( 您好!臺灣時間:2021/03/06 15:38
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chia-En Liu
論文名稱(外文):Reusable Silicon Nitride Crucible Made from Recycled Kerf Loss Silicon for Multi-crystalline Silicon Casting
指導教授(外文):Chung-Wen Lan
口試委員(外文):Kuo-Chuan HoYing-Chih LiaoChen-Hao Wang
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著太陽光電產業快速發展,2018年全年新增併網量超過100 GW,其中矽晶電池就超過90 %。矽晶鑄碇的過程中,鑄碇過的石英坩堝與矽晶圓切割損失矽泥是太陽能產業兩大廢棄物。近年來,在晶錠切割製程上幾乎完全被鑽石線切割製程取代,使得切削的矽泥損失減少至40 %,然而仍是大量的耗損。因此循環經濟、循環材料及永續發展概念的建立可以處理上述製程上的廢棄物問題,透過使用回收矽粉製成氮化矽坩堝,達到純度比目前商用的石英坩堝更為高,進而提高矽錠的品質以及太陽電池的效率,以及減少廢棄坩堝的產生。
本研究使用鑽石線切割損失矽泥做為製作坩堝的起始原料,接著經過中型酸洗過濾設備去除金屬與硼磷後,利用注漿成型的方法做出坩堝生坯,放慢升溫速率在4~7 °C/h間及維持爐內約0.5 atm 5%H2+N2足夠低的負壓以減少氣氛爐漏氣進行氮化,在最佳化氮化時的燒製熱場後,可以不必額外添加催化劑得到氮化程度超過90%、收縮率小於5%的RBSN (Reaction-Bonded Silicon Nitride)坩堝,後續至少可重複鑄錠4次,晶錠的阻值可以控制在商用範圍1~2 ohm-cm內,由晶錠中央縱切面lifetime mapping的結果,其品質優於石英坩堝,驗證由純化回收矽泥製成的坩堝可以使用於商業鑄錠,除達成循環材料的目的外,也因回收矽的價格低廉,製作成坩堝的成本僅需考慮酸和水電,比起傳統石英坩堝更具競爭力,為長久以來難以處理的切割矽廢料找到一條出路。
As the rapid development in PV industry, more than 100 GW module, which consists of more than 90% silicon-based solar cell, was reached in 2018. Nevertheless, two major wastes, that is, kerf-loss silicon and broken quartz crucibles for casting, are produced. Nowadays, procedure for wafer slicing is almost replaced by diamond wire slicing. Even through, 40 wt.% of weight loss is unavoidable. We try to imply the concept of circular economy and circular material by proposing and presenting procedures for solving problems mention above via converting recycling kerf-loss silicon into silicon nitride crucibles, which can not only lower linear shrinkage than silicon nitride sintering but also become purer after every crystal growth.
In this research, we recycle kerf-loss silicon and purify it with acid to remove metals, boron and phosphorus. First, slip casting is applied for green crucible manufacturing. Second, the green crucibles are nitrided with slow temperature rising rate (4~7 °C/h) and about 0.5 atm 5%H2+N2 to prevent the leakage of the furnace. As the result, the degree of nitridation can be over 90% without any additives as catalyst, and also the linear shrinkage of RBSN (Reaction-Bonded Silicon Nitride) crucibles are lower than 5% after optimizing the hot zone of nitridation. Finally, we have proved that the RBSN crucible made from slurry waste can be reused at least 4 times. The resistivity of the ingot cast from RBSN crucible can be in 1~2 ohm-cm which is commonly used in commercial production. Moreover, the minority carrier lifetime of the ingot from RBSN crucible is also better than the one from quartz crucible. Besides the advantage of recycling, the cost of making crucible only needs to consider acid, water and utility. To be concluded, this research has provided a new way out for kerf-loss silicon waste in PV industry.
中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1切割矽泥回收與清洗方式 4
2-1-1酸洗移除回收矽泥所含金屬雜質 5
2-1-2酸洗移除回收矽泥所含硼磷雜質 8
2-1-3熱處理移除回收矽泥所含碳質 8
2-2可回收坩堝製備與應用 9
2-3氮化製程與影響因素 11
2-4氮化矽坩堝長晶 15
第三章 實驗方法及實驗器材 19
3-1實驗藥品 19
3-2實驗設備與器材 20
3-2-1矽泥清洗程序設備 20
3-2-2多晶鑄造高溫爐(G1 scale) 21
3-2-3多晶矽生長前後處理設備 21
3-2-4注漿相關設備及模具 23
3-2-5量測設備 24
3-3回收矽泥純化與坩堝製備 28
3-3-1矽泥酸洗純化 29
3-3-2注漿成型與生胚的氮化 31
3-4鑄錠試驗 35
3-5樣品的定量分析 37
3-5-1 氮化程度計算修正 37
3-5-2 氮化矽α,β相比例的計算 39
3-5-3 硼摻雜濃度與阻值關係 40
3-6實驗設計 40
3-6-1熱場控制的坩堝氮化實驗 40
3-6-2漏率控制和碳阻隔對氮化反應之影響 41
3-6-3氮化矽種添加對氮化反應之影響 42
3-6-4重複鑄錠實驗 43
3-6-5 G1 RBSN坩堝的氮化與鑄錠實驗 44
第四章 研究結果與討論 45
4-1熱場控制的坩堝氮化實驗 45
4-1-1 坩堝氮化結果 45
4-1-2 鑄錠試驗 51
4-2漏率控制和碳阻隔對氮化反應之影響 53
4-3氮化矽種添加對氮化反應之影響 56
4-4重複鑄錠實驗 59
4-4-1坩堝外觀與形貌 59
4-4-2 RBSN和SSN坩堝的碳氧含量 61
4-4-3鑄錠試驗 63
4-4-4坩堝雜質與晶錠評價 65
4-5 G1 RBSN坩堝的氮化與鑄錠實驗 70
4-5-1 G1 RBSN坩堝的氮化優化 70
4-5-2 G1 RBSN坩堝的鑄錠試驗 73
4-5-3坩堝雜質與晶錠評價 75
第五章 結論 79
參考文獻 82
[1]The European Commission''s Priorities. https://ec.europa.eu/commission/index_en.
[2]C.W. Lan, C. Hsu, K. Nakajima, Handbook of Crystal Growth: Bulk Crystal Growth, Multicrystalline silicon crystal growth for photovoltaic applications (second ed.), Elsevier (2015) 373-374.
[3]A. Herguth, G. Schubert, M. Kaes, G. Hahn, Investigations on the long time behavior of the metastable boron–oxygen complex in crystalline silicon, Prog. Photovolt. Res. Appl. 16 (2008) 135-140.
[4]B. Lim, S. Hermann, K. Bothe, J. Schmidt, R. Brendel, Solar cells on low-resistivity boron-doped Czochralski-grown silicon with stabilized efficiencies of 20%, Appl. Phys. Lett. 93 (2008) 162102.
[5]G. Ziegler, J. Heinrich, G. Wötting, Review relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride, J. Mater. Sci. 22 (1987) 3041-3086.
[6]R.G. Pigeon, A. Varma, A.E. Miller, Some factors influencing the formation of reaction-bonded silicon nitride, J. Mater. Sci. 28 (1993) 1919-1936.
[7]S. Liu, K. Huang, H. Zhu, Recovery of silicon powder from silicon wiresawing slurries by tuning the particle surface potential combined with centrifugation, Sep. Purif. Technol. 118 (2013) 448-454.
[8]K. Huang, H. Deng, J. Li, H. Zhu, Separation of Si/SiC wiresaw cutting powder through sedimentation by adjusting the solution pHs, 2012, EPD Congress 2012. John Wiley & Sons Inc. pp. 297-304.
[9]D.G. Li, P.F. Xing, Y.X. Zhuang, F. Li, G.F. Tu, Recovery of high purity silicon from SoG crystalline silicon cutting slurry waste, Trans. Nonferrous Met. Soc. China 24 (2014) 1237-1241.
[10]A. Yoko, Y. Oshima, Recovery of silicon from silicon sludge using supercritical water, J. Supercrit. Fluids 75 (2013) 1-5.
[11]Y.C. Lin, C.Y. Tai, Recovery of silicon powder from kerfs loss slurry using phase-transfer separation method, Sep. Purif. Technol. 74 (2010) 170-177.
[12]H.P. Hsu, W.P. Huang, C.F. Yang, C.W. Lan, Silicon recovery from cutting slurry by phase transfer separation, Sep. Purif. Technol. 133 (2014) 1-7.
[13]Y.C. Lin, T.Y. Wang, C.W. Lan, C.Y. Tai, Recovery of silicon powder from kerf loss slurry by centrifugation, Powder Technol. 200 (2010) 216-223.
[14]T.H. Tsai, Pretreatment of recycling wiresaw slurries—Iron removal using acid treatment and electrokinetic separation, Sep. Purif. Technol. 68 (2009) 24-29.
[15]T.H. Tsai, J.H. Huang, Metal removal from silicon sawing waste using the electrokinetic method, J. Taiwan Inst. Chem. Eng. 40 (2009) 1-5.
[16]T.H. Tsai, Silicon sawing waste treatment by electrophoresis and gravitational settling, J. Hazard. Mater. 189 (2011) 526-530.
[17]H.L. Hu, Y.P. Zeng, K.H. Zuo, Y.F. Xia, D.X. Yao, J. Günster, J.G. Heinrich, S. Li, Synthesis of porous Si3N4/SiC ceramics with rapid nitridation of silicon, J. Eur. Ceram. Soc. 35 (2015) 3781-3787.
[18]T.H. Tsai, Recycling silicon wire-saw slurries: Separation of silicon and silicon carbide in a ramp settling tank under an applied electrical field, J. Air Waste. Manag. Assoc. 63 (2013) 521-527.
[19]Y.F. Wu, Y.M. Chen, Separation of silicon and silicon carbide using an electrical field, Sep. Purif. Technol. 68 (2009) 70-74.
[20]S. Nishijima, Y. Izumi, S.I. Takeda, H. Suemoto, A. Nakahira, S.I. Horie. Recycling of abrasives from wasted slurry by superconducting magnetic separation, ‎IEEE Trans. Appl. Supercond. 13 (2003) 1596-1599.
[21]P.F. Xing, J. Guo, Y.X. Zhuang, F. Li, G.F. Tu, Rapid recovery of polycrystalline silicon from kerf loss slurry using double-layer organic solvent sedimentation method, Int. J. Min. Met. Mater. 20 (2013) 947-952.
[22]S.A. Sergiienko, B.V. Pogorelov, V.B. Daniliuk, Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots, Sep. Purif. Technol. 133 (2014) 16-21.
[23]S. Liu, K. Huang, H. Zhu, Separation of Si and SiC microparticles of solar grade silicon cutting slurry by micropore membrane, Energy Technol. (2014) 321-329.
[24]M.S. Kong, H.C. Jung, H.S. Hong, H.S Chung, A study of hot consolidation properties for recycled silicon powder, Curr. Appl. Phys. 11 (2011) S54-S58.
[25]黄美玲、熊裕华、魏秀琴、尹传强、周浪,''硅片线锯砂浆中硅粉与碳化硅粉的泡沫浮选分离回收'',电子元件与材料,4 (2010) 74-77。
[26]N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, F. Aratani, Purification of metallurgical‐grade silicon up to solar grade, Prog. Photovolt. Res. Appl. 9 (2001) 203-209.
[27]T.Y. Wang, Y.C. Lin, C.Y. Tai, R. Sivakumar, D.K. Raia, C.W. Lan, A novel approach for recycling of kerf loss silicon from cutting slurry waste for solar cell applications, J. Cryst. Growth 310 (2008) 3403-3406.
[28]S. Liu, K. Huang, H. Zhu, Removal of Fe, B and P impurities by enhanced separation technique from silicon-rich powder of the multi-wire sawing slurry, Chem. Eng. J. 299 (2016) 276-281.
[29]T. Buonassisi, A. Istratov, M.D. Pickett, J.P. Rakotoniain, O. Breitenstein, M.A. Marcus, S.M. Heald, E.R. Weber, Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon: Assessing the role of impurities in silicon nitride crucible lining material, J. Cryst. Growth 287 (2006) 402-407.
[30]E. Olsen, E.J. Øvrelid, Silicon nitride coating and crucible—effects of using upgraded materials in the casting of multicrystalline silicon ingots, Prog. Photovolt. Res. Appl. 16 (2008) 93-100.
[31]R. Kvande, L. Arnberg, C. Martin, Influence of crucible and coating quality on the properties of multicrystalline silicon for solar cells, J. Cryst. Growth 311 (2009) 765-768.
[32]M.C. Schubert, J. Schon, F. Schindler, W. Kwapil, A. Abdollahinia, B. Michl, S. Riepe, C. Schmid, M. Schumann, S. Meyer, W. Warta, Impact of impurities from crucible and coating on mc-silicon quality—The example of iron and cobalt, IEEE J. Photovolt. 3 (2013) 1250-1258.
[33]林明獻 (Lin Ming Xian),“矽晶圓半導體材料技術”,第三版,全華圖書股份有限公司,台灣 (2013)。
[34]S. Liu, K. Huang, H. Zhu, Source of boron and phosphorus impurities in the silicon wiresawing slurry and their removal by acid leaching, Sep. Purif. Technol. 172 (2017) 113-118.
[35]M.V. Pufleau, T.S. Chadha, G. Yablonsky, P. Biswas, Carbon elimination from silicon kerf: Thermogravimetric analysis and mechanistic considerations, Sci. Rep. 7 (2017) 40535.
[36]G. Dou, D. Wang, X. Zhong, B. Qin, Effectiveness of catechin and poly (ethylene glycol) at inhibiting the spontaneous combustion of coal, Fuel Process. Technol. 120 (2014) 123–127.
[37]W. Carl, Passivity during the oxidation of silicon at elevated temperatures, J. Appl. Phys. 29 (1958) 1295-1297.
[38]M.N. Ranaman, A.J. Moulson, The removal of surface silica and its effect on the nitridation of high-purity silicon, J. Mater. Sci. 19 (1984) 189-194.
[39]P. Ravishankar, Liquid Encapsulated Bridgman (LEB) method for directional solidification of silicon using calcium chloride, J. Cryst. Growth 94 (1989) 62-68.
[40]O. Minster, J. Granier, C. Potard, N. Eustathopoulos, Molding and directional solidification of solar-grade silicon using an insulating molten salt, J. Cryst. Growth 82 (1987) 155-161.
[41]T. Saito, A. Shimura, S. Ichikawa, A reusable mold in directional solidification for silicon solar cells, Sol. Energy Mater. 9 (1983) 337-345.
[42]M. Müller, W. Bauer, R. Knitter, Processing of micro-components made of sintered reaction-bonded silicon nitride (SRBSN). Part 1: Factors influencing the reaction-bonding process, Ceram. Int. 35 (2009) 2577-2585.
[43]N. Thallapalli, C. Rao, Preparation and characterization of Si3N4-BN ceramic composites by gel-casting, Mat. Sci. Res. India 13 (2016) 28-33.
[44]J. Rakshit, J. Mukerji, Properties of reaction bonded silicon nitride obtained from slip cast preforms, Bull. Mater. Sci. 13 (1990) 259-270.
[45]K. Somton, K. Dateraksa, P. Laoratanakul, M. Rodchoma, R. McCuiston, A study of slip solids content and wall thickness on thermal shock behavior of a slip cast reaction bonded silicon nitride ladle, Ceram. Int. 41 (2015) 3324-3329.
[46]D. Yao, Y.F. Xia, Y.P. Zeng, K.H. Zuo, L.J. Dong, Porous Si3N4 ceramics prepared via slip casting of Si and reaction bonded silicon nitride, Ceram. Int. 37 (2011) 3071–3076.
[47]E. Olsen, A. Solheim, H. SØrheim, Mould parts of silicon nitride and method for producing such mould parts. U.S. patent No. 7422631B2 (2006).
[48]E.K. Erik, Growth of multiple silicon ingots in a new type of reusable silicon nitride crucible, 9th CSSC, Arizona (2016).
[49]V. Schneider, C. Reimann, J. Friedrich, 2012, Cleaning a crucible, preferably silicon crucible for processing semiconductor materials, comprises e.g. melting contaminated crucible with a semiconductor material such that impurities from crucible are included by semiconductor material. DE102012201116A1.
[50]K.H. Koa, K.S. Banga, K.T. Limb, D.S. Park, H.D. Kim, C. Parka, Microstructural study of a discoloration process during in reaction bonding of silicon nitride, J. Ceram. Process. Res. 8 (2007) 199-202.
[51]X. Zhu, Y. Zhou, K. Hirao, Effects of processing method and additive composition on microstructure and thermal conductivity of Si3N4 ceramics, J. Eur. Ceram. Soc. 26 (2006) 711–718.
[52]H.N. Kim, J.W. Koa, J.M. Kim, Y.J. Parka, J.W. Lee, H.D. Kim, S.S. Baek, S.J. Lee, L. Seo, Enhanced nitridation of silicon compacts by Yb2O3 addition, Ceram. Int. 42 (2016) 7072–7079.
[53]H. Hyuga, K. Yoshida, N. Kondo, H. Kita, H. Okano, J. Sugai, J. Tsuchida, Influence of zirconia addition on reaction bonded silicon nitride produced from various silicon particle sizes, J. Ceram. Soc. JPN. 116 (2008) 688-693.
[54]H. Hyuga, K. Yoshida, N. Kondo, H. Kita, H. Okano, J. Sugai, J. Tsuchida, Nitridation enhancing effect of ZrO2 on silicon powder, Mater. Lett. 62 (2008) 3475–3477.
[55]M.W. Lindley, D.P. Elias, B.F. Jones, K.C. Pitman, The influence of hydrogen in the nitriding gas on the strength, structure and composition of reaction-sintered silicon nitride, J. Mater. Sci. 14 (1979) 70-85.
[56]H. Dervisbegovic, F.L. Riley, The Role of Hydrogen in the Nitridation of Silicon Powder Compacts, J. Mater. Sci. 16 (1981) 1945-1965.
[57]H.M. Jennings, On reactions between silicon and nitrogen, J. Mater. Sci. 23 (1983) 2573-2583.
[58]M. Maalmi, A. Varma, Intrinsic nitridation kinetics of high-purity silicon powder, AIChE J. 42 (1996) 3477-3483.
[59]M. Maalmi, A. Varma, W.C. Strieder, Reaction-bonded silicon nitride synthesis: experiments and model, Chem. Eng. Sci. 53 (1998) 679-689.
[60]B.F. Jones, M.W. Lindley, Reaction sintered silicon nitride, J. Mater. Sci. 11 (1976) 1288-1295.
[61]R. Roligheten, G. Rian, S. Julsrud, Reusable crucibles and method of manufacturing them, U.S. patent No. 20090249999A1 (2003).
[62]V. Schneider, C. Reimann, J. Friedrich, G. Müller, Nitride bonded silicon nitride as a reusable crucible material for directional solidification of silicon, Cryst. Res. Technol. 51 (2016) 74-86.
[63]S.I. Raider, R. Flitsch, J.A. Aboaf, W.A. Pliskin, Surface oxidation of silicon nitride films, J. Electrochem. Soc. 123 (1976) 560-565.
[64]H. Wang, G.S. Fischman, In situ synthesis of silicon carbide whiskers from silicon nitride powders, J. Am. Ceram. Soc. 74 (1991) 1519-1522.
[65]M. Hillert, S. Jonsson, B. Sundman, Thermodynamic calculation of the Si-N-O system, J. Am. Ceram. Soc. 83 (1992) 648-654.
[66]M.P. Bellmann, G. Stokkan, A. Ciftj, J. Denafasc, T. Kadend, Crystallization of multicrystalline silicon from reusable silicon nitride crucibles: material properties and solar cell efficiency, J. Cryst. Growth 504 (2018) 51-55.
[67]C. Reimann, A reusable crucible made of a silicon nitride ceramic as well as its use in the preparation of a mono- or multi-crystalline semi-metal body from a melt, Patent DE102013109024A1 (2013).
[68]G. Stokkan, C. Rosario, M. Berg, O. Lohne, Solar power: High temperature annealing of dislocations in multicrystalline silicon for solar cells, Intechopen (2012) 293-308.
[69]H. Mostaghaci, Processing of ceramic and metal matrix composites, Elsevier (1989).
[70]C.P. Gazzara, D.R. Messier, Determination of phase content of Si3N4 by x-ray diffraction analysis, Am. Ceram. Soc. Bull. 56 9 (1977) 777.
[71]Y.M. Chiang, R.P. Messner Chrysanthe, D. Terwilliger, D.R. Behrendt, Reaction formed silicon carbide, Mat. Sci. Eng. A 144 (1991) 63-74.
[72]A. Alem, A.L. Robin, D. Martin, D. Pugh, The influence of α- and β-Si3N4 seeds on the properties of reaction bonded silicon nitride foams produced via wet processing, Ceram. Int. 40 (2014) 14287–14294.
[73]H. Kawaoka, Effect of α/β phase ratio on microstructure and mechanical properties of silicon nitride ceramics, J. Mater. Res. 16 (2001) 8.
[74]V. Schneider, C. Reimann, J. Friedrich, Wetting and infiltration of nitride bonded silicon nitride by liquid silicon, J. Cryst. Growth 440 (2016) 31–37.
[75]D.J. Park, Y. Jung, H. G. Kim, J.Y. Park, Y.H. Koo, Oxidation behavior of silicon carbide at 1200°C in both air and water–vapor-rich environments, Corro. Sci. 88 (2014) 416–422.
[76]M. Wang, W. Harue, Synthesis and characterization of silicon nitride whiskers, J. Mater. Res. 25 (1990) 1690-1698.
[77] D. Kusano, Effects of impurity oxygen content in raw Si powder on thermal and mechanical properties of sintered reaction-bonded silicon nitrides, Int. J. Appl. Ceram. Technol. 9 2 (2012) 229–238.
[78] B.T Lee, J.H. Yoo, H.D. Kim, Size effect of raw Si powder on microstructures and mechanical properties of RBSN and gpsed-RBSN bodies, Mat. Sci. Eng. A 333 (2002) 306–313.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔