|
1. Benjamin, T. B., & Lighthill, M. J. (1954). On cnoidal waves and bores. The Royal Society, 224(1159), 448-460. 2. Boussinesq, J. (1872). Théorie des ondes et des remous qui se propagent le long d''un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. journal de Mathematiques Pures et Appliquees, 55-108. 3. Byatt-Smith, J. G. B. (1970). An exact integral equation for steady surface waves.The Royal Society, 315(1522), 405-418. 4. Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2): World Scientific Publishing Company. 5. del Jesus, M., Lara, J. L., & Losada, I. J. (2012). Three-dimensional interaction of waves and porous coastal structures: Part I: Numerical model formulation. Coastal Engineering, 64, 57-72. 6. Grimshaw, R. (1971). The solitary wave in water of variable depth. Part 2. Journal of Fluid Mechanics, 46(3), 611-622. 7. Goring, D.G. (1978). Tsunamis—the propagation of long waves onto a shelf. PhD thesis, California Institute of Technology. Pasadena, Calif. 8. Hammack, J. L., & Segur, H. (1974). The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments. Journal of Fluid Mechanics, 65(2), 289-314. 9. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. 10. Higuera, Pablo. (2015). Application of computational fluid dynamics to wave action on structures. PhD thesis, University of Cantabria. Santander, Spain. 11. Keulegan, G. H. (1958). Forces on cylinders and plates in an oscillating fluid. J. Research of the National Bureau of Standards Research Paper, 2857, 423-440. 12. Korteweg, D. J., & De Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, Dublin Philosophical Magazine and Journal of Science, 39(240), 422-443. 13. Laitone, E. V. (1960). The second approximation to cnoidal and solitary waves. Journal of Fluid Mechanics, 9(3), 430-444. 14. Lu, Heng. (2017). Generation of Very Long Waves in Laboratory for Tsunamis Research. Unpublished doctoral dissertation, University of Dundee, Scotland. 15. Liu, P. L.-F., Lin, P., Chang, K.-A., & Sakakiyama, T. (1999). Numerical modeling of wave interaction with porous structures. Journal of waterway, port, coastal, ocean engineering, 125(6), 322-330. 16. Longuet-Higgins, M. S., & Fenton, J. D. (1974). On the mass, momentum, energy and circulation of a solitary wave. II. The Royal Society, 340(1623), 471-493. 17. Madsen, P. A., Fuhrman, D. R., & Schäffer, H. A. (2008). On the solitary wave paradigm for tsunamis. Journal of Geophysical Research: Oceans, 113(C12). 18. McCowan, J., B.Sc., & M.A. (1891). VII. On the solitary wave. The London, Edinburgh, Dublin Philosophical Magazine and Journal of Science, 32(194), 45-58. 19. Mei, C. C., Stiassnie, M., & Yue, D. K.-P. (2005). Theory and applications of ocean surface waves: nonlinear aspects (Vol. 23): World scientific. 20. Schäffer, H. A., & Klopman, G. (2000). Review of multidirectional active wave absorption methods. Journal of waterway, port, coastal, ocean engineering, 126(2), 88-97. 21. Van Gent, M. R. A. (1996). Wave interaction with permeable coastal structures. Paper presented at the International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 22. Wu, T. Y.-T. (1987). Generation of upstream advancing solitons by moving disturbances. Journal of Fluid Mechanics, 184, 75-99. 23. Yeh, H., Liu, P., Briggs, M., & Synolakis, C. (1994). Propagation and amplification of tsunamis at coastal boundaries. International journal of science, 372(6504), 353.
|