(3.237.234.213) 您好!臺灣時間:2021/03/09 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宜萱
研究生(外文):Yi-Hsuan Lin
論文名稱:卡努颱風(2017)對台灣東部降雨的遠距影響-系集模擬與不確定性探討
論文名稱(外文):The Remote Effect of Typhoon Khanun (2017) on the Heavy Rainfall over Eastern Taiwan – Evaluation of Uncertainty Based on Ensemble Simulations
指導教授:吳俊傑吳俊傑引用關係
指導教授(外文):Chun-Chieh Wu
口試委員:黃清勇楊舒芝游政谷連國淵
口試委員(外文):Ching-Yuang HuangShu-Chih YangCheng-Ku YuGuo-Yuan Lien
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:降雨颱風遠距降水系集模擬系集卡爾曼濾波器資料同化
DOI:10.6342/NTU201901950
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
颱風所帶來的強降雨為台灣嚴重災害之一,而其又能分為直接與遠距效應。在遠距效應中,主要可歸因為由颱風環流與東北季風交互作用而生的季風mode,以及外圍環流受地形舉升的地形mode。2017年的卡努颱風 (Typhoon Khanun) 是個同時存在兩種降雨mode的個案,其中心平均與台灣距離500公里以上,強度僅達中颱下限,且未發布海上和陸上颱風警報,但卻在10月12日到15日在台灣東部降下豪雨。因此本研究使用Advanced Research WRF模式結合Ensemble Kalman Filter (EnKF) 資料同化系統,並利用台灣東北部海域之東北/東南風水氣通量配置來客觀區分季風mode與地形mode,對卡努颱風遠距降水事件中的兩個mode做不確定性分析與探討。
透過公正預兆得分檢驗定量降水模擬技術,發現無論是季風mode還是地形mode,降雨的模擬能力與路徑誤差在各累積雨量門檻中,皆沒有顯著關係。各系集成員的季風mode能根據降水極值位置分為東北 (NE)、東南 (SE) 及兩者 (ALL) 三類型,並發現鋒生和地形舉升是導致台灣東北部三種類型強降水的主要機制,而地形阻擋效應和颱風外圍環流之間的交互作用則導致台灣東南部強降雨。而地形mode部份則發現,颱風外圍環流與台灣地形間的入流角和降雨的累積頻率 (cumulative frequency) 有顯著關係,且颱風路徑的傾斜角度也與降雨累積頻率存在高度相關性。敏感性實驗也顯示,減少颱風初始場水氣使台灣山區平均累積雨量減少40%,而移除台灣地形不僅影響地形上的降水 (約減少90%),雨區的分布以及強降雨位置也連帶受影響而改變。綜合上述,本研究主要有三個發現:1) 造成台灣東部強降雨事件的季風mode不僅歸因於颱風外圍環流與東北季風之間的共伴效應,地形舉升與水氣平流亦扮演重要的加持作用;2) 遠距降水事件的地形mode則與登陸的颱風有類似的強降雨型態,凸顯颱風外圍環流相較於山脈入流角度的重要性;3) 有多種因素 (如:水氣通量輻合位置、潛在降雨區的盛行風向、東北風的勢力範圍…等) 皆可能影響遠距降雨的不確定性,然而在卡努颱風的個案中,地形的舉升效應是最為主要的機制。
Indirect rainfall related to tropical cyclones (TCs) constitutes a major flooding hazard in Taiwan. Such events can be attributed to interaction between the northeasterly monsoon and TC circulation (hereafter monsoon mode), and topographic blocking and lifting effects associated with the Central Mountain Range (CMR), (hereafter topographic mode). Typhoon Khanun (2017) is a particular case where rainfall is forced by both of these factors. The objective of this study is to understand the key factors resulting in uncertainty in the TC-induced remote rainfall associated with the monsoon effects and topographic interaction. The Advanced Research Weather Research and Forecasting model based ensemble Kalman filter (EnKF) data assimilation system is used to conduct simulations of Typhoon Khanun. The time-varying northeasterly and/or southeasterly moisture fluxes near the northeastern Taiwan are used to attribute the rainfall event to either topography or monsoon interaction.
The ensemble members related to the monsoon mode are classified into three types: northeast (NE), southeast (SE) and both (ALL) based on the geographic location of the precipitation maxima. The results demonstrate that frontogenesis and terrain-induced uplifting are the main mechanisms leading to the heavy precipitation in northeastern Taiwan for all three types, while the orographic blocking and the interaction between the TC circulation and the topography result in the heavy rainfall in southeastern Taiwan for ALL and SE types, respectively. For the topographic mode, high correlations are found between the inflow angle of the TC circulation and the cumulative frequency (CF) of the rainfall. Track direction is also shown to be closely related to the rainfall CF. Analyses from the sensitivity experiments with TC-related moisture reduced (MR) and the terrain of Taiwan removed (TR) are also conducted. In MR, the average of the 3-day accumulated rainfall is reduced by 40% over the mountainous area; however, the precipitation in TR is reduced by more than 90 %.
In summary, this study presents three key findings: 1) heavy rainfall over eastern Taiwan associated with the monsoon mode in Khanun is not only attributed to the interaction between the northeasterly monsoon and Khanun’s outer circulation, but also the orographic lifting and moisture advection; 2) the remote rainfall associated with topographic mode is similar to that in landfalling TCs, which highlights the importance of the impinging flow field relative to the terrain/mountain geometry; and 3) in Khanun, multiple mechanisms (such as the location of the low-level moisture convergence, the prevailing wind direction) contribute to remote rainfall processes, particularly the orographic forcing.
致謝 i
摘要 ii
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 文獻回顧 1
1.1.1 颱風降雨相關研究 1
1.1.2 遠距降水事件研究 1
1.1.3 系集模擬 4
1.2 個案選取動機及研究目的 5
第二章 卡努颱風個案介紹 7
2.1 卡努颱風概述 7
2.2 卡努颱風對東台灣造成的降雨事件 7
第三章 研究方法 9
3.1 數值模式與系集卡爾曼濾波器 9
3.2 定量降水預報校驗方法 10
3.3 季風mode與地形mode定義與分類方法 11
3.4 實驗設計 12
3.4.1 不確定性分析實驗 13
3.4.1.1 季風mode 13
3.4.1.2 地形mode 14
3.4.2 敏感性實驗 14
第四章 研究結果 (一) -不確定性分析實驗 16
4.1 模擬路徑與強度 16
4.2 系集成員雨量模擬結果 16
4.3 降雨之不確定性分析 17
4.3.1 季風mode 17
4.3.1.1 綜觀尺度環流配置分析 18
4.3.1.2 鋒生分析 20
4.3.1.3 地形舉升分析 21
4.3.1.4 逆軌跡分析 22
4.3.2 地形mode 24
4.3.2.1 垂直風場分布 24
4.3.2.2 雨量累積頻率與入流角之關聯 25
4.3.2.3 雨量累積頻率與路徑走向之關聯 26
第五章 研究結果 (二) -敏感性實驗 27
5.1 總累積雨量 27
5.2 降雨時空變化 28
5.3 環境場配置 29
第六章 總結與未來展望 31
6.1 總結 31
6.2 未來展望 34
參考文獻 36
附表 43
附圖 44
王時鼎,1970:台灣區域冬半年連續三至六天惡劣天氣型研究。氣象學報,16,18-31。
連國淵,2009:颱風路徑與結構同化研究-系集卡爾曼濾波器。國立臺灣大學大氣科學研究所碩士論文,87頁。
陳亭蓁,2014:梅姬颱風(2010)轉向及對台灣降雨的遠距影響 -系集模擬與不確定性探討。國立臺灣大學大氣科學研究所碩士論文,135頁。
張惠玲、陳冠儒、吳佳蓉、汪琮、洪景山、楊舒芝,2018:臺灣地區WRF颱風系集降雨機率預報之評估、校正與經濟價值分析- 第一部分:預報評估。大氣科學,46,71-106。
黃椿喜、葉世瑄、呂國臣、洪景山,2015:氣象局官方與主要數值天氣預報指引之定量降水預報校驗與綜合比較。天氣分析與預報研討會,台北,A7-11。
戴俐卉、洪景山、馮欽賜,2014:WRF模式Goddard和WSM6微物理參數法之評估。天氣分析與預報研討會,台北,A2-45。
Black, T. L., 1994: The new NMC mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9, 265–278, doi:10.1175/1520-0434(1994)009,0265:TNNMEM.2.0.CO;2.
Chang, C.-P., Y.-T. Yang, and H.-C. Kuo, 2013: Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. Journal of Climate, 26, 4138– 4147. doi:10.1175/JCLI-D-12-00463.1.
Chen, S.-J., W. Wang, K.-H. Lau, Q.-H. Zhang, and Y.-S. Chung, 2000: Mesoscale convective systems along the Meiyu front in a numerical model. Meteor. Atmos. Phys., 75, 149–160, doi:10.1007/s007030070002.
Chen, T.-J. G., and C.-P. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (Mei-Yu) over southeastern China and Japan. Mon. Wea. Rev., 108, 942–953, doi:10.1175/1520-0493(1980)108,0942:TSAVBO.2.0.CO;2.
Chen, T.-C., and C.-C. Wu, 2016: The remote effect of Typhoon Megi (2010) on the heavy rainfall over northeastern Taiwan. Mon. Wea. Rev., 144, 3109-3131, doi:10.1175/MWR-D-15-0269.1.
Chen, Y.H., H.-C. Kuo, C.-C. Wang, and Y.-T. Yang, 2017: Influence of southwest monsoon flow and typhoon motion on Taiwan rainfall during the exit phase. Q. J. R. Meteorol. Soc., 143, 3014– 3024, doi:10.1002/qj.3156.
Chien, F. C., and H. C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104, doi:10.1029/2010JD015092.
Colle, B.A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588–606, doi:10.1175/1520-0469(2004)061,0588:SOOPTC.2.0.CO;2.
Cote, M. R., 2007: Predecessor rain events in advance of tropical cyclones. M.S. thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 200 pp. [Available online at http://cstar.cestm. albany.edu/CAP_Projects/Project10/index.htm.]
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi:10.1175/1520-0469(1989)046,3077:NSOCOD.2.0.CO;2.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-ClassMicrophysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Hong, J. S., C. T. Fong, L. F. Hsiao, Y. C. Yu, and C. Y. Tzeng, 2015: Ensemble typhoon quantitative precipitation forecasts model in Taiwan. Wea. Forecasting, 30, 217–237, doi:10.1175/ WAF-D-14-00037.1.
Huang, Y.-C., and Y.-L. Lin, 2014: A study on the structure and precipitation of Morakot (2009) induced by the Central Mountain Range of Taiwan. Meteor. Atmos. Phys., 123, 115–141, doi:10.1007/s00703-013-0290-4.
Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
Kawamura, R. and T. Ogasawara, 2006: On the role of typhoons in generating PJ teleconnection patterns over the western North Pacific in late summer. SOLA, 2, 37-40, doi:10.2151/jmsj.86.491.
Keyser, D., M. J. Pecnick, and M. A. Shapiro, 1986: Diagnosis of the role of vertical deformation in a two-dimensional primitive equation model of upper-level frontogenesis. J. Atmos. Sci., 43, 839–850, doi:10.1175/1520-0469(1986)043,0839: DOTROV.2.0.CO;2.
Lee, C.-S., L. R. Huang, H. S. Shen, and S. T. Wang, 2006: A climatology model for forecasting typhoon rainfall in Taiwan. Nat. Hazards, 37, 87–105, doi:10.1007/s11069-005-4658-8.
Lin, Y.-L., S. Chiao, T.-A.Wang, M. L. Kaplan, and R. P.Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633–660, doi: 10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2
Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132, 1645–1660, doi:10.1175/1520-0493(2004)132,1645:PDITCU.2.0.CO;2.
Meng, Z., and F. Zhang, 2008a: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522–540, doi:10.1175/2007MWR2106.1.
——, and ——, 2008b: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Wea. Rev., 136, 3671–3682, doi:10.1175/2008MWR2270.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, doi:10.1029/97JD00237.
Ninomiya, K., 1984: Characteristics of Baiu front as a predominant subtropical front in the summer Northern Hemisphere. J. Meteor. Soc. Japan, 62, 880–893.
Overland, J. E., and N. A. Bond, 1995: Observations and scale analysis of coastal wind jets. Mon. Wea. Rev., 123, 2934–2941.
Pan, T.-Y., Y.-T. Yang, H.-C. Kuo, Y.-C. Tan, J.-S. Lai, T.-J. Chang, C.-S. Lee, K.-H. Hsu, 2013: Improvement of watershed flood forecasting by typhoon rainfall climate model with an ANN‐based southwest monsoon rainfall enhancement. J. Hydrol. 506: 90– 100, doi:10.1016/j.jhydrol.2013.08.018.
Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–575, doi:10.1175/1520-0434(1990)005,0570:TCSIAA.2.0.CO;2.
Schumacher, R. S., T. J. Galarneau Jr., and L. F. Bosart, 2011: Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: A high-impact predecessor rain event. Mon. Wea. Rev., 139, 650–667, doi: 10.1175/2010MWR3453.1.
Tao, W. -K., and Coauthors, 2011: High-Resolution Numerical Simulation of the Extreme Rainfall Associated with Typhoon Morakot. Part I: Comparing the Impact of Microphysics and PBL Parameterizations with Observations. Terr. Atmos. Oceanic Sci., 22, 673–696. doi:10.3319/TAO.2011.08.26.01(TM).
Su, S.-H., H.-C. Kuo, L.-H. Hsu, and Y.-T. Yang, 2012: Temporal and Spatial Characteristics of Typhoon Extreme Rainfall in Taiwan. J. Meteor. Soc. Japan, 90, 721–736.
Tao, W.-K., Joanne Simpson, Michael McCumber, 1989: An Ice–Water Saturation Adjustment. Mon. Wea. Rev., 117, 231–235. doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.
——, J. J. Shi, P.-L. Lin, M.-Y. Chang, M.-J. Yang, C. Peter-Liddard, C.-H. Sui, 2011: High-resolution numerical simulation of the extreme rainfall associated with Typhoon Morakot. Part I: Comparing the impact of microphysics and PBL parameterizations with observations. Terr. Atmos.Oceanic Sci., 22, 673–696.
Wang, Y., Y. Wang, and H. Fudeyasu, 2009: The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon. Wea. Rev., 137, 3699–3716, doi:10.1175/2009MWR2933.1.
Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67–80, doi:10.1175/1520-0477(1999)080,0067: TATCUA.2.0.CO;2.
——, T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 1001–1015, doi:10.1175/1520-0434(2003)017,1001:RSAWTH.2.0.CO;2.
——, K. K. W. Cheung and Y.-Y. Lo, 2009: Numerical study of the rainfall event due to interaction of Typhoon Babs (1998) and the northeasterly Monsoon. Mon. Wea. Rev., 137, 2049-2064, doi:10.1175/2009MWR2757.1.
——, G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the Ensemble Kalman Filter (EnKF). J. Atmos. Sci., 67, 3806-3822, doi:10.1175/2010JAS3444.1.
——, S.-G. Chen, S.-C. Lin, T.-H. Yen, and T.-C. Chen, 2013: Uncertainty and predictability of tropical cyclone rainfall based on ensemble simulations of Typhoon Sinlaku (2008). Mon. Wea. Rev., 141, 3517-3538, doi:10.1175/MWR-D-12-00282.1.
Wu, M., C.-C. Wu, T.-H. Yen., and Y. Luo, 2017: Synoptic analysis of extreme hourly precipitation in Taiwan during 2003-12. Mon. Wea. Rev., 145, 5123-5140, doi:10.1175/MWR-D-17-0230.1.
Yamada, H., B. Geng, H. Uyeda, and K. Tsuboki, 2007: Thermodynamic impact of the heated landmass on the nocturnal evolution of a cloud cluster over a Meiyu–Baiu front. J. Meteor. Soc. Japan, 85, 663–685, doi:10.2151/jmsj.85.663.
Yamada, K., and R. Kawamura, 2007: Dynamical link between typhoon activity and the PJ teleconnection pattern from early summer to autumn as revealed by the JRA-25 reanalysis. SOLA., 3, 65-68, doi:10.2151/sola.2007-017.
Yeh, T.-C., 2002: Typhoon rainfall over Taiwan area: The empirical orthogonal function modes and their applications on the rainfall forecasting. Terr. Atmos. Oceanic Sci., 13, 449–468.
Yen, T.-H., C.-C. Wu, and G.-Y. Lien, 2011: Rainfall simulations of Typhoon Morakot with controlled translation speed based on EnKF data assimilation. Terr. Atmos. Oceanic Sci., 22, 647–660, doi:10.3319/TAO.2011.07.05.01(TM).
Yu, C.- K., and L.- W. Cheng, 2008: Radar observations of intense orographic precipitation associated with Typhoon Xangsane (2000). Mon. Wea. Rev., 136, 497-521, doi:10.1175/2007MWR2129.1.
——, ——, 2013: Distribution and mechanisms of orographic precipitation associated with Typhoon Morakot (2009). J. Atmos. Sci., 70, 2894-2915, doi:10.1175/JAS-D-12-0340.1.
——, ——, 2014: Dual-Doppler-derived profiles of the southwesterly flow associated with southwest and ordinary typhoons off the southwestern coast of Taiwan. J. Atmos. Sci., 71, 3202-3222, doi:10.1175/JAS-D-13-0379.1.
Zhang, F., Z. Meng, and A. Aksoy, 2006: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722–736, doi:10.1175/MWR3101.1.
——, Y. Weng, Y.-H. Kuo, J. S. Whitaker, and B. Xie, 2010: Predicting Typhoon Morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system. Wea. Forecasting, 25, 1816–1825, doi:10.1175/2010WAF2222414.1.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔