|
[1]經濟部水資源局.(2001). 水文應用手冊 [2]內政部營建署. (2015). 水環境低衝擊開發設施操作手冊 [3]经济部水利署. (2018). 水利法修正新增逕流分擔與出流管制專章 [4]桃園市政府資料開放平台. 桃園市全區雨水下水道管線分布圖 [5]經濟部中央地質調查所. 地質整合資料查詢平台 [6]住建部. 海绵城市建设技术指南 [7]王雯雯, 赵智杰, & 秦华鹏. (2012). 基于 SWMM 的低冲击开发模式水文效应模拟评估. 北京大学学报 (自然科学版), 48(2), 303-309. [8]仇保兴. (2015). 海绵城市 (LID) 的内涵, 途径与展望. 建设科技, 1(3), 11-18. [9]彭振聲, 林士斌, & 余世凱. (2016). 永續臺北 海綿城市. 土木水利, 43(5), 38-54. [10]何媚華. (2014). 中永和地區都市排洪系統最佳管理措施之探討. 臺灣大學土木工程學研究所學位論文, 1-95. [11]徐硯庭. (2014). 低衝擊開發運用在高都市化地區的減洪效益-以新北市中永和地區為例. 臺灣大學土木工程學研究所學位論文, 1-126. [12]黃耀賢. (2015). 都市低衝擊開發設施最佳化配置研究─ 以臺北市民生社區為例. 臺灣大學土木工程學研究所學位論文, 1-105. [13]林子皓. (2016). 低衝擊開發技術應用對於都市發展之高地排水的影響與效果-以林口區新市鎮為例. 臺灣大學土木工程學研究所學位論文, 1-110. [14]梁崇淵. (2017). 運用基因演算法探討低衝擊開發之空間配置策略─ 以台大校園為例. 臺灣大學土木工程學研究所學位論文, 1-145. [15]林士惟. (2018). 多目標基因演算法於韌性城市評估之研究. 臺灣大學土木工程學研究所學位論文, 1-99. [16]Ahern, J. (2013). Urban landscape sustainability and resilience: the promise and challenges of integrating ecology with urban planning and design. Landscape ecology, 28(6), 1203-1212. [17]Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact development practices: literature review and suggestions for future research. Water, Air, & Soil Pollution, 223(7), 4253-4273. [18]Bedan, E. S., & Clausen, J. C. (2009). Stormwater Runoff Quality and Quantity From Traditional and Low Impact Development Watersheds 1. JAWRA Journal of the American Water Resources Association, 45(4), 998-1008. [19]Buchholz, N. (2013). Low-Impact Development and Green Infrastructure Implementation: Creating a Replicable GIS Suitability Model for Stormwater Management and the Urban Heat Island Effect in Dallas, Texas. [20]Change, I. P. O. C. (2001). Climate change 2007: Impacts, adaptation and vulnerability. Genebra, Suíça. [21]Chen, W. (2014). Monitoring and Modeling of the Hydrologic Performance of the Carroll Street Right-of-Way Bioswale. Drexel University, [22]Echols, S., & Pennypacker, E. (2015). The History of Stormwater Management and Background for Artful Rainwater Design. In Artful Rainwater Design (pp. 7-22): Springer. [23]Eckart, K., McPhee, Z., & Bolisetti, T. (2017). Performance and implementation of low impact development–a review. Science of The Total Environment, 607, 413-432. [24]Eckart, K., McPhee, Z., & Bolisetti, T. (2018). Multiobjective optimization of low impact development stormwater controls. Journal of hydrology, 562, 564-576. [25]Giacomoni, M., & Joseph, J. (2017). Multi-objective evolutionary optimization and Monte Carlo simulation for placement of low impact development in the catchment scale. Journal of Water Resources Planning and Management, 143(9), 04017053. [26]Giacomoni, M. H., Zechman, E. M., & Brumbelow, K. (2011). Hydrologic footprint residence: Environmentally friendly criteria for best management practices. Journal of Hydrologic Engineering, 17(1), 99-108. [27]Hellström, D., Jeppsson, U., & Kärrman, E. (2000). A framework for systems analysis of sustainable urban water management. Environmental impact assessment review, 20(3), 311-321. [28]Huang, C.-L., Hsu, N.-S., Liu, H.-J., & Huang, Y.-H. (2018). Optimization of low impact development layout designs for megacity flood mitigation. Journal of hydrology, 564, 542-558. [29]Jayasooriya, V., & Ng, A. (2014). Tools for modeling of stormwater management and economics of green infrastructure practices: a review. Water, Air, & Soil Pollution, 225(8), 2055. [30]Jia, H., Yao, H., Tang, Y., Shaw, L. Y., Field, R., & Tafuri, A. N. (2015). LID-BMPs planning for urban runoff control and the case study in China. Journal of environmental management, 149, 65-76. [31]Lerer, S., Arnbjerg-Nielsen, K., & Mikkelsen, P. (2015). A mapping of tools for informing water sensitive urban design planning decisions—questions, aspects and context sensitivity. Water, 7(3), 993-1012. [32]Liu, Y., Cibin, R., Bralts, V. F., Chaubey, I., Bowling, L. C., & Engel, B. A. (2016). Optimal selection and placement of BMPs and LID practices with a rainfall-runoff model. Environmental modelling & software, 80, 281-296. [33]Martin-Mikle, C. J., de Beurs, K. M., Julian, J. P., & Mayer, P. M. (2015). Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landscape and urban planning, 140, 29-41. [34]Palla, A., & Gnecco, I. (2015). Hydrologic modeling of Low Impact Development systems at the urban catchment scale. Journal of hydrology, 528, 361-368. [35]Qin, H.-p., Li, Z.-x., & Fu, G. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of environmental management, 129, 577-585. [36]Rosa, D. J., Clausen, J. C., & Dietz, M. E. (2015). Calibration and verification of SWMM for low impact development. JAWRA Journal of the American Water Resources Association, 51(3), 746-757. [37]Shafique, M., & Kim, R. (2018). Recent progress in Low-Impact Development in South Korea: Water-management policies, challenges and opportunities. Water, 10(4), 435. [38]Wong, T. H., & Brown, R. R. (2009). The water sensitive city: principles for practice. Water science and technology, 60(3), 673-682. [39]Xu, T., Engel, B. A., Shi, X., Leng, L., Jia, H., Shaw, L. Y., & Liu, Y. (2018). Marginal-cost-based greedy strategy (MCGS): Fast and reliable optimization of low impact development (LID) layout. Science of The Total Environment, 640, 570-580. [40]Xu, T., Jia, H., Wang, Z., Mao, X., & Xu, C. (2017). SWMM-based methodology for block-scale LID-BMPs planning based on site-scale multi-objective optimization: a case study in Tianjin. Frontiers of Environmental Science & Engineering, 11(4), 1. [41]Zhang, G., Hamlett, M., & Reed, P. (2006). Multi-objective optimization of low impact development scenarios in an urbanizing watershed. Paper presented at the Proceedings of the AWRA annual conference, Baltimore, Usa. [42]Zhang, G., Hamlett, J. M., Reed, P., & Tang, Y. (2013). Multi-objective optimization of low impact development designs in an urbanizing watershed. Open Journal of Optimization, 2(04), 95. [43]Zhang, K., & Chui, T. F. M. (2018). A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Science of The Total Environment, 621, 915-929. [44]Zhou, Q. (2014). A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water, 6(4), 976-992.
|