|
1.Alcrudo, F., & Garcia-Navarro, P. (1993). A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations. International Journal for Numerical Methods in Fluids, 16(6), 489-505. doi:10.1002/fld.1650160604 2.Berthon, C., Cordier, S., Delestre, O., & Le, M. H. (2012). An analytical solution of the shallow water system coupled to the Exner equation. Comptes Rendus Mathematique, 350(3), 183-186. doi:https://doi.org/10.1016/j.crma.2012.01.007 3.Bradford, S. F., & Sanders, B. F. J. J. o. H. E. (2002). Finite-volume model for shallow-water flooding of arbitrary topography. 128(3), 289-298. 4.Brufau, P., Vázquez‐Cendón, M., & García‐Navarro, P. J. I. J. f. N. M. i. F. (2002). A numerical model for the flooding and drying of irregular domains. 39(3), 247-275. 5.Cantelli, A., Wong, M., Parker, G., & Paola, C. (2007). Numerical model linking bed and bank evolution of incisional channel created by dam removal. Water Resources Research, 43(7). 6.Chou, C. K., Sun, C. P., Young, D. L., Sladek, J., & Sladek, V. (2015). Extrapolated local radial basis function collocation method for shallow water problems. Engineering Analysis with Boundary Elements, 50, 275-290. doi:https://doi.org/10.1016/j.enganabound.2014.09.002 7.Correia, L. P., Krishnappan, B. G., & Graf, W. H. J. J. o. h. E. (1992). Fully coupled unsteady mobile boundary flow model. 118(3), 476-494. 8.Darby, S. E., Alabyan, A. M., & Van de Wiel, M. J. J. W. R. R. (2002). Numerical simulation of bank erosion and channel migration in meandering rivers. 38(9), 2-1-2-21. 9.Duan, J. (2001). Simulation of streambank erosion processes with a two-dimensional numerical model. In Landscape Erosion and Evolution Modeling (pp. 389-428): Springer. 10.Farsirotou, E. D., Soulis, J. V., & Dermissis, V. D. J. I. J. o. C. F. D. (2002). A numerical method for 2-d bed morphology calculations. 16(3), 187-200. 11.Fernandez Luque, R., & Van Beek, R. (1976). Erosion And Transport Of Bed-Load Sediment. Journal of Hydraulic Research, 14(2), 127-144. doi:10.1080/00221687609499677 12.Fraccarollo, L., Capart, H., & Zech, Y. J. I. j. f. n. m. i. f. (2003). A Godunov method for the computation of erosional shallow water transients. 41(9), 951-976. 13.Garcia. (2001). Modeling sediment entrainment into suspension, transport, and deposition in rivers. In: Wiley & Sons, Chichester, UK. 14.Garcia, M., & Niño, Y. J. J. o. H. R. (1993). Dynamics of sediment bars in straight and meandering channels: experiments on the resonance phenomenon. 31(6), 739-761. 15.Garcia, M. H. (2006). ASCE Manual of Practice 110—Sedimentation Engineering: Processes, Measurements, Modeling and Practice. 16.Guy, H. P., Simons, D. B., & Richardson, E. V. (1966). Summary of alluvial channel data from flume experiments, 1956-61 (Vol. 462): US Government Printing Office. 17.Harten, A., Lax, P. D., & Leer, B. V. (1983). On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. 25(1), 35-61. doi:10.1137/1025002 18.Harten, A., Lax, P. D., & Leer, B. v. J. S. r. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. 25(1), 35-61. 19.Hooke, R. L. J. D. o. P. G. U. R. (1974). Shear-stress and sediment distribution in a meander bend. 20.Howard, A. D. J. L. f. r. (1992). Modelling channel migration and floodplain sedimentation in meandering streams. 1-41. 21.Huang, Y., Zhang, N., & Pei, Y. (2013). Well-Balanced Finite Volume Scheme for Shallow Water Flooding and Drying Over Arbitrary Topography. 7(1), 40-54. doi:10.1080/19942060.2013.11015452 22.Ikeda, S., Parker, G., & Sawai, K. J. J. o. F. M. (1981). Bend theory of river meanders. Part 1. Linear development. 112, 363-377. 23.Johannesson, H., & Parker, G. J. R. m. (1989). Linear theory of river meanders. 12, 181-213. 24.Kassem, A. A., & Chaudhry, M. H. J. J. o. H. E. (2002). Numerical modeling of bed evolution in channel bends. 128(5), 507-514. 25.Kuiry Soumendra, N., Pramanik, K., & Sen, D. (2008). Finite Volume Model for Shallow Water Equations with Improved Treatment of Source Terms. Journal of Hydraulic Engineering, 134(2), 231-242. doi:10.1061/(ASCE)0733-9429(2008)134:2(231) 26.Lane, S., & Ferguson, R. J. C. F. D. (2005). Modelling reach-scale fluvial flows. 215-269. 27.Leschziner, M. A., & Rodi, W. J. J. o. t. H. D. (1979). Calculation of strongly curved open channel flow. 105(10), 1297-1314. 28.Liang, Q., & Marche, F. (2009). Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources, 32(6), 873-884. doi:https://doi.org/10.1016/j.advwatres.2009.02.010 29.Loukili, Y., Soulaimani, A. J. I. J. f. C. M. i. E. S., & Mechanics. (2007). Numerical tracking of shallow water waves by the unstructured finite volume WAF approximation. 8(2), 75-88. 30.Morvan, H., Pender, G., Wright, N., & Ervine, D. J. J. o. H. E. (2002). Three-dimensional hydrodynamics of meandering compound channels. 128(7), 674-682. 31.Nagata, N., Hosoda, T., & Muramoto, Y. J. J. o. H. E. (2000). Numerical analysis of river channel processes with bank erosion. 126(4), 243-252. 32.Ocher, S., & Solomon, F. J. M. C. (1982). Upwind difference schemes for hyperbolic conservation laws. 38, 339-374. 33.Odgaard, A. J., & Bergs, M. A. J. W. R. R. (1988). Flow processes in a curved alluvial channel. 24(1), 45-56. 34.Olsen, N. R. B. J. J. o. H. E. (2003). Three-dimensional CFD modeling of self-forming meandering channel. 129(5), 366-372. 35.Paola, C., & Voller, V. R. (2005). A generalized Exner equation for sediment mass balance. Journal of Geophysical Research: Earth Surface. doi:10.1029/2004jf000274 36.Parker, G., Paola, C., & Leclair, S. (2000). Probabilistic Exner Sediment Continuity Equation for Mixtures with No Active Layer. Journal of Hydraulic Engineering, 126(11), 818-826. doi:10.1061/(asce)0733-9429(2000)126:11(818) 37.Rinaldi, M., & Darby, S. E. (2007). 9 Modelling river-bank-erosion processes and mass failure mechanisms: progress towards fully coupled simulations. In Gravel-Bed Rivers VI: From Process Understanding to River Restoration (pp. 213-239). 38.Roe, P. L. J. J. o. c. p. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. 43(2), 357-372. 39.Rozovskiĭ, I. L. v. (1957). Flow of water in bends of open channels: Academy of Sciences of the Ukrainian SSR. 40.Sadourny, R. (1975). The Dynamics of Finite-Difference Models of the Shallow-Water Equations. Journal of the Atmospheric Sciences, 32(4), 680-689. doi:10.1175/1520-0469(1975)032<0680:tdofdm>2.0.co;2 41.Soulis, J. V. J. I. j. f. n. m. i. f. (2002). A fully coupled numerical technique for 2D bed morphology calculations. 38(1), 71-98. 42.Steger, J. L., & Warming, R. J. J. o. c. p. (1981). Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. 40(2), 263-293. 43.Sun, T., Meakin, P., & Jøssang, T. J. W. R. R. (2001). Meander migration and the lateral tilting of floodplains. 37(5), 1485-1502. 44.Valiani, A., Caleffi, V., & Zanni, A. (1999). Finite volume scheme for 2D shallow-water equations. Application to the Malpasset dam-break. Paper presented at the the 4th CADAM Workshop, Zaragoza. 45.Wilson, C., Boxall, J., Guymer, I., & Olsen, N. J. J. o. H. E. (2003). Validation of a three-dimensional numerical code in the simulation of pseudo-natural meandering flows. 129(10), 758-768. 46.Wu, W., Rodi, W., & Wenka, T. J. J. o. h. e. (2000). 3D numerical modeling of flow and sediment transport in open channels. 126(1), 4-15. 47.Wu, W. J. J. o. h. e. (2004). Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. 130(10), 1013-1024. 48.Young, D. L. (1991). Finite element modeling of shallow water wave equations. Journal of the Chinese Institute of Engineers, 14(2), 143-155. doi:10.1080/02533839.1991.9677320
|