(3.239.33.139) 您好!臺灣時間:2021/03/07 22:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:藍嘉偉
研究生(外文):Chia-Wei Lan
論文名稱:季節降水變化及其對陸地水文循環的影響
論文名稱(外文):Changes in Seasonal Precipitation and its Impacts on the Terrestrial Hydrological Cycle
指導教授:羅敏輝羅敏輝引用關係
指導教授(外文):Min-Hui Lo
口試委員:許晃雄隋中興余嘉裕王嘉琪陳維婷黃彥婷
口試日期:2019-06-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:97
中文關鍵詞:全球暖化水氣能量收支分析極端降水淨土壤水通量地下水位高度熱帶環流季風環流
DOI:10.6342/NTU201902328
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文主要探討氣候模式與再分析資料之間季節降水機制差異的原因,進而討論陸地水文循環如何受到全球暖化與極端降水頻率改變的影響,最後討論土壤濕度改變後如何進一步影響大氣環流。
全球暖化下季節降水差異越來越大,過去季節降水變化的機制討論僅止於氣候模式上,在此論文我們發現CMIP5_AMIP與再分析資料的降水變化以及其背後的機制有極大的差異,在CMIP5_AMIP的降水變化主要與熱力機制(水氣增加)有關,然而再分析資料的結果則說明動力上的機制(垂直運動增強)較重要,造成此差異來源主要是因為氣候模式中熱帶地區中高對流層增溫速度大於再分析資料,進而導致氣候模式趨向於較穩定的大氣所致,同時也造成垂直運動減弱,此結果更造成動力機制對降水變化的貢獻在氣候模式中明顯偏弱。
季節降水差距變大隱含著極端降水頻率升高,可能會影響到陸地水文循環過程,因此我們進一步探討熱帶雨林區(亞馬遜、剛果、印尼)在全球暖化下陸地淨流入水通量到土壤的差異,研究發現因為土壤對於降水的反應呈現非線性關係,在印尼熱帶雨林區受到極端降水的影響,河川徑流將大幅增加,更造成淨流入土壤的水有變少的趨勢,同時近地表土壤水則有明顯增加;相反的,另外兩個雨林區則沒有明顯極端降水的改變。進一步使用大氣水氣收支方程,發現此地的降水極端變化的主要原因是全球暖化下大氣水氣增加導致的結果。
此論文最後利用CESM模式設計理想化的土壤濕度實驗,探討其對全球大氣環流的影響,結果顯示當全球土壤變濕時會導致從熱帶到中緯度陸地地區地表蒸散量增加,同時也會降低地表溫度,進而造成經向溫度梯度增強,使得熱帶大氣環流隨之增強。因為陸地溫度降低,也會造成海陸溫度差異減少,南亞季風環流隨之減弱。從大氣能量觀點來探討,也能發現因為環流的改變,南北傳送的潛熱與乾靜能也有相對應的變化。另外,由於土壤濕度變化所造成大氣能量傳送改變的強度與聖嬰-反聖嬰間及全球暖化下所造成的能量改變的強度是一致的。
全球暖化下,氣候變異或土地利用方式的改變皆會造成陸地水循環隨之變化,進一步造成水資源管理困難、水旱災頻率增加、甚至影響糧食作物的生長,使得食物短缺。因此探討大氣如何影響陸地及陸地如何再反饋到大氣的研究在未來的暖化情境下,更顯重要。
This dissertation investigated the mechanisms of seasonal precipitation changes between Coupled Model Intercomparison Project Phase 5 (CMIP5) AMIP-type outputs and reanalysis datasets. We also suggested that the possible impacts of frequent extreme precipitation on the terrestrial hydrological cycle under global warming. Finally, we investigate the responses of tropical and monsoon circulations to the different soil water conditions resulting from different land-atmospheric interactions.
Previous studies demonstrated the increased annual range of precipitation as the climate warms. However, these documents only used the model outputs to discuss the mechanism of seasonal precipitation changes and found that the increased water vapor plays a curial role on such precipitation changes. When using the reanalysis datasets, we revealed the changes in the dynamic component in the water budget analysis are more important for the observed precipitation changes. Such discrepancy might be due to the tendency toward stability in CMIP5_AMIP owing to more tropical warming rate in the mid-upper troposphere compared to that of reanalysis datasets. Such a tendency also leads to weakening tropical vertical motion in CMIP5_AMIP.
The increased annual range of precipitation is indicative of higher frequency of extreme precipitation, which can affect the terrestrial hydrological cycle. We also investigated net water flux into the soil over the rainforest areas, including Amazon, Congo, and the Maritime Continent. Nonlinear responses to extreme precipitation lead to a reduction of infiltration and a proportionately higher amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming, and such precipitation changes are related to increased water vapor under global warming. In addition, the near-surface soil moisture is obviously increased over the Maritime Continent.
Finally, a pair of idealized experiments corresponding to contrast fixed groundwater table depths over the Earth’s continents by AMIP-type simulations in the Community Earth System Model (CESM) was conducted. In the wet (shallow water table) experiment, both land evapotranspiration and soil moisture tend to increase, leading to an increased meridional surface temperature gradient, which also causes the tropical circulation stronger than that of the dry (deep water table) experiment. Relative to the dry experiment, the wet experiment exhibited the enhancement of southward (northward) latent energy (dry static energy) transport coincide with the stronger tropical circulation. Despite larger surface latent heat fluxes to the atmosphere in the wet soil case, the monthly mean of stationary eddy demonstrated the reductions of northward latent energy transports due to compensation by a notably weakening South-Asia monsoon circulation associated with weaker land-sea thermal contrast. This study indicates the importance of groundwater variations and land surface conditions in global energy transport and has further implications for earth system model development.
Under global warming, land use and climate changes have profound impacts on the terrestrial hydrological cycle, which further cause the difficulty of water resource management, the higher risk of flooding and drought, and even the food shortage. Consequently, how the atmosphere affects the terrestrial hydrological cycle and its feedbacks to the atmosphere through land-atmospheric interactions will be a critical issue in the warming future.
COMMITTEE VERIFICATION LETTER
ACKNOWLEDGMENT
ABSTRACT i
ABSTRACT (Chinese Version) iii
CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
1. Introduction and Background 1
1.1 The Mechanism of Seasonal Precipitation Changes 1
1.2 The Impact of Extreme Precipitation on Terrestrial Hydrology 1
1.3 The Soil Conditions Affect the Tropical and Monsoon Circulations 2
2. The Mechanisms behind Changes in the Seasonality of Global Precipitation Found in Reanalysis Products and CMIP5 Simulations 4
2.1 Abstract 5
2.2 Introduction 6
2.3 Data and Methodology 9
2.4 Results 13
2.5 Discussion 29
2.6 Conclusions 31
3. Terrestrial Water Flux Responses to Global Warming in Tropical Rainforest Areas 34
3.1 Abstract 35
3.2 Introduction 36
3.3 Data 39
3.4 Methodology 40
3.5 Results 43
3.6 Discussion and Conclusions 56
4. Responses of Global Atmospheric Energy Transport to Idealized Groundwater Conditions 58
4.1 Abstract 59
4.2 Introduction 60
4.3 Model Simulations and Methodology 62
4.4 Results and Discussion 65
4.5 Discussion 74
4.6 Conclusion 74
5. Conclusions and Future Research 76
5.1 Summary of Results 76
5.2 Future Research 77
BIBLIOGRAPHY 86
Adam, O., Schneider, T., Harnik, N., 2014. Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. Journal of Climate, 27(19): 7450-7461. DOI:10.1175/JCLI-D-14-00140.1
Adler, R.F. et al., 2003. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). Journal of Hydrometeorology, 4(6): 1147-1167.
Allan, R.P., Soden, B.J., 2008. Atmospheric warming and the amplification of precipitation extremes. Science, 321(5895): 1481-1484. DOI:10.1126/science.1160787
Banin, L. et al., 2014. Tropical forest wood production: a cross-continental comparison. J Ecol, 102(4): 1025-1037. DOI:10.1111/1365-2745.12263
Barpanda, P., Shaw, T., 2017. Using the Moist Static Energy Budget to Understand Storm-Track Shifts across a Range of Time Scales. Journal of the Atmospheric Sciences, 74(8): 2427-2446. DOI:10.1175/jas-d-17-0022.1
Beck, H.E. et al., 2017. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol Earth Syst Sc, 21(1): 589-615. DOI:10.5194/hess-21-589-2017
Becker, A. et al., 2013. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth System Science Data, 5(1): 71-99. DOI:10.5194/essd-5-71-2013
Berg, A., Lintner, B., Findell, K., Giannini, A., 2017. Soil moisture influence on seasonality and large-scale circulation in simulations of the West African monsoon. Journal of Climate, 30(7): 2295-2317. DOI:10.1175/JCLI-D-15-0877.1
Betts, A.K., Silva Dias, M.A.F., 2010. Progress in understanding land-surface-atmosphere coupling from LBA research. Journal of Advances in Modeling Earth Systems, 2. DOI:10.3894/james.2010.2.6
Bony, S. et al., 2013. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nature Geoscience, 6(6): 447-451. DOI:10.1038/ngeo1799
Brienen, R.J. et al., 2015. Long-term decline of the Amazon carbon sink. Nature, 519(7543): 344-8. DOI:10.1038/nature14283
Bui, H.X. et al., 2019. Convective Structure Changes over the Equatorial Pacific with Highly Increased Precipitation under Global Warming Simulated in the HiRAM. Scientific Online Letters on the Atmosphere. DOI:10.2151/sola. 2019-022
Bush, M., Flenley, J., Gosling, W., 2011. Tropical Rainforest Responses to Climatic Change. DOI:10.1007/978-3-642-05383-2
Byrne, M.P., O’Gorman, P.A., 2015. The Response of Precipitation Minus Evapotranspiration to Climate Warming: Why the “Wet-Get-Wetter, Dry-Get-Drier” Scaling Does Not Hold over Land. Journal of Climate, 28(20): 8078-8092. DOI:10.1175/jcli-d-15-0369.1
Chadwick, R., 2016. Which aspects of CO2forcing and SST warming cause most uncertainty in projections of tropical rainfall change over land and ocean? Journal of Climate, 29(7): 2493-2509. DOI:10.1175/JCLI-D-15-0777.1
Chadwick, R., Boutle, I., Martin, G., 2013. Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. Journal of Climate, 26(11): 3803-3822. DOI:10.1175/JCLI-D-12-00543.1
Chemke, R., Polvani, L.M., 2019. Opposite tropical circulation trends in climate models and in reanalyses. Nature Geoscience, 12(July). DOI:10.1038/s41561-019-0383-x
Chen, C.-C. et al., 2019. Thermodynamic and dynamic responses to deforestation in the Maritime Continent: A modeling study. Journal of Climate, under revision: 1-56. DOI:10.1175/JCLI-D-18-0310.1.
Chen, C.A., Chou, C., Chen, C.T., 2012. Regional perspective on mechanisms for tropical precipitation frequency and intensity under global warming. Journal of Climate, 25(24): 8487-8501. DOI:10.1175/JCLI-D-12-00096.1
Chen, G., Plumb, R.A., Lu, J., 2010. Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua-planet model. Geophysical Research Letters, 37(12): n/a-n/a. DOI:10.1029/2010GL043473
Chen, M., Xie, P., Janowiak, J.E., Arkin, P.a., 2002. Global Land Precipitation: A 50-yr Monthly Analysis Based on Gauge Observations. Journal of Hydrometeorology, 3(3): 249-266.
Chou, C. et al., 2013. Increase in the range between wet and dry season precipitation. Nature Geoscience, 6(4): 263-267. DOI:10.1038/ngeo1744
Chou, C., Lan, C.-W., 2012. Changes in the Annual Range of Precipitation under Global Warming. Journal of Climate, 25(1): 222-235. DOI:10.1175/jcli-d-11-00097.1
Chou, C., Neelin, J.D., 2004. Mechanisms of Global Warming Impacts on Regional Tropical Precipitation*. Journal of Climate, 17(13): 2688-2701. DOI:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2
Chou, C., Neelin, J.D., Chen, C.-A., Tu, J.-Y., 2009. Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming. Journal of Climate, 22(8): 1982-2005. DOI:10.1175/2008jcli2471.1
Chou, C., Neelin, J.D., Su, H., 2001. Ocean-atmosphere-land feedbacks in an idealized monsoon. Quarterly Journal of the Royal Meteorological Society, 127(576): 1869-1891. DOI:10.1002/qj.49712757602
Cook, B.I., Ault, T.R., Smerdon, J.E., 2015. Unprecedented 21st century drought risk in the American Southwest and Central Plains. (February): 1-7. DOI:10.1126/sciadv.1400082
Dai, A., 2006. Recent climatology, variability, and trends in global surface humidity. Journal of Climate, 19(15): 3589-3606. DOI:10.1175/JCLI3816.1
Dai, A., 2011. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900-2008. Journal of Geophysical Research: Atmospheres, 116(12). DOI:10.1029/2010JD015541
Dai, A., 2012. Increasing drought under global warming in observations and models. Nature Climate Change, 3(1): 52-58. DOI:10.1038/nclimate1633
Deangelis, A. et al., 2010. Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. Journal of Geophysical Research Atmospheres, 115(15): 1-14. DOI:10.1029/2010JD013892
Dee, D.P., Källén, E., Simmons, A.J., Haimberger, L., 2011. Comments on “Reanalyses Suitable for Characterizing Long-Term Trends”. Bulletin of the American Meteorological Society, 92(1): 65-70. DOI:10.1175/2010bams3070.1
Devaraju, N., Bala, G., Modak, A., 2015. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proceedings of the National Academy of Sciences, 112(11): 3257-3262. DOI:10.1073/pnas.1423439112
Dirmeyer, P.A., Fang, G., Wang, Z., Yadav, P., Milton, A., 2014. Climate change and sectors of the surface water cycle In CMIP5 projections. Hydrol Earth Syst Sc, 18(12): 5317-5329. DOI:DOI 10.5194/hess-18-5317-2014
Dominguez, F., Kumar, P., Vivoni, E.R., 2008. Precipitation Recycling Variability and Ecoclimatological Stability—A Study Using NARR Data. Part II: North American Monsoon Region. Journal of Climate, 21(20): 5187-5203. DOI:10.1175/2008JCLI1760.1
Emori, S., Brown, S.J., 2005. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophysical Research Letters, 32(17): 1-5. DOI:10.1029/2005GL023272
Evans, A., Nguyen, H., Timbal, B., Smith, I., Lucas, C., 2012. The Hadley Circulation in Reanalyses: Climatology, Variability, and Change. Journal of Climate, 26(10): 3357-3376. DOI:10.1175/jcli-d-12-00224.1
Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge. DOI:10.1017/CBO9781139177245
Frierson, D.M.W., 2006. Robust increases in midlatitude static stability in simulations of global warming. Geophysical Research Letters, 33(24): 1-4. DOI:10.1029/2006GL027504
Fu, Q., Manabe, S., Johanson, C.M., 2011. On the warming in the tropical upper troposphere: Models versus observations. Geophysical Research Letters, 38(15): L15704. DOI:10.1029/2011GL048101
Gastineau, G., Li, L., Le Treut, H., 2010. Some Atmospheric Processes Governing the Large-Scale Tropical Circulation in Idealized Aquaplanet Simulations. Journal of the Atmospheric Sciences, 68(3): 553-575. DOI:10.1175/2010jas3439.1
Greve, P. et al., 2014. Global assessment of trends in wetting and drying over land. Nature Geoscience, 7(10): 716-721. DOI:10.1038/ngeo2247
Greve, P., Seneviratne, S.I., 2015. Assessment of future changes in water availability and aridity. Geophysical Research Letters, 42: 5493-5499. DOI:10.1002/2015GL064127
Grose, M.R., Bhend, J., Narsey, S., Gupta, A.S., Brown, J.R., 2014. Can we constrain CMIP5 rainfall projections in the tropical Pacific based on surface warming patterns? Journal of Climate, 27(24): 9123-9138. DOI:10.1175/JCLI-D-14-00190.1
Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., 2014. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology, 34(3): 623-642. DOI:10.1002/joc.3711
He, J., Soden, B.J., 2016. A re-examination of the projected subtropical precipitation decline. Nature Climate Change, 1(November): 1-6. DOI:10.1038/nclimate3157
Held, I.M., Soden, B.J., 2006. Robust Responses of the Hydrological Cycle to Global Warming. Journal of Climate, 19(21): 5686-5699. DOI:10.1175/jcli3990.1
Hill, S.A., Ming, Y., Held, I.M., 2015. Mechanisms of forced tropical meridional energy flux change. Journal of Climate, 28(5): 1725-1742. DOI:10.1175/JCLI-D-14-00165.1
Hu, Y., Fu, Q., 2007. Observed poleward expansion of the Hadley circulation since 1979. Atmospheric Chemistry and Physics, 7(19): 5229-5236. DOI:10.5194/acp-7-5229-2007
Huang, J.-C., Lee, T.-Y., Lee, J.-Y., 2014. Observed magnified runoff response to rainfall intensification under global warming. Environ Res Lett, 9(3): 034008-034008. DOI:Doi 10.1088/1748-9326/9/3/034008
Huang, J.C., Kao, S.J., Hsu, M.L., Lin, J.C., 2006. Stochastic procedure to extract and to integrate landslide susceptibility maps: An example of mountainous watershed in Taiwan. Natural Hazards and Earth System Science, 6(5): 803-815. DOI:10.5194/nhess-6-803-2006
Hwang, Y.T., Frierson, D.M.W., 2010. Increasing atmospheric poleward energy transport with global warming. Geophysical Research Letters, 37(24): 1-5. DOI:10.1029/2010GL045440
Hwang, Y.T., Frierson, D.M.W., Kang, S.M., 2013. Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophysical Research Letters, 40(11): 2845-2850. DOI:10.1002/grl.50502
Jin, Q., Wang, C., 2017. A revival of Indian summer monsoon rainfall since 2002. Nature Clim. Change, advance on(July). DOI:10.1038/nclimate3348
Kang, S.M., Held, I.M., 2012. Tropical precipitation, SSTs and the surface energy budget: A zonally symmetric perspective. Climate Dynamics, 38(9-10): 1917-1924. DOI:10.1007/s00382-011-1048-7
Kang, S.M., Shin, Y., Xie, S.-P., 2018. Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection. npj Climate and Atmospheric Science, 1(1): 1-10. DOI:10.1038/s41612-017-0004-6
Kao, S.J., Huang, J.C., Lee, T.Y., Liu, C.C., Walling, D.E., 2011. The changing rainfall-runoff dynamics and sediment response of small mountainous rivers in Taiwan under a warming climate. Sediment Problems and Sediment Management in Asian River Basins, 349(September 2009): 114-129.
Kent, C., Chadwick, R., Rowell, D.P., 2015. Understanding uncertainties in future projections of seasonal tropical precipitation. Journal of Climate, 28(11): 4390-4413. DOI:10.1175/JCLI-D-14-00613.1
Kim, J.E., Hong, S.Y., 2007. Impact of soil moisture anomalies on summer rainfall over East Asia: A regional climate model study. Journal of Climate, 20(23): 5732-5743. DOI:10.1175/2006JCLI1358.1
Knutson, T.R., Manabe, S., 1995. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model, pp. 2181-2199. DOI:Doi 10.1175/1520-0442(1995)008<2181:Tmrott>2.0.Co;2
Knutti, R., Sedláček, J., 2012. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3(4): 369-373. DOI:10.1038/nclimate1716
Kooperman, G.J. et al., 2018. Forest response to rising CO 2 drives zonally asymmetric rainfall change over tropical land. Nature Climate Change, 8(5): 434-440. DOI:10.1038/s41558-018-0144-7
Koster, R.D., Chang, Y., Wang, H., Schubert, S.D., 2016. Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. Journal of Climate, 29(20): 7345-7364. DOI:10.1175/JCLI-D-16-0192.1
Koster, R.D. et al., 2010. Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophysical Research Letters, 37(2): 1-6. DOI:10.1029/2009GL041677
Kumagai, T.o. et al., 2004. Carbon and water cycling in a Bornean tropical rainforest under current and future climate scenarios. Advances in Water Resources, 27(12): 1135-1150. DOI:10.1016/j.advwatres.2004.10.002
Kumar, S., Allan, R.P., Zwiers, F., Lawrence, D.M., Dirmeyer, P.A., 2015. Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land. DOI:10.1002/2015GL066858
Kumar, S., Lawrence, D.M., Dirmeyer, P.A., Sheffield, J., 2014. Less reliable water availability in the 21st century climate projections. Earth''s Future: 1-9. DOI:10.1002/2013EF000159.Abstract
Lan, C.-W., Lo, M.-H., Chen, C.-A., Yu, J.-Y., 2019. The mechanisms behind changes in the seasonality of global precipitation found in reanalysis products and CMIP5 simulations. Climate Dynamics(0123456789). DOI:10.1007/s00382-019-04781-6
Lan, C.-W., Lo, M.-H., Chou, C., Kumar, S., 2016. Terrestrial water flux responses to global warming in tropical rainforest areas. Earth''s Future, 4(5): 210-224. DOI:10.1002/2015EF000350
Landerer, F.W., Swenson, S.C., 2012. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4): 1-11. DOI:10.1029/2011WR011453
Lawrence, D., Vandecar, K., 2014. Effects of tropical deforestation on climate and agriculture. Nature Climate Change, 5(1): 27-36. DOI:10.1038/nclimate2430
Lawrence, D., Vandecar, K., 2015. Effects of tropical deforestation on climate and agriculture. Nature Climate Change, 5(1): 27-36. DOI:10.1038/nclimate2430
Lawrence, D.M. et al., 2011. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3(3): M03001-M03001. DOI:10.1029/2011MS000045
Levine, X.J., Schneider, T., 2010. Response of the Hadley Circulation to Climate Change in an Aquaplanet GCM Coupled to a Simple Representation of Ocean Heat Transport. Journal of the Atmospheric Sciences, 68(4): 769-783. DOI:10.1175/2010jas3553.1
Liang, X., Liu, Y., Wu, G., 2005. The role of land-sea distribution in the formation of the Asian summer monsoon. Geophysical Research Letters, 32(3): 1-4. DOI:10.1029/2004GL021587
Lin, Y.H., Lo, M.H., Chou, C., 2016. Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin. Climate Dynamics, 46(3-4): 1001-1013. DOI:10.1007/s00382-015-2628-8
Liu, S.C., Fu, C., Shiu, C.-J., Chen, J.-P., Wu, F., 2009. Temperature dependence of global precipitation extremes. Geophysical Research Letters, 36(17): 1-4. DOI:10.1029/2009gl040218
Lo, M.H., Famiglietti, J.S., 2011. Precipitation response to land subsurface hydrologic processes in atmospheric general circulation model simulations. J Geophys Res-Atmos, 116(5): 1-18. DOI:Doi 10.1029/2010jd015134
Lo, M.H., Famiglietti, J.S., 2013. Irrigation in California''s Central Valley strengthens the southwestern U.S. water cycle. Geophysical Research Letters, 40(2): 301-306. DOI:10.1002/grl.50108
Lo, M.H., Yeh, P.J.F., Famiglietti, J.S., 2008. Constraining water table depth simulations in a land surface model using estimated baseflow. Advances in Water Resources, 31(12): 1552-1564. DOI:10.1016/j.advwatres.2008.06.007
Long, S.-M., Xie, S.-P., Liu, W., 2016. Uncertainty in Tropical Rainfall Projections: Atmospheric Circulation Effect and the Ocean Coupling. Journal of Climate, 29(7): 2671-2687. DOI:10.1175/JCLI-D-15-0601.1
Lu, J., Vecchi, G.A., Reichler, T., 2007. Expansion of the Hadley cell under global warming. Geophysical Research Letters, 34(6): L06805-L06805. DOI:10.1029/2006GL028443
Ma, J., Xie, S.P., 2013. Regional Patterns of Sea Surface Temperature Change: A Source of Uncertainty in Future Projections of Precipitation and Atmospheric Circulation. Journal of Climate, 26(8): 2482-2501. DOI:10.1175/JCLI-D-12-00283.1
Malhi, Y., Adu-Bredu, S., Asare, R.A., Lewis, S.L., Mayaux, P., 2013. African rainforests: past, present and future. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 368(1625): 20120312. DOI:10.1098/rstb.2012.0312
Malhi, Y., Doughty, C., Galbraith, D., 2011. The allocation of ecosystem net primary productivity in tropical forests. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 366(1582): 3225-45. DOI:10.1098/rstb.2011.0062
Malhi, Y., Grace, J., 2000. Tropical forests and atmospheric carbon dioxide. Trends Ecology Evolution, 15(00): 332-337. DOI:10.1029/98JD02647
Mann, M.E., Park, J., 1996. Greenhouse warming and changes in the seasonal cycle of temperature: Model versus observations, pp. 1111-1114. DOI:10.1029/96GL01066
Marvel, K. et al., 2017. Observed and projected changes to the precipitation annual cycle. Journal of Climate, 30(13): 4983-4995. DOI:10.1175/JCLI-D-16-0572.1
Mathison, C., Wiltshire, a.J., Falloon, P., Challinor, a.J., 2015. South Asia river flow projections and their implications for water resources. Hydrology and Earth System Sciences Discussions, 12(6): 5789-5840. DOI:10.5194/hessd-12-5789-2015
Medvigy, D., Walko, R.L., Otte, M.J., Avissar, R., 2013. Simulated changes in Northwest U.S. Climate in response to Amazon deforestation. Journal of Climate, 26(22): 9115-9136. DOI:10.1175/JCLI-D-12-00775.1
Milly, P.C.D., 2002. Potential Evaporation and Soil Moisture in General Circulation Models. Journal of Climate, 5(3): 209-226. DOI:10.1175/1520-0442(1992)005<0209:peasmi>2.0.co;2
Mitas, C.M., Clement, A., 2006. Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses. Geophysical Research Letters, 33(1): 1-4. DOI:10.1029/2005GL024406
Mocko, D. et al., 2013. Impact of Land Surface Initialization Approach on Subseasonal Forecast Skill: A Regional Analysis in the Southern Hemisphere. Journal of Hydrometeorology, 15(1): 300-319. DOI:10.1175/jhm-d-13-05.1
Nakamura, H. et al., 2013. The Aqua-Planet Experiment (APE): Response to Changed Meridional SST Profile. Journal of the Meteorological Society of Japan. Ser. II, 91A(0): 57-89. DOI:10.2151/jmsj.2013-a03
Neale, R.B. et al., 2012. Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR/TN-486+STR NCAR Technical Note.
Nearing, M.A., Pruski, F.F., O''Neal, M.R., 2004. Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation, 59(1): 43-50.
Neelin, J.D., Held, I.M., 1987. Modeling Tropical Convergence Based on the Moist Static Energy Budget, pp. 3-12. DOI:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2
Nguyen, H., Evans, A., Lucas, C., Smith, I., Timbal, B., 2013. The hadley circulation in reanalyses: Climatology, variability, and Change. Journal of Climate, 26(10): 3357-3376. DOI:10.1175/JCLI-D-12-00224.1
O''Gorman, P.A., Schneider, T., 2009. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences of the United States of America, 106(35): 14773-7. DOI:10.1073/pnas.0907610106
O’Gorman, P.A., Muller, C.J., 2010. How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ Res Lett, 5(2): 025207. DOI:10.1088/1748-9326/5/2/025207
Oki, T., Sud, Y.C., 1998. Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network. Earth Interactions, 2(1): 1-1. DOI:10.1175/1087-3562(1998)002<0001:DoTRIP>2.0.CO;2
Oleson, K.W. et al., 2010. Technical description of version 4.0 of the Community Land Model (CLM). NCAR/TN-503+STR NCAR Technical Note(July). DOI:10.5065/D6RR1W7M
Oueslati, B., Bony, S., Risi, C., Dufresne, J.-L., 2016. Interpreting the inter-model spread in regional precipitation projections in the tropics: role of surface evaporation and cloud radiative effects. Climate Dynamics, 47(9-10): 2801-2815. DOI:10.1007/s00382-016-2998-6
Pal, I., Anderson, B.T., Salvucci, G.D., Gianotti, D.J., 2013. Shifting seasonality and increasing frequency of precipitation in wet and dry seasons across the U.S. Geophysical Research Letters, 40(15): 4030-4035. DOI:10.1002/grl.50760
Po-Chedley, S., Fu, Q., 2012. Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites. Environ Res Lett, 7(4): 044018-044018. DOI:10.1088/1748-9326/7/4/044018
Puma, M.J., Cook, B.I., 2010. Effects of irrigation on global climate during the 20th century. Journal of Geophysical Research Atmospheres, 115(16): 1-15. DOI:10.1029/2010JD014122
Reynolds, G., Payne, J., Sinun, W., Mosigil, G., Walsh, R.P., 2011. Changes in forest land use and management in Sabah, Malaysian Borneo, 1990-2010, with a focus on the Danum Valley region. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 366(1582): 3168-76. DOI:10.1098/rstb.2011.0154
Roderick, M.L., Sun, F., Lim, W.H., Farquhar, G.D., 2014. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol Earth Syst Sc, 18(5): 1575-1589. DOI:10.5194/hess-18-1575-2014
Samset, B.H. et al., 2017. Weak hydrological sensitivity to temperature change over land, independent of climate forcing. npj Climate and Atmospheric Science(October 2016). DOI:10.1038/s41612-017-0005-5
Santanello, J.A. et al., 2018. Land-atmosphere interactions the LoCo perspective. Bulletin of the American Meteorological Society, 99(6): 1253-1272. DOI:10.1175/BAMS-D-17-0001.1
Santer, B.D. et al., 2007. Identification of human-induced changes in atmospheric moisture content. Proceedings of the National Academy of Sciences of the United States of America, 104(39): 15248-53. DOI:10.1073/pnas.0702872104
Santer, B.D. et al., 2017. Comparing tropospheric warming in climate models and satellite data. Journal of Climate, 30(1): 373-392. DOI:10.1175/JCLI-D-16-0333.1
Schneck, R., Mosbrugger, V., 2011. Simulated climate effects of Southeast Asian deforestation: Regional processes and teleconnection mechanisms. Journal of Geophysical Research Atmospheres, 116(11): 1-12. DOI:10.1029/2010JD015450
Seager, R., Harnik, N., Kushnir, Y., Robinson, W., Miller, J., 2003. Mechanisms of Hemispherically Symmetric Climate Variability*. Journal of Climate, 16(18): 2960-2978. DOI:10.1175/1520-0442(2003)016<2960:Mohscv>2.0.Co;2
Seager, R., Henderson, N., 2013. Diagnostic computation of moisture budgets in the ERA-interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. Journal of Climate, 26(20): 7876-7901. DOI:10.1175/JCLI-D-13-00018.1
Seager, R., Naik, N., Vecchi, G.A., 2010. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. Journal of Climate, 23(17): 4651-4668. DOI:10.1175/2010JCLI3655.1
Seneviratne, S.I. et al., 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3-4): 125-161. DOI:10.1016/j.earscirev.2010.02.004
Seneviratne, S.I. et al., 2006. Soil MoiSeneviratne, S. I. et al. (2006) ‘Soil Moisture Memory in AGCM Simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) Data’, Journal of Hydrometeorology, pp. 1090–1112. doi: 10.1175/JHM533.1.sture Memory in AGCM Simulations: A. Journal of Hydrometeorology, 7(5): 1090-1112. DOI:10.1175/JHM533.1
Seo, K.H., Frierson, D.M.W., Son, J.H., 2014. A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophysical Research Letters, 41(14): 5251-5258. DOI:10.1002/2014GL060868
Sheffield, J. et al., 2013. North American Climate in CMIP5 Experiments. Part I: Evaluation of Historical Simulations of Continental and Regional Climatology*. Journal of Climate, 26(23): 9209-9245. DOI:10.1175/JCLI-D-12-00592.1
Sheffield, J., Wood, E.F., Roderick, M.L., 2012. Little change in global drought over the past 60 years. Nature, 491(7424): 435-8. DOI:10.1038/nature11575
Shepherd, T.G., 2014. Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience, 7(10): 703-708. DOI:10.1038/ngeo2253
Shiu, C.-J., Liu, S.C., Fu, C., Dai, A., Sun, Y., 2012. How much do precipitation extremes change in a warming climate? Geophysical Research Letters, 39(17): L17707. DOI:10.1029/2012gl052762
Singh, N., Ranade, A., 2010. The Wet and Dry Spells across India during 1951–2007. Journal of Hydrometeorology, 11(1): 26-45. DOI:10.1175/2009JHM1161.1
Snyder, P.K., 2010. The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interactions, 14(4). DOI:10.1175/2010EI280.1
Stachnik, J.P., Schumacher, C., 2011. A comparison of the Hadley circulation in modern reanalyses. Journal of Geophysical Research Atmospheres, 116(22): 1-14. DOI:10.1029/2011JD016677
Stocker, T.F. et al., 2013. Climate Change 2013, 222-222 pp. DOI:10.1017/CBO9781107415324.Summary
Sun, F., Roderick, M.L., Farquhar, G.D., 2012. Changes in the variability of global land precipitation. Geophysical Research Letters, 39(18): 1-6. DOI:10.1029/2012GL053369
Sun, Y., Solomon, S., Dai, A., Portmann, R.W., 2007. How Often Will It Rain? Journal of Climate, 20(19): 4801-4818. DOI:10.1175/jcli4263.1
Swann, A.L.S., Fung, I.Y., Chiang, J.C.H., 2011. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proceedings of the National Academy of Sciences, 109(3): 712-716. DOI:10.1073/pnas.1116706108
Tan, J., Jakob, C., Rossow, W.B., Tselioudis, G., 2015. Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature, 519(7544): 451-4. DOI:10.1038/nature14339
Tan, P.-H., Chou, C., Tu, J.-Y., 2008. Mechanisms of Global Warming Impacts on Robustness of Tropical Precipitation Asymmetry. Journal of Climate, 21(21): 5585-5602. DOI:10.1175/2008jcli2154.1
Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C., 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9): 1-4. DOI:10.1029/2004GL019920
Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4): 485-498. DOI:10.1175/BAMS-D-11-00094.1
Thorne, P.W., Vose, R.S., 2010. Reanalyses Suitable for Characterizing Long-Term Trends. Bulletin of the American Meteorological Society, 91(3): 353-362. DOI:10.1175/2009bams2858.1
Trenberth, K.E., Dai, A., Rasmussen, R.M., Parsons, D.B., 2003. The Changing Character of Precipitation. Bulletin of the American Meteorological Society, 84(9): 1205-1218. DOI:10.1175/bams-84-9-1205
Trenberth, K.E., Fasullo, J.T., Mackaro, J., 2011. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. Journal of Climate, 24(18): 4907-4924. DOI:10.1175/2011JCLI4171.1
Trenberth, K.E., Guillemot, C.J., 1995. Evaluation of the global atmospheric moisture budget as seen from analyses, pp. 2255-2272. DOI:10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2
Trenberth, K.E., Stepaniak, D.P., 2003. Seamless poleward atmospheric energy transports and implications for the Hadley circulation. Journal of Climate, 16(22): 3706-3722. DOI:10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2
Vecchi, G.A., Soden, B.J., 2007. Global warming and the weakening of the tropical circulation. Journal of Climate, 20(17): 4316-4340. DOI:10.1175/JCLI4258.1
Walker, J., Rowntree, P.R., 1977. The effect of soil moisture on circulation and rainfall in a tropical model. Quarterly Journal of the Royal Meteorological Society, 103(435): 29-46. DOI:10.1002/qj.49710343503
Wang, F., Ducharne, A., Cheruy, F., Lo, M.H., Grandpeix, J.Y., 2018. Impact of a shallow groundwater table on the global water cycle in the IPSL land–atmosphere coupled model. Climate Dynamics, 50(9-10): 3505-3522. DOI:10.1007/s00382-017-3820-9
Wang, H., Ting, M., 2002. Seasonal Cycle of the Climatological Stationary Waves in the NCEP–NCAR Reanalysis. Journal of the Atmospheric Sciences, 56(22): 3892-3919. DOI:10.1175/1520-0469(1999)056<3892:scotcs>2.0.co;2
Wang, Z., Duan, A., Yang, S., Ullah, K., 2017. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the tibetan plateau. Journal of Geophysical Research, 122(2): 614-630. DOI:10.1002/2016JD025515
Webster, P.J., Yang, S., 1992. Monsoon and Enso: Selectively Interactive Systems, pp. 877-926. DOI:10.1002/qj.49711850705
Wentz, J.F., Schabel, M., 2000. Precise climate monitoring using complementary satellite data sets. Nature CN - 0129, 403(January): 414-416.
Werth, D., 2002. The local and global effects of Amazon deforestation. Journal of Geophysical Research, 107(D20). DOI:10.1029/2001jd000717
Wu, W.-y., Lan, C.-w., Lo, M.-h., Reager, J.T., Famiglietti, J.S., 2015. Increases in the annual range of soil water storage at northern middle and high latitudes under global warming. 1-8. DOI:10.1002/2015GL064110.Received
Xie, P.P., Arkin, P.A., 1997. Global precipitation: A 17-year monthly analysis based on guage observations, satelite estimates and numerical model outputs. Bull Amer Meteorol Soc, 78(June): 2539-2558.
Yang, M. et al., 2018. Precipitation and Moisture in Four Leading CMIP5 Models: Biases across Large-scale Circulation Regimes and Their Attribution to Dynamic and Thermodynamic Factors. Journal of Climate: JCLI-D-17-0718.1. DOI:10.1175/JCLI-D-17-0718.1
Yano, J.I., 1998. An aquaplanet monsoon. Journal of the Atmospheric Sciences, 55(8): 1373-1399. DOI:10.1175/1520-0469(1998)055<1373:AAM>2.0.CO;2
Yeh, T.C., Wetherald, R.T., Manabe, S., 1984. The Effect of Soil Moisture on the Short-Term Climate and Hydrology Change—A Numerical Experiment. Monthly Weather Review, 112(3): 474-490. DOI:10.1175/1520-0493(1984)112<0474:TEOSMO>2.0.CO;2
Zeng, X., Decker, M., 2009. Improving the Numerical Solution of Soil Moisture–Based Richards Equation for Land Models with a Deep or Shallow Water Table. Journal of Hydrometeorology, 10(1): 308-319. DOI:10.1175/2008jhm1011.1
Zhang, M., Song, H., 2006. Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophysical Research Letters, 33(12): 1-5. DOI:10.1029/2006GL025942
Zhang, X., Tang, Q., Zhang, X., Lettenmaier, D.P., 2014. Runoff sensitivity to global mean temperature change in the CMIP5 Models, Geophysical Research Letters, pp. 5492-5498. DOI:10.1002/2014GL060382
Zhang, X. et al., 2007. Detection of human influence on twentieth-century precipitation trends. Nature, 448(7152): 461-465. DOI:10.1038/nature06025
Zhao, T., Dai, A., 2015. The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. Journal of Climate, 28(11): 4490-4512. DOI:10.1175/JCLI-D-14-00363.1
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔