跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/28 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王宇迪
研究生(外文):Yu-Di Wang
論文名稱:應用多目標基因演算法於海綿城市開發之研究
論文名稱(外文):Apply Multi-Objective Genetic Algorithm To Develop The Sponge City
指導教授:何昊哲
指導教授(外文):Hao-Che Ho
口試委員:朱佳仁游進裕
口試委員(外文):Chia-Ren ChuSinite C Yu
口試日期:2019-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:110
中文關鍵詞:低衝擊開發海綿城市多目標基因演算法暴雨管理模式蒙地卡羅試驗
DOI:10.6342/NTU201901893
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於氣候變遷和高度城市化的挑戰下,現代都市所面臨的水環境風險日趨嚴峻,傳統的雨水管理概念難以應對未來都市變化產生之威脅。有鑑於此,雨水管理的觀念逐漸轉變成彈性適應環境變化和洪澇災害的海綿城市策略,其核心理念為低衝擊開發(LID),通過分散式的在源處理設計,增加集水區的入滲或蓄水空間,減少地表逕流,降低都市開發對水文迴圈的影響。本研究結合都市規劃與LID設計概念來探討區域透水與滯洪能力對都市韌性的影響。
本研究以林口特定區的A7重劃區為為研究區域,使用美國環保署(US EPA)開發的暴雨管理模式(SWMM),按照該地區都市規劃的土地利用配置合理的LID設施,以設計的不同降雨條件進行模擬,探討LID和滯洪池的消減洪峰與地表逕流的效益。結果顯示,LID在短延時低重現期的降雨中能發揮較好的效果,當重現期大於10年時效果不如滯洪池。若以單位成本來看,綠屋頂的減洪效益最好,若從單位面積來看,配置雨水收集系統的效果最好。針對整個都市區域的LID設計,需要考量到最佳配置以達到成本收益最大化。本研究通過多目標基因演算法(MOGA),探討在不同的成本情況下,LID的最佳減洪效益、消減逕流效益與其空間上的配置。結果顯示欲消減洪峰則需要將LID優先配置於排水幹線中上游,欲消減地表逕流則應使用成本效益較高的LID設施與排水系統無關。整體而言LID配置80%的可配置面積即可達到100%的效果。最後以蒙地卡羅試驗隨機改變都市形態,結果顯示欲消減洪峰可在不透水率較高的地方配置較高比例的LID,而消減地表逕流與不透水率無關,因此地表逕流量更適合作為都市設計LID的指標。
Facing the challenges of climate change and high urbanization, the water environment risks faced by modern cities are becoming more and more serious. The traditional concept of stormwater management is hard to cope with the threat of future urban changes. in this regard, the concept of stormwater management has gradually turned into a sponge city strategy that resiliently adapts to environmental changes and floods. The core concept is low-impact development (LID), which increases the infiltration of catchment area or water storage space and reduces surface runoff through distributed source-processing design, alleviating the impact of urban development on the hydrological cycle. This study combines urban planning and the LID design concept to explore the impact of regional permeable and detention capacity on urban resilience. The study area is based on the high-density development of the Yonghe district of New Taipei City. The US Environmental Protection Agency (US EPA) storm water management model (SWMM) is used to select suitable LID facilities or detention tanks based on the land use characteristics of the area. Rainfalls with different return periods and different delays were simulated. The results show that LID can be most effective in low return period and short-delay rainfall, and the use of detention tanks is more effective in rainfall above 25-year return period. In addition, in the case of limited space, rainwater should be used for collection; in the case of limited costs, green roofs should be used to maximize their effectiveness.
This study designates the A7 consolidation area in the specific area of Linkou as the research area and employs the storm water management model (SWMM) developed by the US Environmental Protection Agency (US EPA). Accordingly, the present study explores the efficacy of LID and subtractive peak flow and surface runoff of detention ponds by design reasonable LID facilities according to the urban planning of the area and simulating different rainfall conditions.The results show that LID can produce better results in rainfall of short-delay and return periods, and the results are not as significant as the detention when the return period is more than 10 years. From the perspective of unit cost, the green roof boasts the best peak flow reduction efficiency. While from the perspective of unit area, the stormwater collection system produces the best result. For the LID design of the entire metropolitan area, the best configuration needs to be considered to maximize cost-benefits. This study discusses the optimal peak flow reduction and subtractive runoff efficacy of LID and its spatial configuration in different costs by virtue of multi-objective genetic algorithm (MOGA). The results show that in order to reduce the subtractive peak flow, LID should be preferentially configurated in the upstream and downstream of the drainage trunk. To reduce surface runoff, highly cost-effective LID facility should be employed regardless of the drainage system. In general, 80% configurable area of LID serves to achieve 100% effect. Finally, the urban morphology has been randomly changed by virtue of the Monte Carlo test. The results show that in order to reduce the peak flow, a higher proportion of LID can be configurated in areas with higher water impermeability, and the reduction of surface runoff is impertinent to the impervious rate. Therefore, surface runoff is a more appropriate LID indicators of urban design.
誌謝 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 IX
表目錄 XII
第1章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究內容 4
1.3.1 研究架構 4
1.3.2 研究流程 5
第二章 文獻回顧 6
2.1 海綿城市 6
2.1.1 都市雨水管理模式發展 6
2.1.2 海綿城市簡介 8
2.2 低衝擊開發 10
2.2.1 低衝擊開發簡介 10
2.2.2 低衝擊開發數值研究 15
2.2.3 低衝擊開發最佳化研究 20
第三章 研究方法 24
3.1 SWMM之模擬機制 24
3.1.1 地表逕流模組 25
3.1.2 輸水幹線模組 27
3.1.3 LID元件 33
3.2 多目標基因演算法 37
3.2.1 基因演算法的基本構架 38
3.2.2 適應函數(Fitness Function) 39
3.2.3 基因(Gene)與決策變數(Decision variable) 39
3.2.4 初始族群(Initial Population)與世代 40
3.2.5 階級(Rank)與競爭(Tournament) 40
3.2.6 交配(Crossover) 41
3.2.7 突變(Mutation) 42
3.2.8 擁擠距離(Crowding distance) 42
3.2.9 傳播值(Spread) 43
3.2.10 停止準則 43
3.2.11 柏拉圖邊界(Pareto frontier) 44
3.2.12 基因演算法演算過程 45
第四章 模式建立 46
4.1 研究區域 46
4.1.1 研究區域概述 46
4.1.2 都市計劃與發展 47
4.1.3 氣象水文 50
4.1.4 排水系統 50
4.2 SWMM模式建立 52
4.2.1 雨量(rain gage) 52
4.2.2 子集水區(subcatchment) 55
4.2.3 人孔(junction) 58
4.2.4 管線(conduit) 58
4.2.5 出流條件 59
4.2.6 LID元件 (LID control) 59
第五章 評估不同降雨條件LID效益 63
5.1 模擬情景 63
5.1.1 LID策略 63
5.1.2 BMPs策略 63
5.2 降雨條件對LID與滯洪池消減洪峰效果影響 66
5.3 降雨條件對LID與滯洪池消減地表逕流效果影響 69
5.4 不同降雨下LID效益分析 71
5.4.1 LID消減洪峰效益分析 71
5.4.2 LID削減地表逕流效益分析 75
第六章 評估LID的空間配置 79
6.1 條件設定 79
6.1.1 LID的配置假設 79
6.1.2 合理化分區 80
6.1.3 設計降雨 81
6.2 不同區域配置LID對洪峰流量與地表逕流量之影響 81
6.3 都市消減洪峰LID最佳配置 84
6.4 都市削減地表逕流LID最佳配置 90
第七章 蒙地卡羅試驗 97
7.1 蒙地卡羅試驗參數 97
7.2 蒙地卡羅試驗分區 98
7.3 蒙地卡羅試驗結果 99
7.3.1 平均不透水率分佈 99
7.3.2 開發程度與LID最佳配置比例之關係 100
7.3.3 LID配置比例空間分佈特性 101
第八章 結論與建議 104
8.1 結論 104
8.2 建議 106
參考文獻 108
[1]經濟部水資源局.(2001). 水文應用手冊
[2]內政部營建署. (2015). 水環境低衝擊開發設施操作手冊
[3]经济部水利署. (2018). 水利法修正新增逕流分擔與出流管制專章
[4]桃園市政府資料開放平台. 桃園市全區雨水下水道管線分布圖
[5]經濟部中央地質調查所. 地質整合資料查詢平台
[6]住建部. 海绵城市建设技术指南
[7]王雯雯, 赵智杰, & 秦华鹏. (2012). 基于 SWMM 的低冲击开发模式水文效应模拟评估. 北京大学学报 (自然科学版), 48(2), 303-309.
[8]仇保兴. (2015). 海绵城市 (LID) 的内涵, 途径与展望. 建设科技, 1(3), 11-18.
[9]彭振聲, 林士斌, & 余世凱. (2016). 永續臺北 海綿城市. 土木水利, 43(5), 38-54.
[10]何媚華. (2014). 中永和地區都市排洪系統最佳管理措施之探討. 臺灣大學土木工程學研究所學位論文, 1-95.
[11]徐硯庭. (2014). 低衝擊開發運用在高都市化地區的減洪效益-以新北市中永和地區為例. 臺灣大學土木工程學研究所學位論文, 1-126.
[12]黃耀賢. (2015). 都市低衝擊開發設施最佳化配置研究─ 以臺北市民生社區為例. 臺灣大學土木工程學研究所學位論文, 1-105.
[13]林子皓. (2016). 低衝擊開發技術應用對於都市發展之高地排水的影響與效果-以林口區新市鎮為例. 臺灣大學土木工程學研究所學位論文, 1-110.
[14]梁崇淵. (2017). 運用基因演算法探討低衝擊開發之空間配置策略─ 以台大校園為例. 臺灣大學土木工程學研究所學位論文, 1-145.
[15]林士惟. (2018). 多目標基因演算法於韌性城市評估之研究. 臺灣大學土木工程學研究所學位論文, 1-99.
[16]Ahern, J. (2013). Urban landscape sustainability and resilience: the promise and challenges of integrating ecology with urban planning and design. Landscape ecology, 28(6), 1203-1212.
[17]Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact development practices: literature review and suggestions for future research. Water, Air, & Soil Pollution, 223(7), 4253-4273.
[18]Bedan, E. S., & Clausen, J. C. (2009). Stormwater Runoff Quality and Quantity From Traditional and Low Impact Development Watersheds 1. JAWRA Journal of the American Water Resources Association, 45(4), 998-1008.
[19]Buchholz, N. (2013). Low-Impact Development and Green Infrastructure Implementation: Creating a Replicable GIS Suitability Model for Stormwater Management and the Urban Heat Island Effect in Dallas, Texas.
[20]Change, I. P. O. C. (2001). Climate change 2007: Impacts, adaptation and vulnerability. Genebra, Suíça.
[21]Chen, W. (2014). Monitoring and Modeling of the Hydrologic Performance of the Carroll Street Right-of-Way Bioswale. Drexel University,
[22]Echols, S., & Pennypacker, E. (2015). The History of Stormwater Management and Background for Artful Rainwater Design. In Artful Rainwater Design (pp. 7-22): Springer.
[23]Eckart, K., McPhee, Z., & Bolisetti, T. (2017). Performance and implementation of low impact development–a review. Science of The Total Environment, 607, 413-432.
[24]Eckart, K., McPhee, Z., & Bolisetti, T. (2018). Multiobjective optimization of low impact development stormwater controls. Journal of hydrology, 562, 564-576.
[25]Giacomoni, M., & Joseph, J. (2017). Multi-objective evolutionary optimization and Monte Carlo simulation for placement of low impact development in the catchment scale. Journal of Water Resources Planning and Management, 143(9), 04017053.
[26]Giacomoni, M. H., Zechman, E. M., & Brumbelow, K. (2011). Hydrologic footprint residence: Environmentally friendly criteria for best management practices. Journal of Hydrologic Engineering, 17(1), 99-108.
[27]Hellström, D., Jeppsson, U., & Kärrman, E. (2000). A framework for systems analysis of sustainable urban water management. Environmental impact assessment review, 20(3), 311-321.
[28]Huang, C.-L., Hsu, N.-S., Liu, H.-J., & Huang, Y.-H. (2018). Optimization of low impact development layout designs for megacity flood mitigation. Journal of hydrology, 564, 542-558.
[29]Jayasooriya, V., & Ng, A. (2014). Tools for modeling of stormwater management and economics of green infrastructure practices: a review. Water, Air, & Soil Pollution, 225(8), 2055.
[30]Jia, H., Yao, H., Tang, Y., Shaw, L. Y., Field, R., & Tafuri, A. N. (2015). LID-BMPs planning for urban runoff control and the case study in China. Journal of environmental management, 149, 65-76.
[31]Lerer, S., Arnbjerg-Nielsen, K., & Mikkelsen, P. (2015). A mapping of tools for informing water sensitive urban design planning decisions—questions, aspects and context sensitivity. Water, 7(3), 993-1012.
[32]Liu, Y., Cibin, R., Bralts, V. F., Chaubey, I., Bowling, L. C., & Engel, B. A. (2016). Optimal selection and placement of BMPs and LID practices with a rainfall-runoff model. Environmental modelling & software, 80, 281-296.
[33]Martin-Mikle, C. J., de Beurs, K. M., Julian, J. P., & Mayer, P. M. (2015). Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landscape and urban planning, 140, 29-41.
[34]Palla, A., & Gnecco, I. (2015). Hydrologic modeling of Low Impact Development systems at the urban catchment scale. Journal of hydrology, 528, 361-368.
[35]Qin, H.-p., Li, Z.-x., & Fu, G. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of environmental management, 129, 577-585.
[36]Rosa, D. J., Clausen, J. C., & Dietz, M. E. (2015). Calibration and verification of SWMM for low impact development. JAWRA Journal of the American Water Resources Association, 51(3), 746-757.
[37]Shafique, M., & Kim, R. (2018). Recent progress in Low-Impact Development in South Korea: Water-management policies, challenges and opportunities. Water, 10(4), 435.
[38]Wong, T. H., & Brown, R. R. (2009). The water sensitive city: principles for practice. Water science and technology, 60(3), 673-682.
[39]Xu, T., Engel, B. A., Shi, X., Leng, L., Jia, H., Shaw, L. Y., & Liu, Y. (2018). Marginal-cost-based greedy strategy (MCGS): Fast and reliable optimization of low impact development (LID) layout. Science of The Total Environment, 640, 570-580.
[40]Xu, T., Jia, H., Wang, Z., Mao, X., & Xu, C. (2017). SWMM-based methodology for block-scale LID-BMPs planning based on site-scale multi-objective optimization: a case study in Tianjin. Frontiers of Environmental Science & Engineering, 11(4), 1.
[41]Zhang, G., Hamlett, M., & Reed, P. (2006). Multi-objective optimization of low impact development scenarios in an urbanizing watershed. Paper presented at the Proceedings of the AWRA annual conference, Baltimore, Usa.
[42]Zhang, G., Hamlett, J. M., Reed, P., & Tang, Y. (2013). Multi-objective optimization of low impact development designs in an urbanizing watershed. Open Journal of Optimization, 2(04), 95.
[43]Zhang, K., & Chui, T. F. M. (2018). A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Science of The Total Environment, 621, 915-929.
[44]Zhou, Q. (2014). A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water, 6(4), 976-992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊