跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 06:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃奕鈞
研究生(外文):Yi-June Huang
論文名稱:無白金奈米電觸媒用於染料敏化太陽能電池
論文名稱(外文):Pt-Free Nanostructural Electrocatalysts for Dye-Sensitized Solar Cells
指導教授:何國川
指導教授(外文):Kuo-Chuan Ho
口試委員:徐振哲戴子安陳建彰林義峯
口試委員(外文):Cheng-Che(Jerry) HsuChi-An DaiJian-Zhang ChenYi-Feng Lin
口試日期:2019-07-25
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:131
中文關鍵詞:對電極染料敏化太陽能電池電觸媒電解質無白金無透明氧化金屬
DOI:10.6342/NTU201903935
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文主要針對無”白金”對電極進行系統性的開發,與設計新型不含”透明導電氧化基材”,應用於低成本、高效率之染料敏化太陽能電池。本研究論文主要可分為兩大部分:(1)無白金對電極(第三章和第四章);(2)無白金和無透明導電氧化基材對電極(第五章和第六章)。
無白金對電極之開發主要目的為降低染敏電池之製造成本,透過簡單、非真空、低成本的製程製備多種電催化觸媒材料,用以完全取代昂貴的白金材料。因此,本研究論文首先以碘系統電解質為標準,進行三大類的無白金複合對電極之開發。(一)過渡金屬化合物型:包含第三章中的二硒化鈷/三氧硒化鈷之奈米方體、奈米棒狀、奈米顆粒;第四章中的二硒化鈷/三氧硒化鈷之複合奈米海膽狀結構。(二) 過渡金屬/導電高分子型:包含硒化鉬奈米片/PEDOT:PSS複合薄膜於第五章,可提供高表面積、快速電解質滲透、良好的附著力、快速碘離子還原反應。(三) 碳材型:純碳氣凝膠於第六章被討論,該材料被前驅物間苯二酚(R)/甲醛(F)和間苯二酚(R)/碳酸鈉(C)的摩耳比控制比表面積。無白金和無透明導電氧化基材對電極中,鈦板與碳氣凝膠用來取代透明導電氧化基材,因為它們的低成本、容易製備與易量產化,(一)鈦板與硒化鉬奈米片/PEDOT:PSS複合薄膜搭配應用於染敏中具有8.51 ± 0.05%的效率,高於白金於鈦板上的效率8.21 ± 0.02%。(二)碳氣凝膠取代整個傳統對電極 (白金/透明導電氧化層/玻璃基材),該染敏電池與CA-C CE搭配下,有著效率9.08 ± 0.01%,高於其他碳氣凝膠。總而言之,本研究論文開發三種無白金複合奈米薄膜:二硒化鈷/三氧硒化鈷、硒化鉬奈米片/PEDOT:PSS、碳氣凝膠,為可取代白金之替代材料,因為他們皆具有良好的催化碘還原能力、低成本、簡易製程、易於大面積製備等特性。
This dissertation aimed to systematically study Pt-free and TCO-free counter electrodes (CEs) with low-costs and highly cell efficiencies (η’s). This dissertation is divided into two parts: (1) Pt-free CEs (Chapter 3 and Chapter 4) and (2) Pt-free and TCO-free CEs (Chapter 5 and Chapter 6).
In the case of Pt-free CEs, we aim to reduce the costs of the DSSCs using various electro-catalysts for completely replacing the expensive Pt via the simple, non-vacuum, and low-cost fabrication processes. Accordingly, three types of Pt-free composite films were studied using a standard iodide electrolyte. (I) Transition metallic compound-type CEs, i.e. CoSe2/CoSeO3 with nanocube (NC), nanorod (NR), and nanoparticle (NP) structures in Chapter 3, the composite films of CoSe2/CoSeO3 with hierarchical urchin-like structure in Chapter 4, were indivitually investigated. In the composite film, the different nanostructures were separately used to provide attractive electro-catalytic abilities and large active areas for I3- reduction. (II) Transition metallic and conducting polymer type CEs, i.e. MoSe2 NS/PEDOT:PSS in Chapter 5, were investigated to provide large surface area, fast eletrolyte penetration, well adhesion, and rapid reaction rate for I3- reduction. (III) Carbonaceous-type CEs, i.e. pristine monolithic carbon aerogel (CA-O, CA-Q, CA-F, CA-C, and CA-G) in Chapter 6, were investigated by controlled resorcinol (R)/formaldehyde (F) and resorcinol (R)/sodium carbonate (C) molar ratios. In the case of Pt-free and TCO-free CEs. In the case of Pt-free and TCO-free CEs, the classic TCO substrate is replaced by Ti foil and carbon aerogel for low-cost, simple preparation process, and large-scale production. (I) Ti foil substrate collocate with MoSe2 NS/PEDOT:PSS, which presents a higher η of 8.51 ± 0.05%, as compared to a lower η of 8.21 ± 0.02% using the Pt-coated Ti foil CE. (II) Carbon aerogel replace traditional CEs based on the Pt/FTO/glass in DSSCs. The DSSCs using the as-prepared CA-C CE gave the best η of 9.08 ± 0.01%, among all the CA CEs. In brief, this dissertation explores three Pt-free composite films of CoSe2/CoSeO3, MoSe2 NS/PEDOT:PSS, and CA are a promising substitutions of Pt due to their outstanding properties, i.e., good electro-catalytic ability for I3– reduction, low-cost, simple preparation process, and easy for large-scale production.
Table of Contents
中文摘要 I
Abstract II
Table of Contents III
List of Tables VI
List of Figures VIII
Nonmenclatures XIII
Chapter 1 Introduction 1
1-1 Background of DSSCs 1
1-2 Mechanism of DSSCs 3
1-3 Sun light and photovoltaic performance of solar cells 5
1-4 Counter electrodes in DSSCs 7
1-4-1 Transition metallic compound-type 9
1-4-2 Conducting polymer-type 13
1-4-3 Carbonaceous-type 16
1-5 Motivation 20
Chapter 2 Experimental 25
2-1 Materials 25
2-2 Fabrication of photoanodes 26
2-3 Fabrication of counter electrodes 28
2-4 Preparation of electrolytes and DSSC assembly 30
2-5 Analytical techniques 31
2-5-1 Morphology, optical, and electrical properties 31
2-5-2 Photovoltaic performance 31
2-5-3 Electrochemical properties 32
Chapter 3 Microemulsion-controlled synthesis of CoSe2/CoSeO3 composite crystals for electrocatalysis in dye-sensitized solar cells 36
3-1 Abstract 36
3-2 Introduction 36
3-3 Results and discussions 39
3-3-1 Phase behavior 39
3-3-2 FE-SEM analyses 40
3-3-3 X-ray diffraction patterns and X-ray photoelectron spectra 42
3-3-4 Photovoltaic performance 43
3-3-5 Cyclic voltammetry 47
3-3-6 Tafel polarization curves and electrochemical impedance spectra 49
3-3-7 Dim light 51
3-4 Summary 52
Chapter 4 One step synthesized hierarchical urchin-like structure CoSe2/CoSeO3 electro-catalysts for dye-sensitized solar cells: up to 19% at dim light illumination 54
4-1 Abstract 54
4-2 Introduction 54
4-3 Results and discussions 58
4-3-1 FE-SEM analyses 58
4-3-2 X-ray diffraction patterns and X-ray photoelectron spectra 59
4-3-3 Photovoltaic performance 60
4-3-4 Cyclic voltammetry 63
4-3-5 Electrochemical impedance spectra and Tafel polarization curves 65
4-3-6 Dim light 67
4-4 Summary 69
Chapter 5 MoSe2 nanosheet/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells 70
5-1 Abstract 70
5-2 Introduction 71
5-3 Results and discussions 72
5-3-1 FE-SEM and EDX analyses 72
5-3-2 Photovoltaic performance and IPCE spectra of DSSCs 76
5-3-3 Cyclic voltammetry 79
5-3-4 Rotating disk electrode analysis 81
5-3-5 Tafel polarization curves and electrochemical impedance spectra 83
5-3-6 Flexible counter electrode 85
5-4 Summary 88
Chapter 6 A Pt-free pristine monolithic carbon aerogel counter electrode for dye-sensitized solar cells: up to 20% at dim light illumination 90
6-1 Abstract 90
6-2 Introduction 90
6-3 Results and discussions 92
6-3-1 FE-SEM analysis 92
6-3-2 Brunauer-Emmett-Teller analysis 94
6-3-3 Photovoltaic performance 95
6-3-4 Cyclic voltammetry 99
6-3-5 Electrochemical impedance spectroscopy and Tafel polarization curves 100
6-3-6 Dim light 101
6-4 Summary 103
Chapter 7 Conclusions and suggestions 104
7-1 Conclusions 104
7-2 Suggestions 105
References 106
Appendix Curriculum vitae 127
[1] M. Wu, T. Ma, Platinum-free catalysts as counter electrodes in dye-sensitized solar cells, ChemSusChem, 5 (2012) 1343.
[2] F. Bella, C. Gerbaldi, C. Barolo, M. Grätzel, Aqueous dye-sensitized solar cells, Chemical Society Reviews, 44 (2015) 3431.
[3] M. Grätzel, Photoelectrochemical cells, Nature, 414 (2001) 338.
[4] M. Kouhnavard, N. A. Ludin, B. V. Ghaffari, K. Sopian, S. Ikeda, Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects, ChemSusChem, 8 (2015) 1510.
[5] J. D. Roy-Mayhew, I. A. Aksay, Graphene materials and their use in dye-sensitized solar cells, Chemical Reviews, 114 (2014) 6323.
[6] C. P. Lee, C. A. Lin, T. C. Wei, M. L. Tsai, Y. Meng, C. T. Li, K. C. Ho, C. I. Wu, S. P. Lau, J. H. He, Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes, Nano Energy, 18 (2015) 109.
[7] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel, A. Hagfeldt, Dye-sensitized solar cells for efficient power generation under ambient lighting, Nature Photonics, 11 (2017) 372.
[8] Y. S. Tingare, N. S. n. Vinh, H. H. Chou, Y. C. Liu, Y. S. Long, T. C. Wu, T. C. Wei, C. Y. Yeh, New acetylene-bridged 9,10-conjugated anthracene sensitizers: Application in outdoor and indoor dye-sensitized solar cells, Advanced Energy Materials, 7 (2017) 1700032.
[9] A. Listorti, B. O’Regan, J. R. Durrant, Electron transfer dynamics in dye-sensitized solar cells, Chemistry of Materials, 23 (2011) 3381.
[10] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chemical Reviews, 110 (2010) 6595.
[11] P. Dong, Y. Zhu, J. Zhang, F. Hao, J. Wu, S. Lei, H. Lin, R. H. Hauge, J. M. Tour, J. Lou, Vertically aligned carbon nanotubes/graphene hybrid electrode as a TCO- and Pt-free flexible cathode for application in solar cells, Journal of Materials Chemistry A, 2 (2014) 20902.
[12] Y. Hou, D. Wang, X. H. Yang, W. Q. Fang, B. Zhang, H. F. Wang, G. Z. Lu, P. Hu, H. J. Zhao, H. G. Yang, Rational screening low-cost counter electrodes for dye-sensitized solar cells, Nature Communications, 4 (2013) 1583.
[13] M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gratzel, T. Ma, Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells, Journal of the American Chemical Society, 134 (2012) 3419.
[14] S. Yun, A. Hagfeldt, T. Ma, Pt-free counter electrode for dye-sensitized solar cells with high efficiency, Advanced Materials, 26 (2014) 6210.
[15] S. Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J. S. Yu, J. Ko, Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells, Langmuir, 26 (2010) 13644.
[16] Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells, Angewandte Chemie International Edition, 51 (2012) 12124.
[17] H. Wang, K. Sun, F. Tao, D. J. Stacchiola, Y. H. Hu, 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells, Angewandte Chemie International Edition, 52 (2013) 9210.
[18] J. Ma, C. Li, F. Yu, J. Chen, 3 D single-walled carbon nanotube/graphene aerogels as pt-free transparent counter electrodes for high efficiency dye-sensitized solar cells, ChemSusChem, 7 (2014) 3304.
[19] X. Zheng, J. Deng, N. Wang, D. Deng, W. H. Zhang, X. Bao, C. Li, Podlike N-doped carbon nanotubes encapsulating FeNi alloy nanoparticles: high-performance counter electrode materials for dye-sensitized solar cells, Angewandte Chemie International Edition, 53 (2014) 7023.
[20] C. C. Wang, S. Y. Lu, Carbon black-derived graphene quantum dots composited with carbon aerogel as a highly efficient and stable reduction catalyst for the iodide/tri-iodide couple, Nanoscale, 7 (2015) 1209.
[21] W. Yang, X. Ma, X. Xu, Y. Li, S. I. Raj, G. Ning, A. Wang, S. Chen, Sulfur-doped porous carbon as metal-free counter electrode for high-efficiency dye-sensitized solar cells, Journal of Power Sources, 282 (2015) 228.
[22] J. Zhang, M. Yu, S. Li, Y. Meng, X. Wu, J. Liu, Transparent conducting oxide-free nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite paper as flexible counter electrodes for dye-sensitized solar cells, Journal of Power Sources, 334 (2016) 44.
[23] A. A. Memon, A. A. Arbab, I. A. Sahito, K. C. Sun, N. Mengal, S. H. Jeong, Synthesis of highly photo-catalytic and electro-catalytic active textile structured carbon electrode and its application in DSSCs, Solar Energy, 150 (2017) 521.
[24] C. A. Tseng, C. P. Lee, Y. J. Huang, H. W. Pang, K. C. Ho, Y. T. Chen, One-step synthesis of graphene hollow nanoballs with various nitrogen-doped states for electrocatalysis in dye-sensitized solar cells, Materials Today Energy, 8 (2018) 15.
[25] C. P. Lee, K. Y. Lai, C. A. Lin, C. T. Li, K. C. Ho, C. I. Wu, S. P. Lau, J. H. He, A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells, Nano Energy, 36 (2017) 260.
[26] C. T. Li, C. T. Lee, S. R. Li, C. P. Lee, I. T. Chiu, R. Vittal, N. L. Wu, S. S. Sun, K. C. Ho, Composite films of carbon black nanoparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells, Journal of Power Sources, 302 (2016) 155.
[27] Y. Y. Li, C. T. Li, M. H. Yeh, K. C. Huang, P. W. Chen, R. Vittal, K. C. Ho, Graphite with Different Structures as Catalysts for Counter Electrodes in Dye-sensitized Solar Cells, Electrochimica Acta, 179 (2015) 211.
[28] P. Y. Chen, C. T. Li, C. P. Lee, R. Vittal, K. C. Ho, PEDOT-decorated nitrogen-doped graphene as the transparent composite film for the counter electrode of a dye-sensitized solar cell, Nano Energy, 12 (2015) 374.
[29] M. H. Yeh, L. Y. Lin, C. L. Sun, Y. A. Leu, J. T. Tsai, C. Y. Yeh, R. Vittal, K. C. Ho, Multiwalled Carbon Nanotube@Reduced Graphene Oxide Nanoribbon as the Counter Electrode for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 118 (2014) 16626.
[30] C. A. Lin, C. P. Lee, S. T. Ho, T. C. Wei, Y. W. Chi, K. P. Huang, J. H. He, Nitrogen-Doped Graphene/Platinum Counter Electrodes for Dye-Sensitized Solar Cells, ACS Photonics, 1 (2014) 1264.
[31] L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future, Advanced Materials, 12 (2000) 481.
[32] J. Xia, N. Masaki, K. Jiang, S. Yanagida, The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell, Journal of Materials Chemistry, 17 (2007) 2845.
[33] J. Xia, L. Chen, S. Yanagida, Application of polypyrrole as a counter electrode for a dye-sensitized solar cell, Journal of Materials Chemistry, 21 (2011) 4644.
[34] R. Zhang, Z. Li, J. Xu, J. Xia, Synthesis and application of poly(bis-3,4-ethylenedioxythiophene methine)s as novel counter electrodes in dye-sensitized solar cells, Solar Energy, 173 (2018) 1189.
[35] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Counter electrodes in dye-sensitized solar cells, Chemical Society Reviews, 46 (2017) 5975.
[36] G. Wang, C. Yan, W. Zhang, Prickly polyaniline nano/microstructures as the efficient counter electrode materials for dye-sensitized solar cells, Journal of Nanoparticle Research, 19 (2017) 395.
[37] C. Park, J. Na, E. Kim, Cross stacking of nanopatterned PEDOT films for use as soft electrodes, ACS Applied Materials & Interfaces, 9 (2017) 28802.
[38] H. Li, Y. Xiao, G. Han, W. Hou, Honeycomb-like poly(3,4-ethylenedioxythiophene) as an effective and transparent counter electrode in bifacial dye-sensitized solar cells, Journal of Power Sources, 342 (2017) 709.
[39] S. Yun, A. Hagfeldt, T. Ma, Pt-free counter electrode for dye-sensitized solar cells with high efficiency, Advanced Materials, 26 (2014) 6210.
[40] T. Peng, W. Sun, C. Huang, W. Yu, B. Sebo, Z. Dai, S. Guo, X. Z. Zhao, Self-assembled free-standing polypyrrole nanotube membrane as an efficient FTO- and Pt-free counter electrode for dye-sensitized solar cells, ACS Applied Materials & Interfaces, 6 (2014) 14.
[41] D. K. Hwang, D. Song, S. S. Jeon, T. H. Han, Y. S. Kang, S. S. Im, Ultrathin polypyrrole nanosheets doped with HCl as counter electrodes in dye-sensitized solar cells, Journal of Materials Chemistry A, 2 (2014) 859.
[42] S. Carli, L. Casarin, G. Bergamini, S. Caramori, C. A. Bignozzi, Conductive PEDOT covalently bound to transparent FTO electrodes, The Journal of Physical Chemistry C, 118 (2014) 16782.
[43] J. Kwon, N. G. Park, J. Y. Lee, M. J. Ko, J. H. Park, Highly efficient monolithic dye-sensitized solar cells, ACS Applied Materials & Interfaces, 5 (2013) 2070.
[44] J. Kwon, V. Ganapathy, Y. H. Kim, K. D. Song, H. G. Park, Y. Jun, P. J. Yoo, J. H. Park, Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells, Nanoscale, 5 (2013) 7838.
[45] T. L. Zhang, H. Y. Chen, C. Y. Su, D. B. Kuang, A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells, J. Mater. Chem. A, 1 (2013) 1724.
[46] L. Y. Chang, C. T. Li, Y. Y. Li, C. P. Lee, M. H. Yeh, K. C. Ho, J. J. Lin, Morphological Influence of Polypyrrole Nanoparticles on the Performance of Dye–Sensitized Solar Cells, Electrochimica Acta, 155 (2015) 263.
[47] C. T. Li, H. Y. Chang, Y. Y. Li, Y. J. Huang, Y. L. Tsai, R. Vittal, Y. J. Sheng, K. C. Ho, Electrocatalytic Zinc Composites as the Efficient Counter Electrodes of Dye-Sensitized Solar Cells: Study on the Electrochemical Performances and Density Functional Theory Calculations, ACS Applied Materials & Interfaces, 7 (2015) 28254.
[48] Y. F. Lin, C. T. Li, K. C. Ho, A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells, Journal of Materials Chemistry A, 4 (2016) 384.
[49] C. H. Tsai, W. C. Huang, Y. C. Hsu, C. J. Shih, I. J. Teng, Y. H. Yu, Poly(o-methoxyaniline) doped with an organic acid as cost-efficient counter electrodes for dye-sensitized solar cells, Electrochimica Acta, 213 (2016) 791.
[50] C. T. Li, Y. F. Lin, I. T. Chiu, K. C. Ho, TCO-free conducting polymers/carbon cloths as the flexible electro-catalytic counter electrodes for dye-sensitized solar cells, Journal of Materials Chemistry A, 3 (2015) 24479.
[51] L. Chen, C. Xu, R. Du, Y. Mao, C. Xue, L. Chen, L. Qu, J. Zhang, T. Yi, Rational design of three-dimensional nitrogen-doped carbon nanoleaf networks for high-performance oxygen reduction, Journal of Materials Chemistry A, 3 (2015) 5617.
[52] M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gratzel, T. Ma, Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells, Journal of the American Chemical Society, 134 (2012) 3419.
[53] H. Zhou, Y. Shi, Q. Dong, L. Wang, H. Zhang, T. Ma, High electrocatalytic activity of W18O49 nanowires for cobalt complex and ferrocenium redox mediators, RSC Advances, 4 (2014) 42190.
[54] J. He, L. T. Lee, S. Yang, Q. Li, X. Xiao, T. Chen, Printable highly catalytic Pt- and TCO-free counter electrode for dye-sensitized solar cells, ACS Applied Materials & Interfaces, 6 (2014) 2224.
[55] H. Sun, L. Zhang, Z.-S. Wang, Single-crystal CoSe2 nanorods as an efficient electrocatalyst for dye-sensitized solar cells, Journal of Materials Chemistry A, 2 (2014) 16023.
[56] J. Song, G. R. Li, K. Xi, B. Lei, X. P. Gao, R. V. Kumar, Enhancement of diffusion kinetics in porous MoN nanorods-based counter electrode in a dye-sensitized solar cell, Journal of Materials Chemistry A, 2 (2014) 10041.
[57] M. A. Ibrahem, W. C. Huang, T. W. Lan, K. M. Boopathi, Y. C. Hsiao, C. H. Chen, W. Budiawan, Y. Y. Chen, C. S. Chang, L. J. Li, C. H. Tsai, C. W. Chu, Controlled mechanical cleavage of bulk niobium diselenide to nanoscaled sheet, rod, and particle structures for Pt-free dye-sensitized solar cells, Journal of Materials Chemistry A, 2 (2014) 11382.
[58] S. H. Hsu, C. T. Li, H. T. Chien, R. R. Salunkhe, N. Suzuki, Y. Yamauchi, K. C. Ho, K. C. Wu, Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs), Scientific Reports, 4 (2014) 6983.
[59] L. Zhou, Z. Zhuang, H. Zhao, M. Lin, D. Zhao, L. Mai, Intricate hollow structures: controlled synthesis and applications in energy storage and conversion, Advanced Materials, 29 (2017) 1602914.
[60] E. Singh, K. S. Kim, G. Y. Yeom, H. S. Nalwa, Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells, RSC Advances, 7 (2017) 28234.
[61] F. Dong, Y. Guo, P. Xu, X. Yin, Y. Li, M. He, Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells, Science China Materials, 60 (2017) 295.
[62] T. Y. Chen, Y. J. Huang, C. T. Li, C. W. Kung, R. Vittal, K. C. Ho, Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells, Nano Energy, 32 (2017) 19.
[63] I. R. S, X. Xu, W. Yang, F. Yang, L. Hou, Y. Li, Highly active and reflective MoS2 counter electrode for enhancement of photovoltaic efficiency of dye sensitized solar cells, Electrochimica Acta, 212 (2016) 614.
[64] C. T. Li, Y. L. Tsai, K. C. Ho, Earth abundant silicon composites as the electrocatalytic counter electrodes for dye-sensitized solar cells, ACS Applied Materials & Interfaces, 8 (2016) 7037.
[65] M. S. Fan, C. P. Lee, C. T. Li, Y. J. Huang, R. Vittal, K. C. Ho, Nitrogen-doped graphene/molybdenum disulfide composite as the electrocatalytic film for dye-sensitized solar cells, Electrochimica Acta, 211 (2016) 164.
[66] I. T. Chiu, C. T. Li, C. P. Lee, P. Y. Chen, Y. H. Tseng, R. Vittal, K. C. Ho, Nanoclimbing-wall-like CoSe2/carbon composite film for the counter electrode of a highly efficient dye-sensitized solar cell: A study on the morphology control, Nano Energy, 22 (2016) 594.
[67] A. Antonelou, G. Syrrokostas, L. Sygellou, G. Leftheriotis, V. Dracopoulos, S. N. Yannopoulos, Facile, substrate-scale growth of mono- and few-layer homogeneous MoS2 films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs, Nanotechnology, 27 (2016) 045404.
[68] J. Guo, S. Liang, Y. Shi, C. Hao, X. Wang, T. Ma, Transition metal selenides as efficient counter-electrode materials for dye-sensitized solar cells, Physical Chemistry Chemical Physics, 17 (2015) 28985.
[69] L. L. Shao, M. Chen, T. Z. Ren, Z. Y. Yuan, Ordered mesoporous carbon/graphene nano-sheets composites as counter electrodes in dye-sensitized solar cells, Journal of Power Sources, 274 (2015) 791.
[70] L. Su, Y. Xiao, G. Han, J. Y. Lin, One-step hydrothermal synthesis of feather duster-like NiS@MoS2 with hierarchical array structure for the Pt-free dye-sensitized solar cell, Journal of Nanoparticle Research, 20 (2018).
[71] S. Prasad, G. Durai, D. Devaraj, M. S. AlSalhi, J. Theerthagiri, P. Arunachalam, M. Gurulakshmi, M. Raghavender, P. Kuppusami, 3D nanorhombus nickel nitride as stable and cost-effective counter electrodes for dye-sensitized solar cells and supercapacitor applications, RSC Advances, 8 (2018) 8828.
[72] Y. Jiang, X. Qian, C. Zhu, H. Liu, L. Hou, Nickel cobalt sulfide double-shelled hollow nanospheres as superior bifunctional electrocatalysts for photovoltaics and alkaline hydrogen evolution, ACS Applied Materials & Interfaces, 10 (2018) 9379.
[73] X. Jiang, H. Li, S. Li, S. Huang, C. Zhu, L. Hou, Metal-organic framework-derived Ni-Co alloy@carbon microspheres as high-performance counter electrode catalysts for dye-sensitized solar cells, Chemical Engineering Journal, 334 (2018) 419.
[74] J. M. Chiu, E. M. Chen, C. P. Lee, I. Shown, V. Tunuguntla, J. S. Chou, L. C. Chen, K. H. Chen, Y. Tai, Geogrid-Inspired Nanostructure to Reinforce a CuxZnySnzS Nanowall Electrode for High-Stability Electrochemical Energy Conversion Devices, 7 (2017) 1602210.
[75] S. L. Jian, Y. J. Huang, M. H. Yeh, K. C. Ho, A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells, Journal of Materials Chemistry A, 6 (2018) 5107.
[76] Y. J. Huang, C. P. Lee, H. W. Pang, C. T. Li, M. S. Fan, R. Vittal, K. C. Ho, Microemulsion-controlled synthesis of CoSe2/CoSeO3 composite crystals for electrocatalysis in dye-sensitized solar cells, Materials Today Energy, 6 (2017) 189.
[77] S. Huang, D. Ma, Z. Hu, Q. He, J. Zai, D. Chen, H. Sun, Z. Chen, Q. Qiao, M. Wu, X. Qian, Synergistically enhanced electrochemical performance of Ni3S4-PtX (X = Fe, Ni) heteronanorods as heterogeneous catalysts in dye-sensitized solar cells, ACS Applied Materials & Interfaces, 9 (2017) 27607.
[78] Y. J. Huang, M. S. Fan, C. T. Li, C. P. Lee, T. Y. Chen, R. Vittal, K. C. Ho, MoSe2 nanosheet/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells, Electrochimica Acta, 211 (2016) 794.
[79] C. T. Li, C. P. Lee, I. T. Chiu, R. Vittal, Y. J. Huang, T. Y. Chen, H. W. Pang, J. T. Lin, K. C. Ho, Hierarchical TiO1.1Se0.9-wrapped carbon cloth as the TCO-free and Pt-free counter electrode for iodide-based and cobalt-based dye-sensitized solar cells, J. Mater. Chem. A, 5 (2017) 14079.
[80] H. M. Chuang, C. T. Li, M. H. Yeh, C. P. Lee, R. Vittal, K. C. Ho, A coral-like film of Ni@NiS with core–shell particles for the counter electrode of an efficient dye-sensitized solar cell, J. Mater. Chem. A, 2 (2014) 5816.
[81] C. T. Lee, J. D. Peng, C. T. Li, Y. L. Tsai, R. Vittal, K. C. Ho, Ni3Se4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells, Nano Energy, 10 (2014) 201.
[82] J.-M. Chiu, E. M. Chen, C.-P. Lee, I. Shown, V. Tunuguntla, J.-S. Chou, L.-C. Chen, K.-H. Chen, Y. Tai, Geogrid-inspired nanostructure to reinforce a CuxZnySnzS nanowall electrode for high-stability electrochemical energy conversion devices, Advanced Energy Materials, 7 (2017) 1602210.
[83] S. Ahmad, T. Bessho, F. Kessler, E. Baranoff, J. Frey, C. Yi, M. Gratzel, M. K. Nazeeruddin, A new generation of platinum and iodine free efficient dye-sensitized solar cells, Physical Chemistry Chemical Physics, 14 (2012) 10631.
[84] K. M. Lee, P. E. Chen, C. U. Hsu, J. S. Huang, W. S. Ho, H. H. Chen, K. H. Ho, A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells, Journal of Power Sources, 188 (2009) 313.
[85] M. H. Yeh, C. P. Lee, L. Y. Lin, P. C. Nien, P. Y. Chen, R. Vittal, K. C. Ho, A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells, Electrochimica Acta, 56 (2011) 6157.
[86] H. G. Shiraz, F. R. Astaraie, Carbonaceous materials as substitutes for conventional dye-sensitized solar cell counter electrodes, Journal of Materials Chemistry A, 3 (2015) 20849.
[87] M. Batmunkh, M. J. Biggs, J. G. Shapter, Carbon nanotubes for dye-sensitized solar cells, Small, 11 (2015) 2963.
[88] H. Bi, H. Cui, T. Lin, F. Huang, Graphene wrapped copper-nickel nanospheres on highly conductive graphene film for use as counter electrodes of dye-sensitized solar cells, Carbon, 91 (2015) 153.
[89] L. J. Brennan, M. T. Byrne, M. Bari, Y. K. Gun''ko, Carbon Nanomaterials for Dye-Sensitized Solar Cell Applications: A Bright Future, Advanced Energy Materials, 1 (2011) 472.
[90] M. H. Yeh, L. Y. Lin, C. L. Sun, Y. A. Leu, J. T. Tsai, C. Y. Yeh, R. Vittal, K. C. Ho, Multiwalled carbon nanotube@reduced graphene oxide nanoribbon as the counter electrode for dye-sensitized solar cells, The Journal of Physical Chemistry C, 118 (2014) 16626.
[91] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. , Kindle ed., John Wiley & Sons Inc., New York, 2001.
[92] M. Wu, X. Lin, T. Wang, J. Qiu, T. Ma, Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes, Energy & Environmental Science, 4 (2011) 2308.
[93] X. Zhao, Y. Yang, Y. Li, X. Cui, Y. Zhang, P. Xiao, NiCo-selenide as a novel catalyst for water oxidation, Journal of Materials Science, 51 (2016) 3724.
[94] M. N. Lu, J. Y. Lin, T. C. Wei, Exploring the main function of reduced graphene oxide nano-flakes in a nickel cobalt sulfide counter electrode for dye-sensitized solar cell, Journal of Power Sources, 332 (2016) 281.
[95] K. Liu, F. Wang, K. Xu, T. A. Shifa, Z. Cheng, X. Zhan, J. He, CoS2xSe2(1-x) nanowire array: an efficient ternary electrocatalyst for the hydrogen evolution reaction, Nanoscale, 8 (2016) 4699.
[96] D. Kong, J. J. Cha, H. Wang, H. R. Lee, Y. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction, Energy & Environmental Science, 6 (2013) 3553.
[97] Y. J. Huang, M. S. Fan, C. T. Li, C. P. Lee, T.-Y. Chen, R. Vittal, K. C. Ho, MoSe2 nanosheet/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells, Electrochimica Acta, 211 (2016) 794.
[98] Y. C. Wang, D. Y. Wang, Y. T. Jiang, H. A. Chen, C. C. Chen, K. C. Ho, H. L. Chou, C. W. Chen, FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells, Angewandte Chemie International Edition, 52 (2013) 6694.
[99] S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li, S. G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Yan, MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics, Advanced Functional Materials, 24 (2014) 2155.
[100] Z. Wang, Q. Sha, F. Zhang, J. Pu, W. Zhang, Synthesis of polycrystalline cobalt selenide nanotubes and their catalytic and capacitive behaviors, CrystEngComm, 15 (2013) 5928.
[101] A. Banerjee, S. Bhatnagar, K. K. Upadhyay, P. Yadav, S. Ogale, Hollow Co0.85Se nanowire array on carbon fiber paper for high rate pseudocapacitor, ACS Applied Materials & Interfaces, 6 (2014) 18844.
[102] H. Chen, S. Chen, M. Fan, C. Li, D. Chen, G. Tian, K. Shu, Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage, Journal of Materials Chemistry A, 3 (2015) 23653.
[103] H. Peng, G. Ma, K. Sun, Z. Zhang, J. Li, X. Zhou, Z. Lei, A novel aqueous asymmetric supercapacitor based on petal-like cobalt selenide nanosheets and nitrogen-doped porous carbon networks electrodes, Journal of Power Sources, 297 (2015) 351.
[104] D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction, Journal of the American Chemical Society, 136 (2014) 4897.
[105] C. P. Lee, W.-F. Chen, T. Billo, Y. G. Lin, F. Y. Fu, S. Samireddi, C. H. Lee, J. S. Hwang, K. H. Chen, L. C. Chen, Beaded stream-like CoSe2 nanoneedle array for efficient hydrogen evolution electrocatalysis, Journal of Materials Chemistry A, 4 (2016) 4553.
[106] H. Zhang, L. Lei, X. Zhang, One-step synthesis of cubic pyrite-type CoSe2 at low temperature for efficient hydrogen evolution reaction, RSC Advances, 4 (2014) 54344.
[107] M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng, S. H. Yu, Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite, Journal of the American Chemical Society, 134 (2012) 2930.
[108] Y. S. Chao, D. S. Tsai, A. P. Wu, L. W. Tseng, Y. S. Huang, Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction, International Journal of Hydrogen Energy, 38 (2013) 5655.
[109] J. Yang, X. Shen, Z. Ji, G. Zhu, Reduced graphene oxide/CoSe2 nanocomposites: hydrothermal synthesis and their enhanced electrocatalytic activity, Journal of Materials Science, 48 (2013) 7913.
[110] Y. Feng, T. He, N. Alonso-Vante, Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium, Electrochimica Acta, 54 (2009) 5252.
[111] M. R. Gao, S. Liu, J. Jiang, C. H. Cui, W. T. Yao, S.-H. Yu, In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance, Journal of Materials Chemistry, 20 (2010) 9355.
[112] F. Gong, H. Wang, X. Xu, G. Zhou, Z. S. Wang, In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells, Journal of the American Chemical Society, 134 (2012) 10953.
[113] Z. Zhang, S. Pang, H. Xu, Z. Yang, X. Zhang, Z. Liu, X. Wang, X. Zhou, S. Dong, X. Chen, L. Gu, G. Cui, Electrodeposition of nanostructured cobalt selenide films towards high performance counter electrodes in dye-sensitized solar cells, RSC Advances, 3 (2013) 16528.
[114] Y. Duan, Q. Tang, J. Liu, B. He, L. Yu, Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells, Angewandte Chemie International Edition, 53 (2014) 14569.
[115] H. Sun, L. Zhang, Z.-S. Wang, Single-crystal CoSe2 nanorods as an efficient electrocatalyst for dye-sensitized solar cells, Journal of Materials Chemistry A, 2 (2014) 16023.
[116] J. Dong, J. Wu, M. Zheng, J. Huo, Y. Tu, Z. Lan, Petal-like cobalt selenide nanosheets used as counter electrode in high efficient dye-sensitized solar cells, Journal of Materials Science: Materials in Electronics, 26 (2015) 2501.
[117] J. Jia, J. Wu, J. Dong, P. Zhou, S. Wu, J. Lin, Cobalt selenide/tin selenide hybrid used as a high efficient counter electrode for dye-sensitized solar cells, Journal of Materials Science: Materials in Electronics, 26 (2015) 10102.
[118] H. Li, D. Gao, X. Cheng, Simple microwave preparation of high activity Se-rich CoSe2/C for oxygen reduction reaction, Electrochimica Acta, 138 (2014) 232.
[119] Q. Jiang, G. Hu, Co0.85Se hollow nanoparticles as Pt-free counter electrode materials for dye-sensitized solar cells, Materials Letters, 153 (2015) 114.
[120] J. Dong, J. Wu, J. Jia, S. Wu, P. Zhou, Y. Tu, Z. Lan, Cobalt selenide nanorods used as a high efficient counter electrode for dye-sensitized solar cells, Electrochimica Acta, 168 (2015) 69.
[121] I. T. Chiu, C. T. Li, C. P. Lee, P. Y. Chen, Y. H. Tseng, R. Vittal, K. C. Ho, Nanoclimbing-wall-like CoSe2/carbon composite film for the counter electrode of a highly efficient dye-sensitized solar cell: A study on the morphology control, Nano Energy, 22 (2016) 594.
[122] Y. Lai, F. Liu, J. Yang, B. Wang, J. Li, Y. Liu, Photoelectrochemical behavior of electrodeposited CoSe thin films, Applied Physics Express, 4 (2011) 071201.
[123] A. T. Swesi, J. Masud, M. Nath, Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction, Energy & Environmental Science, 9 (2016) 1771.
[124] K. Lee, M. S. Ahmed, S. Jeon, Electrochemical deposition of silver on manganese dioxide coated reduced graphene oxide for enhanced oxygen reduction reaction, Journal of Power Sources, 288 (2015) 261.
[125] J. Dong, J. Wu, J. Jia, L. Hu, S. Dai, Cobalt/molybdenum ternary hybrid with hierarchical architecture used as high efficient counter electrode for dye-sensitized solar cells, Solar Energy, 122 (2015) 326.
[126] J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nature Communications, 49 (2013) 1474.
[127] N. Umeyama, M. Tokumoto, S. Yagi, M. Tomura, K. Tokiwa, T. Fujii, R. Toda, N. Miyakawa, S.-I. Ikeda, Synthesis and magnetic properties of NiSe, NiTe, CoSe, and CoTe, Japanese Journal of Applied Physics, 51 (2012) 053001.
[128] J.-Y. Kim, S.-M. Choi, W.-S. Seo, W.-S. Cho, Thermal and electronic properties of exfoliated metal chalcogenides, Bulletin of the Korean Chemical Society, 31 (2010) 3225.
[129] S. A. Patil, E. K. Kim, N. K. Shrestha, J. Chang, J. K. Lee, S. H. Han, Formation of semimetallic cobalt telluride nanotube film via anion exchange tellurization strategy in aqueous solution for electrocatalytic applications, ACS Applied Materials & Interfaces, 7 (2015) 25914.
[130] J. Liu, Y. T. Kim, Y. U. Kwon, Hematite thin films with various nanoscopic morphologies through control of self-assembly structures, Nanoscale Research Letters, 10 (2015) 228.
[131] S. Sharma, A. K. Ganguli, Spherical-to-cylindrical transformation of reverse micelles and their templating effect on the growth of nanostructures, The Journal of Physical Chemistry B, 118 (2014) 4122.
[132] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. , Kindle ed., John Wiley & Sons Inc., New York, 2001.
[133] Y. Feng, N. Alonso-Vante, Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium, Electrochimica Acta, 72 (2012) 129.
[134] M. R. Gao, J. Jiang, S. H. Yu, Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR), Small, 8 (2012) 13.
[135] A. I. Carim, F. H. Saadi, M. P. Soriaga, N. S. Lewis, Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films, Journal of Materials Chemistry A, 2 (2014) 13835.
[136] Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, Y. Xie, Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation, Journal of the American Chemical Society, 136 (2014) 15670.
[137] S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S. G. Mhaisalkar, F. Cheng, Q. Yan, J. Chen, S. Ramakrishna, Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution, Angewandte Chemie International Edition, 53 (2014) 12594.
[138] S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of fe, co, and ni: A review, ACS Catalysis, 6 (2016) 8069.
[139] B. Kirubasankar, V. Murugadoss, S. Angaiah, Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors, RSC Advances, 7 (2017) 5853.
[140] A. Ali, K. Shehzad, F. Ur-Rahman, S. M. Shah, M. Khurram, M. Mumtaz, R. U. Sagar, Flexible, low cost, and platinum-free counter electrode for efficient dye-sensitized solar cells, ACS Applied Materials & Interfaces, 8 (2016) 25353.
[141] Y. Y. Yao, H. J. Chao, T. H. Chou, S. H. Chang, C. G. Wu, Y. C. Ling, J. Y. Chang, In situ fabrication of Co0.85Se and Ni0.85Se hierarchical thin films as high-performance counter electrode for dye-sensitized solar cells, Solar Energy, 137 (2016) 401.
[142] S. Zhou, Q. Jiang, J. Yang, W. Chu, W. Li, X. Li, Y. Hou, J. Hou, Regulation of microstructure and composition of cobalt selenide counter electrode by electrochemical atomic layer deposition for high performance dye-sensitized solar cells, Electrochimica Acta, 220 (2016) 169.
[143] Y. J. Huang, C. P. Lee, H. W. Pang, C. T. Li, M. S. Fan, R. Vittal, K. C. Ho, Microemulsion-controlled synthesis of CoSe2/CoSeO3 composite crystals for electrocatalysis in dye-sensitized solar cells, Materials Today Energy, 6 (2017) 189.
[144] Y. Jiang, X. Qian, Y. Niu, L. Shao, C. Zhu, L. Hou, Cobalt iron selenide/sulfide porous nanocubes as high-performance electrocatalysts for efficient dye-sensitized solar cells, Journal of Power Sources, 369 (2017) 35.
[145] V. Murugadoss, N. Wang, S. Tadakamalla, B. Wang, Z. Guo, S. Angaiah, In situ grown cobalt selenide/graphene nanocomposite counter electrodes for enhanced dye-sensitized solar cell performance, Journal of Materials Chemistry A, 5 (2017) 14583.
[146] H. Yuan, Q. Jiao, J. Liu, X. Liu, Y. Li, D. Shi, Q. Wu, Y. Zhao, H. Li, Facile synthesis of Co0.85Se nanotubes/reduced graphene oxide nanocomposite as Pt-free counter electrode with enhanced electrocatalytic performance in dye-sensitized solar cells, Carbon, 122 (2017) 381.
[147] C. C. P. Chiang, C. Y. Hung, S. W. Chou, J. J. Shyue, K. Y. Cheng, P. J. Chang, Y. Y. Yang, C. Y. Lin, T. K. Chang, Y. Chi, H. L. Chou, P. T. Chou, PtCoFe nanowire cathodes boost short-circuit currents of Ru(ii)-based dye-sensitized solar cells to a power conversion efficiency of 12.29%, Advanced Functional Materials, 28 (2018) 1703282.
[148] Y. Duan, Q. Tang, R. Li, B. He, L. Yu, An avenue of sealing liquid electrolyte in flexible dye-sensitized solar cells, Journal of Power Sources, 274 (2015) 304.
[149] M. Fang, G. Dong, R. Wei, J. C. Ho, Hierarchical nanostructures: design for sustainable water splitting, Advanced Energy Materials, 7 (2017) 1700559.
[150] L. Zhang, H. B. Wu, X. W. D. Lou, Iron-oxide-based advanced anode materials for lithium-ion batteries, Advanced Energy Materials, 4 (2014) 1300958.
[151] H. Chen, S. Yang, Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems, Nanoscale Horizons, 1 (2016) 96.
[152] H. B. Wu, G. Zhang, L. Yu, X. W. Lou, One-dimensional metal oxide-carbon hybrid nanostructures for electrochemical energy storage, Nanoscale Horizons, 1 (2016) 27.
[153] R. He, D. Xu, B. Cheng, J. Yu, W. Ho, Review on nanoscale Bi-based photocatalysts, Nanoscale Horizons, 3 (2018) 464.
[154] Y. Sun, Z. Guo, Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature, Nanoscale Horizons, 4 (2019) 52.
[155] A. Sugunan, V. K. Guduru, A. Uheida, M. S. Toprak, M. Muhammed, Radially oriented zno nanowires on flexible poly-l-lactide nanofibers for continuous-flow photocatalytic water purification, Journal of the American Ceramic Society, 93 (2010) 3740.
[156] Z. Han, M. Wang, X. Chen, S. Shen, CdSe-sensitized branched CdS hierarchical nanostructures for efficient photoelectrochemical solar hydrogen generation, Physical Chemistry Chemical Physics, 18 (2016) 11460.
[157] Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen, G. Shen, Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells, Journal of Materials Chemistry, 22 (2012) 21647.
[158] Y. Xiao, S. Liu, F. Li, A. Zhang, J. Zhao, S. Fang, D. Jia, 3D hierarchical Co3O4 twin-spheres with an urchin-like structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors, Advanced Functional Materials, 22 (2012) 4052.
[159] H. Yang, Y. Zhang, F. Hu, Q. Wang, Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability, Nano Letters, 15 (2015) 7616.
[160] Y. Ouyang, X. Xia, H. Ye, L. Wang, X. Jiao, W. Lei, Q. Hao, Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability, ACS Applied Materials & Interfaces, 10 (2018) 3549.
[161] B. Wang, H. Wu, L. Yu, R. Xu, T. T. Lim, X. W. Lou, Template-free formation of uniform urchin-like alpha-FeOOH hollow spheres with superior capability for water treatment, Advanced Materials, 24 (2012) 1111.
[162] J. Zhou, X. Liu, J. Zhou, H. Zhao, N. Lin, L. Zhu, Y. Zhu, G. Wang, Y. Qian, Fully integrated hierarchical double-shelled Co9S8@CNT nanostructures with unprecedented performance for Li-S batteries, Nanoscale Horizons, 4 (2019) 182.
[163] P. Liu, Y. Zhu, X. Gao, Y. Huang, Y. Wang, S. Qin, Y. Zhang, Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes, Chemical Engineering Journal, 350 (2018) 79.
[164] J. de La Verpilliere, S. Jessl, K. Saeed, C. Ducati, M. De Volder, A. Boies, Continuous flow chemical vapour deposition of carbon nanotube sea urchins, Nanoscale, 10 (2018) 7780.
[165] S. Tang, B. Zhu, X. Shi, J. Wu, X. Meng, General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for high-performance asymmetric all-solid-state pseudocapacitors, Advanced Energy Materials, 7 (2017) 1601985.
[166] R. Wang, X. Yan, J. Lang, Z. Zheng, P. Zhang, A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials, Journal of Materials Chemistry A, 2 (2014) 12724.
[167] C. T. Li, C. P. Lee, C. T. Lee, S. R. Li, S. S. Sun, K. C. Ho, Iodide-free ionic liquid with dual redox couples for dye-sensitized solar cells with high open-circuit voltage, ChemSusChem, 8 (2015) 1244.
[168] M. Wu, T. Ma, Recent progress of counter electrode catalysts in dye-sensitized solar cells, The Journal of Physical Chemistry C, 118 (2014) 16727.
[169] S. J. Seo, H. J. Cha, Y. S. Kang, M. S. Kang, Printable ternary component polymer-gel electrolytes for long-term stable dye-sensitized solar cells, Electrochimica Acta, 145 (2014) 217.
[170] B. O''Regan, M. Grätzel, A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films, Nature, 353 (1991) 737.
[171] K. M. Lee, L. C. Lin, C. Y. Chen, V. Suryanarayanan, C. G. Wu, Preparation of high transmittance platinum counter electrode at an ambient temperature for flexible dye-sensitized solar cells, Electrochimica Acta, 135 (2014) 578.
[172] B. Zhang, D. Wang, Y. Hou, S. Yang, X. H. Yang, J. H. Zhong, J. Liu, H. F. Wang, P. Hu, H. J. Zhao, H. G. Yang, Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells, Scientific Reports, 3 (2013) 1.
[173] N. Zhou, K. Prabakaran, B. Lee, S. H. Chang, B. Harutyunyan, P. Guo, M. R. Butler, A. Timalsina, M. J. Bedzyk, M. A. Ratner, S. Vegiraju, S. Yau, C. G. Wu, R. P. Chang, A. Facchetti, M. C. Chen, T. J. Marks, Metal-free tetrathienoacene sensitizers for high-performance dye-sensitized solar cells, Journal of the American Ceramic Society, 137 (2015) 4414.
[174] W. Wei, H. Wang, Y. H. Hu, A review on PEDOT-based counter electrodes for dye-sensitized solar cells, International Journal of Energy Research, 38 (2014) 1099.
[175] Y. Qiu, S. Lu, S. Wang, X. Zhang, S. He, T. He, High-performance polyaniline counter electrode electropolymerized in presence of sodium dodecyl sulfate for dye-sensitized solar cells, Journal of Power Sources, 253 (2014) 300.
[176] S. H. Park, O. H. Kim, J. S. Kang, K. J. Lee, J. W. Choi, Y. H. Cho, Y. E. Sung, Poly(3,4-ethylenedioxythiophene) inverse opal electrode fabricated from poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)-filled polystyrene template for dye-sensitized solar cells, Electrochimica Acta, 137 (2014) 661.
[177] S. Koussi-Daoud, D. Schaming, P. Martin, J. C. Lacroix, Gold nanoparticles and poly(3,4-ethylenedioxythiophene) (PEDOT) hybrid films as counter-electrodes for enhanced efficiency in dye-sensitized solar cells, Electrochimica Acta, 125 (2014) 601.
[178] S. Y. Heo, J. K. Koh, J. K. Kim, C. S. Lee, J. H. Kim, Three-dimensional conducting polymer films for pt-free counter electrodes in quasi-solid-state dye-sensitized solar cells, Electrochimica Acta, 137 (2014) 34.
[179] I. Okada, S. Shiratori, Rare-metal-free flexible counter electrodes for dye-sensitized solar-cells produced using wet processes only, ACS Applied Materials & Interfaces, 5 (2013) 4144.
[180] H. Kim, G. Veerappan, J. H. Park, Conducting polymer coated non-woven graphite fiber film for dye-sensitized solar cells: Superior Pt- and FTO-free counter electrodes, Electrochimica Acta, 137 (2014) 164.
[181] S. H. Park, B. K. Kim, W. J. Lee, Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells, Journal of Power Sources, 239 (2013) 122.
[182] M. H. Yeh, C. L. Sun, J. S. Su, L. Y. Lin, C. P. Lee, C. Y. Chen, C. G. Wu, R. Vittal, K. C. Ho, A low-cost counter electrode of ITO glass coated with a graphene/Nafion® composite film for use in dye-sensitized solar cells, Carbon, 50 (2012) 4192.
[183] G. Veerappan, K. Bojan, S. W. Rhee, Sub-micrometer-sized graphite as a conducting and catalytic counter electrode for dye-sensitized solar cells, ACS Appl Mater Interfaces, 3 (2011) 857.
[184] B. K. Koo, D. Y. Lee, H. J. Kim, W. J. Lee, J. S. Song, H. J. Kim, Seasoning effect of dye-sensitized solar cells with different counter electrodes, Journal of Electroceramics, 17 (2006) 79.
[185] T. Hino, Y. Ogawa, N. Kuramoto, Dye‐sensitized solar cell with single‐walled carbon nanotube thin film prepared by an electrolytic micelle disruption method as the counterelectrode, Fullerenes, Nanotubes and Carbon Nanostructures, 14 (2006) 607.
[186] M. Wu, Y. Wang, X. Lin, N. Yu, L. Wang, L. Wang, A. Hagfeldt, T. Ma, Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes, Physical Chemistry Chemical Physics, 13 (2011) 19298.
[187] M. Wu, X. Lin, A. Hagfeldt, T. Ma, A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells, Chemical Communications, 47 (2011) 4535.
[188] H. K. Mulmudi, S. K. Batabyal, M. Rao, R. R. Prabhakar, N. Mathews, Y. M. Lam, S. G. Mhaisalkar, Solution processed transition metal sulfides: application as counter electrodes in dye sensitized solar cells (DSSCs), Physical Chemistry Chemical Physics, 13 (2011) 19307.
[189] Q. W. Jiang, G. R. Li, X. P. Gao, Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells, Chemical Communications, 44 (2009) 6720.
[190] Y. L. Tsai, C. T. Li, T. Y. Huang, C. T. Lee, C. Y. Lin, C. W. Chu, R. Vittal, K. C. Ho, Electrocatalytic SiC nanoparticles/PEDOT:PSS composite thin films as the counter electrodes of dye-sensitized solar cells, ChemElectroChem, 1 (2014) 1031.
[191] S. Yun, L. Wang, C. Zhao, Y. Wang, T. Ma, A new type of low-cost counter electrode catalyst based on platinum nanoparticles loaded onto silicon carbide (Pt/SiC) for dye-sensitized solar cells, Physical Chemistry Chemical Physics, 15 (2013) 4286.
[192] J. Y. Lin, J. H. Liao, S. W. Chou, Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells, Electrochimica Acta, 56 (2011) 8818.
[193] D. Song, M. Li, Y. Jiang, Z. Chen, F. Bai, Y. Li, B. Jiang, Facile fabrication of MoS2/PEDOT-PSS composites as low-cost and efficient counter electrodes for dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, 279 (2014) 47.
[194] H. M. Chuang, C. T. Li, M.-H. Yeh, C. P. Lee, R. Vittal, K. C. Ho, A coral-like film of Ni@NiS with core-shell particles for the counter electrode of an efficient dye-sensitized solar cell, Journal of Materials Chemistry A, 2 (2014) 5816.
[195] C. T. Li, C. P. Lee, Y. Y. Li, M. H. Yeh, K. C. Ho, A composite film of TiS2/PEDOT:PSS as the electrocatalyst for the counter electrode in dye-sensitized solar cells, Journal of Materials Chemistry A, 1 (2013) 14888.
[196] J. Liu, Q. Tang, B. He, L. Yu, Cost-effective, transparent iron selenide nanoporous alloy counter electrode for bifacial dye-sensitized solar cell, Journal of Power Sources, 282 (2015) 79.
[197] I. A. Ji, H. M. Choi, J. H. Bang, Metal selenide films as the counter electrode in dye-sensitized solar cell, Materials Letters, 123 (2014) 51.
[198] Y. Hwang, B. I. Park, B. S. Lee, J. Y. Kim, J. H. Jeong, H. Kim, M. J. Ko, B. Kim, H. J. Son, S. Y. Lee, J. S. Lee, J. K. Park, S. H. Cho, D. K. Lee, Influences of extended selenization on Cu2ZnSnSe4 solar cells prepared from quaternary nanocrystal ink, The Journal of Physical Chemistry C, 118 (2014) 27657.
[199] F. H. Saadi, A. I. Carim, J. M. Velazquez, J. H. Baricuatro, C. C. L. McCrory, M. P. Soriaga, N. S. Lewis, OperandoSynthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction, ACS Catalysis, 4 (2014) 2866.
[200] C. Yung Huang, Z. Wenjing, Y. Zhu, Y. Han, J. Pu, J. K. Chang, W. T. Hsu, J. K. Huang, C. L. Hsu, M. H. Chiu, T. Takenobu, H. Li, C. I. Wu, W. H. Chang, A. T. S. Wee, L. J. Li, Monolayer MoSe2 Grown by Chemical Vapor Deposition for Fast Photodetection, ACS Nano, 8 (2014) 8582.
[201] G. W. Shim, K. Yoo, S. B. Seo, J. Shin, D. Y. Jung, I. S. Kang, C. W. Ahn, B. J. Cho, S. Y. Choi, Large-Area Single-Layer MoSe2 and Its van der Waals Heterostructures, ACS Nano, 8 (2014) 6655.
[202] W. Kautek, H. Gerischer, Photoelectrochemical Reactions and Formation of Inversion Layers at n-Type MoS2 , MoSe2 , and WSe2 Electrodes in Aprotic Solvents, 84 (1980) 645.
[203] L. T. Lee, J. He, B. Wang, Y. Ma, K. Y. Wong, Q. Li, X. Xiao, T. Chen, Few-layer MoSe2 possessing high catalytic activity towards iodide/tri-iodide redox shuttles, Scientific Reports, 4 (2014) 4063.
[204] H. Chen, Y. Xie, H. Cui, W. Zhao, X. Zhu, Y. Wang, X. Lu, F. Huang, In situ growth of a MoSe2/Mo counter electrode for high efficiency dye-sensitized solar cells, Chemical Communications, 50 (2014) 4475.
[205] A. Abderrahmane, P. J. Ko, T. V. Thu, S. Ishizawa, T. Takamura, A. Sandhu, High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors, Nanotechnology, 25 (2014) 365202.
[206] P. Sudhagar, S. Nagarajan, Y. G. Lee, D. Song, T. Son, W. Cho, M. Heo, K. Lee, J. Won, Y. S. Kang, Synergistic catalytic effect of a composite (CoS/PEDOT:PSS) counter electrode on triiodide reduction in dye-sensitized solar cells, ACS Applied Materials & Interfaces, 3 (2011) 1838.
[207] H. Ellis, N. Vlachopoulos, L. Häggman, C. Perruchot, M. Jouini, G. Boschloo, A. Hagfeldt, PEDOT counter electrodes for dye-sensitized solar cells prepared by aqueous micellar electrodeposition, Electrochimica Acta, 107 (2013) 45.
[208] D. Song, M. Li, Y. Li, X. Zhao, B. Jiang, Y. Jiang, Highly transparent and efficient counter electrode using SiO2/PEDOT-PSS composite for bifacial dye-sensitized solar cells, ACS Applied Materials & Interfaces, 6 (2014) 7126.
[209] Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, H. Imai, Characteristics of High Efficiency Dye-Sensitized Solar Cells†, The Journal of Physical Chemistry B, 110 (2006) 25210.
[210] H. Xu, X. Zhang, C. Zhang, Z. Liu, X. Zhou, S. Pang, X. Chen, S. Dong, Z. Zhang, L. Zhang, P. Han, X. Wang, G. Cui, Nanostructured titanium nitride/PEDOT:PSS composite films as counter electrodes of dye-sensitized solar cells, ACS Applied Materials & Interfaces, 4 (2012) 1087.
[211] W. Wei, H. Wang, Y. H. Hu, Unusual particle-size-induced promoter-to-poison transition of ZrN in counter electrodes for dye-sensitized solar cells, Journal of Materials Chemistry A, 1 (2013) 14350.
[212] F. H. Saadi, A. I. Carim, J. M. Velazquez, J. H. Baricuatro, C. C. L. McCrory, M. P. Soriaga, N. S. Lewis, Operando synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction, ACS Catalysis, 4 (2014) 2866.
[213] K. K. Kara, Electrical properties of WSe2 WS2 MoSe2 MoS2 and their use as photoanodes in a semiconductor liquid junction solar cell, 1982.
[214] E. Bi, H. Chen, X. Yang, F. Ye, M. Yin, L. Han, Fullerene-structured MoSe2 hollow spheres anchored on highly nitrogen-doped graphene as a conductive catalyst for photovoltaic applications, Scientific Reports, 5 (2015) 13214.
[215] P. Ganesan, A. Yella, T. W. Holcombe, P. Gao, R. Rajalingam, S. A. Al-Muhtaseb, M. Grätzel, M. K. Nazeeruddin, Unravel the impact of anchoring groups on the photovoltaic performances of diketopyrrolopyrrole sensitizers for dye-sensitized solar cells, ACS Sustainable Chemistry & Engineering, 3 (2015) 2389.
[216] C. P. Lee, C. A. Lin, T. C. Wei, M. L. Tsai, Y. Meng, C. T. Li, K. C. Ho, C. I. Wu, S. P. Lau, J. H. He, Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes, Nano Energy, 18 (2015) 109.
[217] Y. Zhu, H. Guo, H. Zheng, Y. N. Lin, C. Gao, Q. Han, M. Wu, Choose a reasonable counter electrode catalyst toward a fixed redox couple in dye-sensitized solar cells, Nano Energy, 21 (2016) 1.
[218] C. Yang, L. Zhang, N. Hu, Z. Yang, H. Wei, Y. Zhang, Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density, Journal of Power Sources, 302 (2016) 39.
[219] G. Yue, J. Wu, Y. Xiao, J. Lin, M. Huang, Z. Lan, Application of poly(3,4-ethylenedioxythiophene):Polystyrenesulfonate/polypyrrole counter electrode for dye-sensitized solar cells, The Journal of Physical Chemistry C, 116 (2012) 18057.
[220] J. Briscoe, S. Dunn, The Future of using earth-abundant elements in counter electrodes for dye-sensitized solar cells, Advanced Materials, 28 (2016) 3802.
[221] M. Chen, L. L. Shao, Z. M. Gao, T. Z. Ren, Z. Y. Yuan, Cobalt oxide and nitride particles supported on mesoporous carbons as composite electrocatalysts for dye-sensitized solar cells, Journal of Power Sources, 286 (2015) 82.
[222] T. Y. Chen, Y. J. Huang, C. T. Li, C. W. Kung, R. Vittal, K. C. Ho, Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells, Nano Energy, 32 (2017) 19.
[223] S. H. Park, Y. H. Cho, M. Choi, H. Choi, J. S. Kang, J. H. Um, J. W. Choi, H. Choe, Y. E. Sung, Nickel-nitride-coated nickel foam as a counter electrode for dye-sensitized solar cells, Surface and Coatings Technology, 259 (2014) 560.
[224] J. Y. Lin, W. Y. Wang, Y. T. Lin, S. W. Chou, Ni3S2/Ni-P bilayer coated on polyimide as a Pt- and TCO-free flexible counter electrode for dye-sensitized solar cells, ACS Applied Materials & Interfaces, 6 (2014) 3357.
[225] W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction, Nano Energy, 28 (2016) 29.
[226] D. J. Yun, K. Hong, S. Kim, W. M. Yun, J. Y. Jang, W. S. Kwon, C. E. Park, S. W. Rhee, Multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices, ACS Applied Materials & Interfaces, 3 (2011) 43.
[227] S. Casaluci, M. Gemmi, V. Pellegrini, A. Di Carlo, F. Bonaccorso, Graphene-based large area dye-sensitized solar cell modules, Nanoscale, 8 (2016) 5368.
[228] P. Zhai, C. C. Lee, Y. H. Chang, C. Liu, T. C. Wei, S. P. Feng, A significant improvement in the electrocatalytic stability of N-doped graphene nanosheets used as a counter electrode for [Co(bpy)3]3+/2+ based porphyrin-sensitized solar cells, ACS Applied Materials & Interfaces 7(2015) 2116.
[229] Y. Xu, A. S. Fleischer, G. Feng, Reinforcement and shape stabilization of phase-change material via graphene oxide aerogel, Carbon, 114 (2017) 334.
[230] D. Han, H. Mei, S. Farhan, S. Xiao, J. Xia, L. Cheng, Anisotropic compressive properties of porous CNT/SiC composites produced by direct matrix infiltration of CNT aerogel, Journal of the American Ceramic Society, 100 (2017) 2243.
[231] W. Wan, R. Zhang, W. Li, H. Liu, Y. Lin, L. Li, Y. Zhou, Graphene–carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes, Environmental Science: Nano, 3 (2016) 107.
[232] T. H. Hsieh, Y. S. Huang, The mechanical properties and delamination of carbon fiber-reinforced polymer laminates modified with carbon aerogel, Journal of Materials Science, 52 (2016) 3520.
[233] H. Chen, T. Liu, J. Ren, H. He, Y. Cao, N. Wang, Z. Guo, Synergistic carbon nanotube aerogel-Pt nanocomposites toward enhanced energy conversion in dye-sensitized solar cells, Journal of Materials Chemistry A, 4 (2016) 3238.
[234] J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Nature Nanotechnology, 10 (2015) 444.
[235] S. H. Hsu, Y. F. Lin, T. W. Chung, T. Y. Wei, S. Y. Lu, K. L. Tung, K. T. Liu, Mesoporous carbon aerogel membrane for phospholipid removal from Jatropha curcas oil, Separation and Purification Technology, 109 (2013) 129.
[236] K. H. Kim, Y. Oh, M. F. Islam, Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue, Nature Nanotechnology, 7 (2012) 562.
[237] B. Zhao, H. Huang, P. Jiang, H. Zhao, X. Huang, P. Shen, D. Wu, R. Fu, S. Tan, Flexible counter electrodes based on mesoporous carbon aerogel for high-performance dye-sensitized solar cells, The Journal of Physical Chemistry C, 115 (2011) 22615.
[238] E. Ramasamy, J. Chun, J. Lee, Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells, Carbon, 48 (2010) 4563.
[239] C. Young, J. Wang, J. Kim, Y. Sugahara, J. Henzie, Y. Yamauchi, Controlled chemical vapor deposition for synthesis of nanowire arrays of metal–organic frameworks and their thermal conversion to carbon/cetal oxide hybrid materials, Chemistry of Materials, 30 (2018) 3379.
[240] C. Wang, Y. V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li, Y. Yamauchi, Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion, Materials Horizons, 5 (2018) 394.
[241] W. Zhang, X. Jiang, Y. Zhao, A. Carne-Sanchez, V. Malgras, J. Kim, J. H. Kim, S. Wang, J. Liu, J. S. Jiang, Y. Yamauchi, M. Hu, Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis, Chemical Science, 8 (2017) 3538.
[242] J. Tang, Y. Yamauchi, Carbon materials: MOF morphologies in control, Nature Chemistry, 8 (2016) 638.
[243] R. R. Salunkhe, C. Young, J. Tang, T. Takei, Y. Ide, N. Kobayashi, Y. Yamauchi, A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte, Chemical Communications, 52 (2016) 4764.
[244] Y. Yang, B. Zhao, P. Tang, Z. Cao, M. Huang, S. Tan, Flexible counter electrodes based on nitrogen-doped carbon aerogels with tunable pore structure for high-performance dye-sensitized solar cells, Carbon, 77 (2014) 113.
[245] C. T. Li, C. P. Lee, I. T. Chiu, R. Vittal, Y. J. Huang, T. Y. Chen, H. W. Pang, J. T. Lin, K. C. Ho, Hierarchical TiO1.1Se0.9-wrapped carbon cloth as the TCO-free and Pt-free counter electrode for iodide-based and cobalt-based dye-sensitized solar cells, Journal of Materials Chemistry A, 5 (2017) 14079.
[246] C. Bao, F. Li, J. Wang, P. Sun, N. Huang, Y. Sun, L. Fang, L. Wang, X. Sun, One-pot solvothermal in situ growth of 1D single-crystalline nise on ni foil as efficient and stable transparent conductive oxide free counter electrodes for dye-sensitized solar cells, ACS Applied Materials & Interfaces, 8 (2016) 32788.
[247] M. Sun, X. Cui, Needle-shaped 3D dye-sensitized solar cells using anodized Ti wire and Pt nanoparticle/carbon fiber electrodes, Journal of Power Sources, 223 (2013) 74.
[248] S. Nagarajan, P. Sudhagar, V. Raman, W. Cho, K. S. Dhathathreyan, Y. S. Kang, A PEDOT-reinforced exfoliated graphite composite as a Pt- and TCO-free flexible counter electrode for polymer electrolyte dye-sensitized solar cells, Journal of Materials Chemistry A, 1 (2013) 1048.
[249] D. Fu, P. Lay, U. Bach, TCO-free flexible monolithic back-contact dye-sensitized solar cells, Energy & Environmental Science, 6 (2013) 824.
[250] Z. Yang, S. Gao, T. Li, F. Q. Liu, Y. Ren, T. Xu, Enhanced electron extraction from template-free 3D nanoparticulate transparent conducting oxide (TCO) electrodes for dye-sensitized solar cells, ACS Applied Materials & Interfaces, 4 (2012) 4419.
[251] S. I. Cha, Y. Kim, K. H. Hwang, Y.-J. Shin, S. H. Seo, D. Y. Lee, Dye-sensitized solar cells on glass paper: TCO-free highly bendable dye-sensitized solar cells inspired by the traditional Korean door structure, Energy & Environmental Science, 5 (2012) 6071.
[252] W. Ke, G. Fang, H. Tao, P. Qin, J. Wang, H. Lei, Q. Liu, X. Zhao, In situ synthesis of NiS nanowall networks on Ni foam as a TCO-free counter electrode for dye-sensitized solar cells, ACS Applied Materials & Interfaces, 6 (2014) 5525.
[253] Y. Fu, Z. Lv, S. Hou, H. Wu, D. Wang, C. Zhang, D. Zou, TCO-Free, flexible, and bifacial dye-sensitized solar cell based on low-cost metal wires, Advanced Energy Materials, 2 (2012) 37.
[254] W. Guo, Z. Xu, F. Zhang, S. Xie, H. Xu, X. Y. Liu, Recent development of transparent conducting oxide-free flexible thin-film solar cells, Advanced Functional Materials, 26 (2016) 8855.
[255] S. A. Al-Muhtaseb, J. A. Ritter, Preparation and properties of resorcinol formaldehyde organic and carbon gels, Advanced Materials, 15 (2003) 101.
[256] Aerogels Handbook, Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊