金崇仁,「混合水泥應用於巨積混凝土之案例分析」,混凝土科技,第七卷,第三期,2013年。
[9] Abdol R. Chini, Larry C. Muszynski, Lucy Acquaye, “Determination of maximum placement and curing temperatures in mass concrete to avoid durability problems and DEF”, Florida Department of Transportation(Contract No. BC 354-29).
[10] “Specification for Structural Concrete”, reported by ACI Committee 301, 2016.
[11] 行政會公共工程委員會施工綱要規範第03700章,2016。
[12] 林焜鋒,「混凝土拱壩長期力學行為分析」,台灣大學土木工程所結構組,1980。
[13] “Cooling and Insulating Systems for Mass Concrete”, reported by ACI committee 207, 34R-93, 1997.
[14] 張林鳳,「台灣地區混凝土橋梁溫度效應分析研究」,台灣大學土木工程所結構組,1995。
[15] 詹穎雯,廖同柏,「台灣地區巨積混凝土配比與熱學特性之研究計畫書」,財團法人中興工程顧問社,社團法人台灣混凝土學會,2018,pp.2.
[16] 王強,閰培渝,周予啟,左強,「高超層建築大體積混凝土設計與施工關鍵技術」,中國電力出版社,2016。
[17] 中國土木水利工程學會,「混凝土工程施工規範與解說(土木402-94)」,科技圖書股份有限公司,台北,2005。
[18] “Report on Thermal and Volume Change Effects on Cracking of Mass Concrete”, reported by ACI Committee 207.2R-07, 2007.
[19] “Standard Performance Specification for Hydraulic Cement”, ASTM C 1157-03, 2003.
[20] “Standard Specification for Blended Hydraulic Cements”, ASTM C 595-03, 2003.
[21] 林平全,李銘智,「巨積混凝土裂縫問題探討與預防對策」,台灣混凝土學會2015年混凝土工程研討會,2015。
[22] “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete”, reported by ACI 211.1, 1991.
[23] 王和源,「公共工程混凝土使用爐石水泥之可行性評估」,NKIT-C-8805,1999
[24] “Properties of set Concrete at Early Ages. State-of-the-art report”, RILEM 42-CEA, Materials and Structures, V. 14, No. 84, 1981.
[25] Yajing Bie, Sheng Qiang,“A New Formula to Estimate Final Temperature Rise of Concrete Considering Ultimate Hydration Based on Equivalent Age”,Construction and Building Materials,2017
[26] Van Breugel. K., “Simulation of Hydration and Formation of Structure in Hardening Cement Based Materials”, PhD thesis, 305 pp, 2nd Edition, Delft University Press, Netherlands, 1997.
[27] Mills, R.H., “Factors Influencing Cessation of Hydration in Water Cured Cement Pastes”, Special Report No. 90, Proceedings of the Symposium on the Structure of Portland Cement Paste and Concrete, Highway Research Board, Washington, D.C., 1966, pp. 399-450.
[28] Anton K. Schindler, Kevin L. Folliard, “Influence of Supplementary Cementing Materials on the Heat of Hydration of Concrete”, Advances in Cement and Concrete IX Conference Copper Mountain Conference Resort in Colorado August 10-14, 2003.
[29] Gibbon, G.J., and Y. Ballim, “Determination of the Thermal Conductivity of Concrete during the Early Stages of Hydration”, Magazine of Concrete Research, Proceedings V.50., p.229-235 ,1998.
[30] Walid Deboucha, Nordine Leklou,Abdelhafid Khelidj,Mohamed N Oudjit, “Hydration Development of Mineral Additives Blended Cement Using Thermogravimetric Analysis(TGA):Methodology of Caluating the Degree of Hydration”,Construction and Building Materials,2016
[31] Glasser, F.P., et al., “Cement and Concrete Research(Journal)”, Vol. 8, No. 733-740, 1941.
[32] Powers, T.C., et al., ACI Journal, Part 1-9, 1946/1947.
[33] Kjellsen, K.O., and Detwiler, R.J., and, Gjørv, O.E., “Development of Microstructure in Plain Cement Pastes Hydrated at Different Temperatures ”,Cement and Concrete Research, Vol. 21, No. 1, pp. 179-189, 1991.
[34] McIntosh, J.D., ”Electrical Curing of Concrete”, Magazine of Concrete Research, Vol.1, No.1, pp21-28, Jan 1949.
[35] Nurse, R.W., ”Steam Curing of concrete”, Magazine of Concrete Research, Vol.1, No.2, pp.79-88, June 1949.
[36] Saul, A.G. A., ”Principles Underlying the Steam Curing of concrete at Atmospheric Pressure”, Magazine of Concrete Research, Vol.2, No.6, pp127-140, March 1951.
[37] 李振瑋,「材料與環境溫度對巨積混凝土初期心表溫差影響之研究」,台灣大學土木工程所結構組,2007。
[38] “Standard Practice for Estimating Concrete Strength by the Maturity Method”, ASTM C1074, 1999.
[39] Hansen P. F., Pedersen E. J., “Measuring Instrumentfor the Control of Concrete Hardening”, Nord Betong, pp.21-25,1977.
[40] Tank, R. C., and Carino, N. J., “Rate Constant Functions for Strength Development of Concrete,” ACI Materials Journal, V. 88, No. 1, Jan.-Feb., pp. 74-83 , 1991.
[41] ASTM C 1074, “Standard Practice for Estimating Concrete Strength by the Maturity Method,” ASTM International, West Conshohocken, Pa., 8 pp, 1998.
[42] Hansen P. F., and Pedersen, E.J., “Curing of Concrete Structures,”Draft DEB-Guide to Durable Concrete Structures, Appendix 1, Comité Euro-International du Béton, Switzerland, 1985.
[43] Jonathan L. Poole, Kyle A. Riding, Kevin L. Folliard, Maria C. G. Juenger, Anton K. Schindler, “Methods for Calculating Activation Energy for Portland Cement”, reported by ACI Materials Journal, Jan-Feb, 2007.
[44] Schindler, A. K., “Effect of Temperature on Hydration of Cementitious Materials”, ACI Materials Journal, V. 101, No. 1, Jan.-Feb. 2004.
[45] J. L. Poole, K. A. Riding, K. J. Folliard, M. C. G. Juenger, and A. K. Schindler, “Methods for Calculating Activation Energy for Portland Cement,” ACI Materials Journal, V. 104, No. 1, pp. 303-311, Jan.-Feb. 2007.
[46] J. L. Poole, K. A. Riding, K. J. Folliard, M. C. G. Juenger, David W. Fowler, A. K. Schindler, Harowel G. Wheat, “Modeling Temperature Sensitivity and Heat Evolution of Concrete”, University of Texas at Austin, Austin, TX, PhD dissertation, 2007.
[47] Kook-Han Kim, Sang-Eun Jeon, Jin-Keun Kim, Sungchul Yang, “An Experiment Study on Thermal Conductivity of Concrete”, reported by Cement and Concrete Research 33, 2003.
[48] M.I. Khan, ”Factors affecting the thermal properties of concrete and applicability of its prediction models”, Building and Environment, 2002.
[49] Khan, A.A., W.D. Cook, and D. Mitcheel, “Thermal Properties and Transient Thermal Analysis of Structural Members duringHydration, “ACI Journal, ProceedingsV.95, No.3, pp.293-303 ,1998.
[50] Mindess, S., and J.F. Young, “Concrete.” Prentice-Hall. Inc. Englewood Cliffs, New Jersey, pp.302-315, 1981.
[51] Brown T. D., Javaid M. Y., “The Thermal Conductivity of Fresh Concrete”, Mater. Construct., pp.411-416, 1970.
[52] G. De Schutter, L. Taerwe, “Specific Heat and Thermal Diffusivity of Hardening Concrete”, Magazine of Concrete Research, No. 172, Sept., pp. 203-208, 1995.
[53] Van Breugel K. , “ Prediction of TemperatureDevelopment in Hardening Concrete. In: RILEM Report 15”, prevention of thermalcracking in concrete at early ages, 1998; 51–75
[54] Shengxing Wu, Donghui Huang, “Estimation of Cracking Risk of Concrete at Early Aged based on Thermal Stress Analysis”,2011
[55] Yikici A, Hung-Liang Chen, “Effect of Temperature-Time History on Concrete Strength in Mass Concrete structure.” ,TRB 92nd annual conference proceeding, Transportation Research Board of the National Academies, Washington, D.C, 2013
[56] Tahsin Alper Yikici, Hung-Liang Chen, “Numerical Prediction Model for Temperature Development in Mass Concrete Structures” , Department of Civil and Engineering, West Virginia University, USA, 2015
[57] Tahsin Alper Yikici, Hung-Liang Chen, “Use of Maturity Method to Estimate Compressive Strength of Mass Concrete” , Department of Civil and Engineering, West Virginia University, USA, 2015
[58] Yun Lin, Hung-Liang Chen, “Thermal Analysis and Adiabatic Calorimetry for Early-Age Concrete Members”, Department of Civil and Engineering, West Virginia University, USA, 2015.
[59] Yun Lin, Hung-Liang Chen, “Thermal Analysis and Adiabatic Calorimetry for Early-Age Concrete Members Part 2. Evaluation of Thermally Induced Stress”, Department of Civil and Engineering, West Virginia University, USA, 2015.
[60] “Design and Control of Concrete Mixtures”, 14th Edition, Portland Cement Association, 2002.
[61] Kyle A. Riding, Jonathan L. Poole, Anton K. Schindler, Maria C. G. Juenger, “Evaluation of Temperature Prediction Methods for Mass Concrete Members”, ACI Materials Journal, Sept-Oct, 2006.
[62] Kyle A. Riding, Jonathan L. Poole, Anton K. Schindler, Maria C. G. Juenger, Kecin J. Folliard, “Modeling Hydration of Cementitious Systems”, reported by ACI Materials Journal, 2012.
[63] 李銘智,「巨積混凝土版初期溫昇與熱應力分析」,台灣大學土木工程所結構組,2003。
[64] 「巨積混凝土實尺寸試體溫度量測」,委託單位:日商清水營造工程股份有限公司 台灣分公司,受委單位:財團法人臺灣營建研究院,案號: TTC-107002-1,3/15,2018。
[65] 石泉等人,「嚴寒地區大體積混凝土溫度場變化規律研究與實踐」,中國水利水電出版社,p.80~81,2009。
[66] Xiao-Yong Wang, Han-Seung Lee, “Modeling the hydration of concrete incorporating fly ash or slag”, Cement and Concrete Research, 2010.
[67] 张应迁,张洪才,「ANSYS 有限元分析从入门到精通」,人民邮电出版社,北京,pp.148-164,2010。
[68] 詹穎雯、鄭瑞濱、徐敏晃、邱暉仁,「CA450B標自充填混凝土供料施工顧問計畫成果報告」,委託單位: 互助營造股份有限公司,執行單位: 財團法人臺灣營建研究院,2011。
[69] Adol R. Chini, Arash Parham, “Adiabatic Temperature Rise of Mass Concrete in Florida Final Report”, submitted to Florida Department of Transporation, Feb. 2005.
[70] Sandberg, P. and Roberts, L., “Cement-Admixture Interactions Related to Aluminate Control”, Journal of ASTM International, V. 2, No. 6 June 2005, pp. 6-13.
[71] “Standard Specification for Chemical Admixtures for Concrete”, ASTM C 494, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔