(3.239.33.139) 您好!臺灣時間:2021/03/05 18:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高嘉廷
研究生(外文):CHIA-TING KAO
論文名稱:崩塌地河道土砂堆積形貌變化之數值模擬
論文名稱(外文):Numerical Modelling of Geomorphology of Landslide Induced Sediment Deposition in Incisional Channel
指導教授:游景雲游景雲引用關係
指導教授(外文):Jiing-Yun You
口試委員:楊尊華楊智傑張駿暉
口試委員(外文):Tsun-Hua YangChih-Chieh YoungJiun-Huei Jang
口試日期:2019-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:75
中文關鍵詞:淺水波方程Exner方程式有限體積法崩塌堆積LHLL去耦合模型
DOI:10.6342/NTU201903259
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
崩塌為集水區帶來大量泥砂,也是河川重要的土砂的來源。過去雖然有學者研究其河道發展,然而,如何量化輸送到下游的崩塌產生土砂量仍然是一個挑戰。本研究致力於量化受水流侵蝕的崩塌體的形貌變化和河川演化機制。我們使用去藕合二維模型來研究它的崩塌地貌受河川侵蝕演化過程。
本研究在水理方面,選用淺水波方程式來模擬水流流況。同時,利用流場求出河川輸砂率,在輸砂方面,則使用Exner方程式來計算泥沙傳輸質量的守恆,進而看出河川形貌的演化。此外,兩個方程都是以水平二維基礎以可侵蝕的河岸及沒有二次流假設下,選取的非線性項的控制方程,然而,解析方法無法解決此問題。因此,本研究採用有限體積法進行數值模擬。初步由流場結果發現,侵蝕最嚴重的區域為崩塌的下緣處,最為可能會發生二次崩塌的地方,而在進一步的河川演化過程,可以發現在本研究之假設條件下,結果發現於攻擊岸下游處為淤積處,主要控制原因為流場分布,原有的崩積體也由半圓形變得接近半橢圓,總體來說,河川的發展愈來愈趨近趨近於曲流。
Landslides produce enormous volumes of sediment in mountainous watersheds. However, quantifying landslide-derived sediment transported downstream remains a challenge. This study makes an effort in determining the amount of landslide-derived sediment that eroded by the water and the ratio of sediment yield of this problem. We try to use a decoupled two-dimensional model to investigate the evolution of landslide aggregation influenced by the channel flow.
In terms of the hydrodynamics model, we choose the shallow water equations to simulate the flow condition. Meanwhile, the flow field is used to determine the sediment transport rate of the river. In the aspect of sediment transport, the Exner equation is used to estimate the conservation of sediment transport and investigate channel evolution. Besides, both of the two equations under a horizontal 2D straight, non-erodible banks, and no secondary flow channel can be derived as our governing equation which has the nonlinear terms, and the analytical method may not work to solve the two equations under the 2D condition. As a result, this study adopts the finite volume method to proceed with this work. According to the preliminary results of the flow field, it is found that the most severely eroded area is at the lower edge of the landslides aggregation, and the place where the second collapse is most likely to occur. In the process of further river evolution, it can be found that under our assumptions, the results suggest that the deposition is in the downstream part of the attack shore and channel evolution is dominated by the flow field distribution. Also, the original landslides aggregation transforms a semi-elliptical into a semi-circle. In summary, the river develops the meandering stream gradually.
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xiii
NOTATION xiv
Chapter 1 Introduction 1
1.1 Problem Statement 1
1.2 Research Objectives 2
1.3 Overview of thesis 3
Chapter 2 Literature Review 5
2.1 River morphodynamics 5
2.2 2D Shallow water equations 8
2.3 Sediment transport 11
Chapter 3 Methodology 15
3.1 Hydrodynamics model 15
3.1.1 Governing equations 16
3.1.2 Numerical scheme 17
3.1.3 The HLL Riemann solver 20
3.1.4 Source terms 23
3.1.5 Dry and wet fronts 23
3.1.6 Runge-Kutta time discretization 24
3.1.7 Initial and boundary conditions 25
3.2 Morphodynamics model 27
3.2.1 Sediment aggregation 27
3.2.2 Sediment transport 28
3.3 Model establishment 30
3.4 Model Validations 31
3.4.1 Linearized model: 2D tidal-wave problem 31
3.4.2 1D open-channel flow over a hump on basement 36
3.4.3 1D dam-break flow with a triangular hump located on the downstream channel. 38
Chapter 4 Case Study 42
4.1 Hydrodynamics simulations - steady flow 42
4.2 Sediment simulations – steady flow 58
Chapter 5 Conclusions and Recommendation 68
5.1 Conclusions 68
5.2 Recommendations 70
REFERENCES 71
1.Alcrudo, F., & Garcia-Navarro, P. (1993). A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations. International Journal for Numerical Methods in Fluids, 16(6), 489-505. doi:10.1002/fld.1650160604
2.Berthon, C., Cordier, S., Delestre, O., & Le, M. H. (2012). An analytical solution of the shallow water system coupled to the Exner equation. Comptes Rendus Mathematique, 350(3), 183-186. doi:https://doi.org/10.1016/j.crma.2012.01.007
3.Bradford, S. F., & Sanders, B. F. J. J. o. H. E. (2002). Finite-volume model for shallow-water flooding of arbitrary topography. 128(3), 289-298.
4.Brufau, P., Vázquez‐Cendón, M., & García‐Navarro, P. J. I. J. f. N. M. i. F. (2002). A numerical model for the flooding and drying of irregular domains. 39(3), 247-275.
5.Cantelli, A., Wong, M., Parker, G., & Paola, C. (2007). Numerical model linking bed and bank evolution of incisional channel created by dam removal. Water Resources Research, 43(7).
6.Chou, C. K., Sun, C. P., Young, D. L., Sladek, J., & Sladek, V. (2015). Extrapolated local radial basis function collocation method for shallow water problems. Engineering Analysis with Boundary Elements, 50, 275-290. doi:https://doi.org/10.1016/j.enganabound.2014.09.002
7.Correia, L. P., Krishnappan, B. G., & Graf, W. H. J. J. o. h. E. (1992). Fully coupled unsteady mobile boundary flow model. 118(3), 476-494.
8.Darby, S. E., Alabyan, A. M., & Van de Wiel, M. J. J. W. R. R. (2002). Numerical simulation of bank erosion and channel migration in meandering rivers. 38(9), 2-1-2-21.
9.Duan, J. (2001). Simulation of streambank erosion processes with a two-dimensional numerical model. In Landscape Erosion and Evolution Modeling (pp. 389-428): Springer.
10.Farsirotou, E. D., Soulis, J. V., & Dermissis, V. D. J. I. J. o. C. F. D. (2002). A numerical method for 2-d bed morphology calculations. 16(3), 187-200.
11.Fernandez Luque, R., & Van Beek, R. (1976). Erosion And Transport Of Bed-Load Sediment. Journal of Hydraulic Research, 14(2), 127-144. doi:10.1080/00221687609499677
12.Fraccarollo, L., Capart, H., & Zech, Y. J. I. j. f. n. m. i. f. (2003). A Godunov method for the computation of erosional shallow water transients. 41(9), 951-976.
13.Garcia. (2001). Modeling sediment entrainment into suspension, transport, and deposition in rivers. In: Wiley & Sons, Chichester, UK.
14.Garcia, M., & Niño, Y. J. J. o. H. R. (1993). Dynamics of sediment bars in straight and meandering channels: experiments on the resonance phenomenon. 31(6), 739-761.
15.Garcia, M. H. (2006). ASCE Manual of Practice 110—Sedimentation Engineering: Processes, Measurements, Modeling and Practice.
16.Guy, H. P., Simons, D. B., & Richardson, E. V. (1966). Summary of alluvial channel data from flume experiments, 1956-61 (Vol. 462): US Government Printing Office.
17.Harten, A., Lax, P. D., & Leer, B. V. (1983). On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. 25(1), 35-61. doi:10.1137/1025002
18.Harten, A., Lax, P. D., & Leer, B. v. J. S. r. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. 25(1), 35-61.
19.Hooke, R. L. J. D. o. P. G. U. R. (1974). Shear-stress and sediment distribution in a meander bend.
20.Howard, A. D. J. L. f. r. (1992). Modelling channel migration and floodplain sedimentation in meandering streams. 1-41.
21.Huang, Y., Zhang, N., & Pei, Y. (2013). Well-Balanced Finite Volume Scheme for Shallow Water Flooding and Drying Over Arbitrary Topography. 7(1), 40-54. doi:10.1080/19942060.2013.11015452
22.Ikeda, S., Parker, G., & Sawai, K. J. J. o. F. M. (1981). Bend theory of river meanders. Part 1. Linear development. 112, 363-377.
23.Johannesson, H., & Parker, G. J. R. m. (1989). Linear theory of river meanders. 12, 181-213.
24.Kassem, A. A., & Chaudhry, M. H. J. J. o. H. E. (2002). Numerical modeling of bed evolution in channel bends. 128(5), 507-514.
25.Kuiry Soumendra, N., Pramanik, K., & Sen, D. (2008). Finite Volume Model for Shallow Water Equations with Improved Treatment of Source Terms. Journal of Hydraulic Engineering, 134(2), 231-242. doi:10.1061/(ASCE)0733-9429(2008)134:2(231)
26.Lane, S., & Ferguson, R. J. C. F. D. (2005). Modelling reach-scale fluvial flows. 215-269.
27.Leschziner, M. A., & Rodi, W. J. J. o. t. H. D. (1979). Calculation of strongly curved open channel flow. 105(10), 1297-1314.
28.Liang, Q., & Marche, F. (2009). Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources, 32(6), 873-884. doi:https://doi.org/10.1016/j.advwatres.2009.02.010
29.Loukili, Y., Soulaimani, A. J. I. J. f. C. M. i. E. S., & Mechanics. (2007). Numerical tracking of shallow water waves by the unstructured finite volume WAF approximation. 8(2), 75-88.
30.Morvan, H., Pender, G., Wright, N., & Ervine, D. J. J. o. H. E. (2002). Three-dimensional hydrodynamics of meandering compound channels. 128(7), 674-682.
31.Nagata, N., Hosoda, T., & Muramoto, Y. J. J. o. H. E. (2000). Numerical analysis of river channel processes with bank erosion. 126(4), 243-252.
32.Ocher, S., & Solomon, F. J. M. C. (1982). Upwind difference schemes for hyperbolic conservation laws. 38, 339-374.
33.Odgaard, A. J., & Bergs, M. A. J. W. R. R. (1988). Flow processes in a curved alluvial channel. 24(1), 45-56.
34.Olsen, N. R. B. J. J. o. H. E. (2003). Three-dimensional CFD modeling of self-forming meandering channel. 129(5), 366-372.
35.Paola, C., & Voller, V. R. (2005). A generalized Exner equation for sediment mass balance. Journal of Geophysical Research: Earth Surface. doi:10.1029/2004jf000274
36.Parker, G., Paola, C., & Leclair, S. (2000). Probabilistic Exner Sediment Continuity Equation for Mixtures with No Active Layer. Journal of Hydraulic Engineering, 126(11), 818-826. doi:10.1061/(asce)0733-9429(2000)126:11(818)
37.Rinaldi, M., & Darby, S. E. (2007). 9 Modelling river-bank-erosion processes and mass failure mechanisms: progress towards fully coupled simulations. In Gravel-Bed Rivers VI: From Process Understanding to River Restoration (pp. 213-239).
38.Roe, P. L. J. J. o. c. p. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. 43(2), 357-372.
39.Rozovskiĭ, I. L. v. (1957). Flow of water in bends of open channels: Academy of Sciences of the Ukrainian SSR.
40.Sadourny, R. (1975). The Dynamics of Finite-Difference Models of the Shallow-Water Equations. Journal of the Atmospheric Sciences, 32(4), 680-689. doi:10.1175/1520-0469(1975)032<0680:tdofdm>2.0.co;2
41.Soulis, J. V. J. I. j. f. n. m. i. f. (2002). A fully coupled numerical technique for 2D bed morphology calculations. 38(1), 71-98.
42.Steger, J. L., & Warming, R. J. J. o. c. p. (1981). Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. 40(2), 263-293.
43.Sun, T., Meakin, P., & Jøssang, T. J. W. R. R. (2001). Meander migration and the lateral tilting of floodplains. 37(5), 1485-1502.
44.Valiani, A., Caleffi, V., & Zanni, A. (1999). Finite volume scheme for 2D shallow-water equations. Application to the Malpasset dam-break. Paper presented at the the 4th CADAM Workshop, Zaragoza.
45.Wilson, C., Boxall, J., Guymer, I., & Olsen, N. J. J. o. H. E. (2003). Validation of a three-dimensional numerical code in the simulation of pseudo-natural meandering flows. 129(10), 758-768.
46.Wu, W., Rodi, W., & Wenka, T. J. J. o. h. e. (2000). 3D numerical modeling of flow and sediment transport in open channels. 126(1), 4-15.
47.Wu, W. J. J. o. h. e. (2004). Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. 130(10), 1013-1024.
48.Young, D. L. (1991). Finite element modeling of shallow water wave equations. Journal of the Chinese Institute of Engineers, 14(2), 143-155. doi:10.1080/02533839.1991.9677320
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔