跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王昕兒
研究生(外文):Hsin-Erh Wang
論文名稱:底板傾斜式造波水槽造波的數值模擬
論文名稱(外文):Numerical simulation of wave generation by a bottom-tilting flume wavemaker
指導教授:詹益齊
指導教授(外文):I-Chi Chan
口試委員:楊智傑林孟郁
口試委員(外文):Chih-Chieh YoungMeng-Yu Lin
口試日期:2019-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:121
中文關鍵詞:OpenFAOMolaFlow體積平均之雷諾平均方程式流體體積法有限體積法底板傾斜式造波水槽
DOI:10.6342/NTU201902759
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文採用 OpenFOAM 軟體以及專門處理邊界條件及孔隙介質流之求解器
olaFlow,以流體體積法(VOF)和有限體積法,計算體積平均的雷諾平均方程式(VARANS),模擬底板傾斜式造波水槽(bottom-tilting flume wavemaker)。而本研究之邊界條件皆為不透水,因此並不考慮孔隙率的問題。
本文所建立之數值模式的驗證分成兩個部分,第一部分為與 Madsen et al. (2008)對於矩形波自由液面變化的分析進行比較;第二部分為設計與 Lu (2017)相同的底板傾斜式造波水槽,將其實驗資料與本模式之數值模擬結果進行驗證。兩項驗證結果皆十分擬合,藉以證明本研究數值水槽模擬結果的可信度。
本文重點為以數值模擬底板傾斜式造波水槽,並以移動底床長度、底床移動位移、底床移動歷時以及水深四種造波參數,探討造波條件對於流體自由液面、波長、振幅、波速的相關性。研究結果也與相同振幅之孤立波(solitary wave)有效波長作比較,證明底床傾斜式造波水槽能更有效的產生長波。
In this thesis, the OpenFOAM software and the solver olaFlow, which specialize in boundary conditions and porous media flow, are used to calculate the volume-averaged Reynolds average equation VARANS by the volume of fluid method and the finite volume method, and simulate the bottom-tilting wave maker. The boundary conditions of this model are impermeable, so the porosity is not considered.
The validation is divided into two parts. The first part is the analysis of the change of the free surface elevation of rectangular-shape wave by Madsen et al. (2008). The first part is the comparison between the analysis of the free surface elevation of the rectangular-shaped wave by Madsen et al. (2008) and the model in this paper only to find out the result is well fitted. The second part is to design the same wave maker as Lu’s (2017).Then the numerical results are carried out to compare with the experiments data of Lu (2017) and show high degree of accuracy to prove that the numerical wave maker of this study is correct.
At the end of the paper, we simulated the bottom-tilting wave maker and changed the four wave maker parameters : moving bottom length, bottom motion displacement, bottom
motion duration and initial water depth, to observe the free surface elevation, wave length, amplitude and phase velocity. The results of the study are also compared with the effective wavelengths of solitary waves of the same amplitude, which proves that the bottom-tilting wave wave can generate long waves more effectively.
口試委員申請書I
誌謝II
摘要III
AbstractIV
目錄V
圖目錄VIII
表目錄 XI
符號表XII
第 1 章 緒論1
1.1 研究動機與目的1
1.2 本文架構2
第 2 章 文獻回顧4
2.1 孤立波理論4
2.2 孤立波對海嘯模擬之探討5
2.3 底板傾斜式造波水槽的實驗7
2.3.1 底板傾斜式造波水槽實驗設計7
2.3.2 底板傾斜式造波水槽移動方式8
2.3.3 底板傾斜式造波水槽數值模式10
2.3.4 底板傾斜式造波水槽結論探討12
第 3 章 數值方法15
3.1 控制方程式15
3.1.1 質量及動量守恆15
3.1.2 雷諾平均方程式(RANS) 16
3.1.3 空間平均的雷諾平均動量方程式(VARANS)17
3.2 流體體積法(VOF)18
3.3 有限體積法19
3.4 初始及邊界條件21
第 4 章 數值結果分析24
4.1 矩形波之模式驗證24
4.2 底板傾斜式造波水槽之數值模式驗證28
4.3 移動底床長度對造波之影響32
4.4 淺水條件水深對造波之影響39
4.5 非淺水條件水深對造波之影響45
4.6 底床移動位移對造波之影響52
4.7 底床移動歷時對造波之影響58
4.8 造波條件與波長之迴歸分析62
第 5 章 結論與未來展望64
5.1 結論64
5.2 未來展望65
參考文獻66
附錄68
矩形波之模擬68
底板傾斜式造波水槽模擬90
1. Benjamin, T. B., & Lighthill, M. J. (1954). On cnoidal waves and bores. The Royal Society, 224(1159), 448-460.
2. Boussinesq, J. (1872). Théorie des ondes et des remous qui se propagent le long d''un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. journal de Mathematiques Pures et Appliquees, 55-108.
3. Byatt-Smith, J. G. B. (1970). An exact integral equation for steady surface waves.The Royal Society, 315(1522), 405-418.
4. Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2): World Scientific Publishing Company.
5. del Jesus, M., Lara, J. L., & Losada, I. J. (2012). Three-dimensional interaction of waves and porous coastal structures: Part I: Numerical model formulation. Coastal Engineering, 64, 57-72.
6. Grimshaw, R. (1971). The solitary wave in water of variable depth. Part 2. Journal of Fluid Mechanics, 46(3), 611-622.
7. Goring, D.G. (1978). Tsunamis—the propagation of long waves onto a shelf. PhD thesis, California Institute of Technology. Pasadena, Calif.
8. Hammack, J. L., & Segur, H. (1974). The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments. Journal of Fluid Mechanics, 65(2), 289-314.
9. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225.
10. Higuera, Pablo. (2015). Application of computational fluid dynamics to wave action on structures. PhD thesis, University of Cantabria. Santander, Spain.
11. Keulegan, G. H. (1958). Forces on cylinders and plates in an oscillating fluid. J. Research of the National Bureau of Standards Research Paper, 2857, 423-440.
12. Korteweg, D. J., & De Vries, G. (1895). XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, Dublin Philosophical Magazine and Journal of Science, 39(240), 422-443.
13. Laitone, E. V. (1960). The second approximation to cnoidal and solitary waves. Journal of Fluid Mechanics, 9(3), 430-444.
14. Lu, Heng. (2017). Generation of Very Long Waves in Laboratory for Tsunamis Research. Unpublished doctoral dissertation, University of Dundee, Scotland.
15. Liu, P. L.-F., Lin, P., Chang, K.-A., & Sakakiyama, T. (1999). Numerical modeling of wave interaction with porous structures. Journal of waterway, port, coastal, ocean engineering, 125(6), 322-330.
16. Longuet-Higgins, M. S., & Fenton, J. D. (1974). On the mass, momentum, energy and circulation of a solitary wave. II. The Royal Society, 340(1623), 471-493.
17. Madsen, P. A., Fuhrman, D. R., & Schäffer, H. A. (2008). On the solitary wave paradigm for tsunamis. Journal of Geophysical Research: Oceans, 113(C12).
18. McCowan, J., B.Sc., & M.A. (1891). VII. On the solitary wave. The London, Edinburgh, Dublin Philosophical Magazine and Journal of Science, 32(194), 45-58.
19. Mei, C. C., Stiassnie, M., & Yue, D. K.-P. (2005). Theory and applications of ocean surface waves: nonlinear aspects (Vol. 23): World scientific.
20. Schäffer, H. A., & Klopman, G. (2000). Review of multidirectional active wave absorption methods. Journal of waterway, port, coastal, ocean engineering, 126(2), 88-97.
21. Van Gent, M. R. A. (1996). Wave interaction with permeable coastal structures. Paper presented at the International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts.
22. Wu, T. Y.-T. (1987). Generation of upstream advancing solitons by moving disturbances. Journal of Fluid Mechanics, 184, 75-99.
23. Yeh, H., Liu, P., Briggs, M., & Synolakis, C. (1994). Propagation and amplification of tsunamis at coastal boundaries. International journal of science, 372(6504), 353.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊