(3.237.97.64) 您好!臺灣時間:2021/03/04 12:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝佳霖
研究生(外文):Chia-Lin Hsieh
論文名稱:鋼筋混凝土牆剪力破壞之倒塌位移研究
論文名稱(外文):Experimental Study on Collapse Displacement of Reinforced Concrete Wall Subjected to Shear Failure
指導教授:黃世建黃世建引用關係
口試委員:鄭敏元杜怡萱
口試日期:2019-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:254
中文關鍵詞:鋼筋混凝土剪力牆剪力破壞倒塌行為側力位移曲線
DOI:10.6342/NTU201902666
相關次數:
  • 被引用被引用:4
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋼筋混凝土剪力牆為結構抗倒塌破壞之關鍵構材,故有了解其行為的必要性。由於目前國內外既有之剪力牆倒塌實驗數據並不多,且其測試布置多以單曲率變形為主,為探討影響剪力牆崩塌位移行為之可能因素,本研究共設計八座低矮型未開孔剪力牆試體,改變參數為試體的作用軸壓與水平鋼筋量,進行雙曲率布置、反覆載重試驗。
除了進行實驗外,本研究亦收集國內外之剪力牆相關實驗結果,使用美國ASCE/SEI 41-17 (ASCE 2017)規範與曹君婕(2018)之建議方法,對剪力牆倒塌點位移進行預測與比較。透過觀察實驗與分析結果,提出一套針對不同變形方式之剪力牆倒塌點位移預測的建議方法,此分析模型可適時反應單雙曲率變形對試體倒塌點位移之影響,亦綜合考量試體作用軸壓、垂直主筋量與水平鋼筋量,對倒塌點位移做良好預測。
The reinforced concrete shear wall is the key member against collapse and damage of a structure. Thus, it is necessary to understand its behavior. Because there are only few experimental data available on the collapse test of shear wall, and most testing layouts were based on single-curvature bending test. In order to investigate the influential parameters of shear wall during collapse, 8 low-rise shear walls without openings were tested in this study, along with the varied parameters of the axial load and the horizontal shear reinforcement. Tests were carried out using reversed cyclic testing with a double-curvature bending layout.
In addition to experimental study, available experimental results, relevant to shear wall, were collected. By using the ASCE/SE1 41-17 specification (ASCE 2017) and the proposed method by Tsao (2018), this study proposed a method to predict the displacement of the shear wall at collapse point. The proposed model could reasonably reflect the influence of either single or double-curvature bending effect on the collapse displacement of shear wall. Moreover, it comprehensively takes into the account of the acting axial load, the amount of vertical primary steel bars and the amount of horizontal steel bars, to make a reasonable prediction on the collapse displacement of shear wall.
口試委員審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究內容與方法 2
第二章 文獻回顧 3
2.1 美國混凝土學會ACI 318-14規範 (ACI 2014) 3
2.2 美國土木工程師學會ASCE/SEI 41-17 (ASCE 2017) 5
2.3 Weng et al. (2017)剪力破壞之剪力牆側力位移曲線 6
2.3.1 開裂點(Cracking Point) 6
2.3.2 強度點(Strength Point) 7
2.3.3 崩塌點(Collapse Point) 10
2.3.4 Lopes (1991)和Hidalgo et al. (2002)之實驗 10
2.4 曹君婕(2018)鋼筋混凝土剪力牆倒塌位移預測 11
2.4.1 分析一 11
2.4.2 分析二 12
2.5 實驗文獻 13
2.5.1 Massone (2006) 13
2.5.2 Looi (2017) 14
2.5.3 Terzioglu (2011) 14
2.5.4 吳怡謙(2017) 15
2.5.5 曹君婕(2018) 16
第三章 試體規劃 17
3.1 測試規劃 17
3.2 試體設計 18
3.2.1 ALR10_1.0_0.00、ALR20_1.0_0.00 18
3.2.2 ALR10_1.0_0.25、ALR20_1.0_0.25 19
3.2.3 ALR10_1.0_0.56、ALR20_1.0_0.56、ALR30_1.0_0.56 19
3.2.4 ALR30_1.0_0.56S 19
3.3 試體施作 19
3.3.1 施作前之準備 19
3.3.2 基礎施作 21
3.3.3 牆、反應梁施作 22
3.4 測試布置 22
3.4.1 系統概述 23
3.4.2 載重平台 23
3.4.3 反力梁 24
3.4.4 施力系統 24
3.4.5 鋼製夾具 25
3.4.6 高週波袋 26
3.5 量測系統 27
3.5.1 內部量測系統 27
3.5.2 外部量測系統 27
3.6 測試流程 29
3.6.1 鋼製夾具安裝 29
3.6.2 測試步驟 30
第四章 試驗結果 32
4.1 材料試驗 32
4.1.1 混凝土抗壓試驗 32
4.1.2 鋼筋抗拉試驗 32
4.2 裂縫發展與破壞模式 33
4.2.1 ALR10_1.0_0.00 33
4.2.2 ALR10_1.0_0.25 34
4.2.3 ALR10_1.0_0.56 35
4.2.4 ALR20_1.0_0.00 36
4.2.5 ALR20_1.0_0.25 37
4.2.6 ALR20_1.0_0.56 37
4.2.7 ALR30_1.0_0.56 38
4.2.8 ALR30_1.0_0.56S 38
4.3 載重位移遲滯迴圈 39
4.3.1 ALR10_1.0_0.00 40
4.3.2 ALR10_1.0_0.25 40
4.3.3 ALR10_1.0_0.56 41
4.3.4 ALR20_1.0_0.00 42
4.3.5 ALR20_1.0_0.25 42
4.3.6 ALR20_1.0_0.56 43
4.3.7 ALR30_1.0_0.56 43
4.3.8 ALR30_1.0_0.56S 44
4.4 應變計量測 45
4.4.1 ALR10_1.0_0.00 45
4.4.2 ALR10_1.0_0.25 45
4.4.3 ALR10_1.0_0.56 46
4.4.4 ALR20_1.0_0.00 46
4.4.5 ALR20_1.0_0.25 47
4.4.6 ALR20_1.0_0.56 47
4.4.7 ALR30_1.0_0.56 47
4.4.8 ALR30_1.0_0.56S 48
第五章 分析與討論 49
5.1 開裂點 49
5.2 強度點 50
5.2.1 撓曲強度 50
5.2.2 剪力強度 51
5.2.3 強度點位移 51
5.3 崩塌點 52
5.3.1 崩塌點強度 52
5.3.2 崩塌點位移 52
第六章 結論與建議 56
6.1 結論與建議 56
6.1.1 試驗觀察 56
6.1.2 分析結果 57
6.2 未來研究展望 57
參考文獻 58
附錄A 量測儀器頻道對照表 254
[1]ACI Committee 318 (2014). “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14).” American Concrete Institute, Farmington Hills, Mich., 519 pp.
[2]ACI 374.2R-13 (2013). “Guide for Testing Reinforced Concrete Structural Elements under Slowly Applied Simulated Seismic Loads.” American Concrete Institute, Farmington Hills, Mich., 22 pp.
[3]ASCE (2014). “Seismic Evaluation and Retrofit of Existing Buildings (41-13).” American Society of Civil Engineers, ASCE/SEI 41-13, Reston, VA., 518 pp.
[4]ASCE (2017). “Seismic Evaluation and Retrofit of Existing Buildings (41-17).” American Society of Civil Engineers, ASCE/SEI 41-17, Reston, VA., 576 pp.
[5]CNS 560 A 2006 (2014),「中華民國國家標準-鋼筋混凝土用鋼筋」,標準檢驗局。
[6]Hidalgo, P. A., Ledezma, C. A., and Jordan, R. M. (2002). “Seismic Behavior of Squat Reinforced Concrete Shear Walls.” Earthquake Spectra, 18(2), 287-308 pp.
[7]Hwang, S. J., and Lee, H. J. (2002). “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model.” Journal of Structural Engineering, ASCE, 128(12), 1519-1526 pp.
[8]Hwang, S. J., Tsai, R. J., Lam, W. K., and Moehle, J. P. (2017). “Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions.” ACI Structural Journal, 114(5), 1239-1248 pp.
[9]JIS G 3122 (2004). “Japanese industrial standard.” Japanese Standards Association, 3pp.
[10]Lehman, D. E., and Moehle, J. P. (2000). “Seismic Performance of Well-Confined Concrete Bridge Columns.” PEER 1998/01, Pacific Earthquake Engineering Research Center, Berkeley, CA., 295 pp.
[11]Li, Y. A., and Hwang, S. J. (2017). “Prediction of Lateral Load Displacement Curves for Reinforced Concrete Short Columns Failed in Shear.” Journal of Structural Engineering, ASCE, 143(2), 10.1061/(ASCE)ST.1943-541X.0001656 , 04016164.
[12]Looi, D.T.W., Su, R.K.L., Cheng, B., Tsang, H.H. (2017). “Effects of Axial Load on Seismic Performance of Reinforced Concrete Walls with Short Shear Span.” Engineering Structures, 151, 312-326 pp.
[13]Looi, D.T.W. (2017). “Seismic Axial Collapse of Short Shear Span Reinforced Concrete Shear Walls.” Ph.D. Dissertation, Department of Civil Engineering, University of Malaya, Malaysia.
[14]Lopes, M. M. P. S. (1991). “Seismic Behavior of Reinforced Concrete Walls with Low Shear Ratio.” Ph.D. Dissertation, Department of Civil Engineering, University of London, London.
[15]Massone, L.M. (2006). “RC Wall Shear–Flexure Interaction: Analytical and Experimental Responses.” Ph.D. Dissertation, University of California, Los Angeles, CA., 398 pp.
[16]Paulay, T., and Priestley, M. J. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. Wiley, New York, 744 pp.
[17]Terzioglu, T. (2011). “Experimental Evaluation of the Lateral Load Behavior of Squat Structural Walls.” M.S. Thesis, Bogaziçi University, Istanbul, Turkey.
[18]Wallace, J. W., Elwood, K. J., and Massone, L. M. (2008) “Investigation of the Axial Load Capacity for Lightly Reinforced Wall Piers.” Journal of Structural Engineering, ASCE, 134(9), 1548-1557pp.
[19]Weng, P. W., Li, Y. A., Tu, Y. S. and Hwang, S. J. (2017). “Prediction of the Lateral Load-Displacement Curves for Reinforced Concrete Squat Walls Failing in Shear.” Journal of Structural Engineering, ASCE, 143(10), 10.1061/(ASCE)ST.1943-541X.0001872.
[20]吳怡謙(2017),「高強度鋼筋混凝土開孔剪力牆裂縫控制之研究」,碩士論文,國立台灣大學,土木工程學系,台北,164頁。
[21]曹君婕(2018),「鋼筋混凝土剪力牆破壞與倒塌行為研究」,碩士論文,國立台灣大學,土木工程學系,台北,249頁。
[22]葉柔伶(2017),「開孔鋼筋混凝土剪力牆耐震能力提升之研究」,碩士論文,國立台灣大學,土木工程學系,台北,146頁。
[23]蔡仁傑(2015),「鋼筋混凝土開孔牆之側力位移曲線預測」,碩士論文,國立台灣大學,土木工程學系,台北,181頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔