|
[1]The European Commission''s Priorities. https://ec.europa.eu/commission/index_en. [2]C.W. Lan, C. Hsu, K. Nakajima, Handbook of Crystal Growth: Bulk Crystal Growth, Multicrystalline silicon crystal growth for photovoltaic applications (second ed.), Elsevier (2015) 373-374. [3]A. Herguth, G. Schubert, M. Kaes, G. Hahn, Investigations on the long time behavior of the metastable boron–oxygen complex in crystalline silicon, Prog. Photovolt. Res. Appl. 16 (2008) 135-140. [4]B. Lim, S. Hermann, K. Bothe, J. Schmidt, R. Brendel, Solar cells on low-resistivity boron-doped Czochralski-grown silicon with stabilized efficiencies of 20%, Appl. Phys. Lett. 93 (2008) 162102. [5]G. Ziegler, J. Heinrich, G. Wötting, Review relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride, J. Mater. Sci. 22 (1987) 3041-3086. [6]R.G. Pigeon, A. Varma, A.E. Miller, Some factors influencing the formation of reaction-bonded silicon nitride, J. Mater. Sci. 28 (1993) 1919-1936. [7]S. Liu, K. Huang, H. Zhu, Recovery of silicon powder from silicon wiresawing slurries by tuning the particle surface potential combined with centrifugation, Sep. Purif. Technol. 118 (2013) 448-454. [8]K. Huang, H. Deng, J. Li, H. Zhu, Separation of Si/SiC wiresaw cutting powder through sedimentation by adjusting the solution pHs, 2012, EPD Congress 2012. John Wiley & Sons Inc. pp. 297-304. [9]D.G. Li, P.F. Xing, Y.X. Zhuang, F. Li, G.F. Tu, Recovery of high purity silicon from SoG crystalline silicon cutting slurry waste, Trans. Nonferrous Met. Soc. China 24 (2014) 1237-1241. [10]A. Yoko, Y. Oshima, Recovery of silicon from silicon sludge using supercritical water, J. Supercrit. Fluids 75 (2013) 1-5. [11]Y.C. Lin, C.Y. Tai, Recovery of silicon powder from kerfs loss slurry using phase-transfer separation method, Sep. Purif. Technol. 74 (2010) 170-177. [12]H.P. Hsu, W.P. Huang, C.F. Yang, C.W. Lan, Silicon recovery from cutting slurry by phase transfer separation, Sep. Purif. Technol. 133 (2014) 1-7. [13]Y.C. Lin, T.Y. Wang, C.W. Lan, C.Y. Tai, Recovery of silicon powder from kerf loss slurry by centrifugation, Powder Technol. 200 (2010) 216-223. [14]T.H. Tsai, Pretreatment of recycling wiresaw slurries—Iron removal using acid treatment and electrokinetic separation, Sep. Purif. Technol. 68 (2009) 24-29. [15]T.H. Tsai, J.H. Huang, Metal removal from silicon sawing waste using the electrokinetic method, J. Taiwan Inst. Chem. Eng. 40 (2009) 1-5. [16]T.H. Tsai, Silicon sawing waste treatment by electrophoresis and gravitational settling, J. Hazard. Mater. 189 (2011) 526-530. [17]H.L. Hu, Y.P. Zeng, K.H. Zuo, Y.F. Xia, D.X. Yao, J. Günster, J.G. Heinrich, S. Li, Synthesis of porous Si3N4/SiC ceramics with rapid nitridation of silicon, J. Eur. Ceram. Soc. 35 (2015) 3781-3787. [18]T.H. Tsai, Recycling silicon wire-saw slurries: Separation of silicon and silicon carbide in a ramp settling tank under an applied electrical field, J. Air Waste. Manag. Assoc. 63 (2013) 521-527. [19]Y.F. Wu, Y.M. Chen, Separation of silicon and silicon carbide using an electrical field, Sep. Purif. Technol. 68 (2009) 70-74. [20]S. Nishijima, Y. Izumi, S.I. Takeda, H. Suemoto, A. Nakahira, S.I. Horie. Recycling of abrasives from wasted slurry by superconducting magnetic separation, IEEE Trans. Appl. Supercond. 13 (2003) 1596-1599. [21]P.F. Xing, J. Guo, Y.X. Zhuang, F. Li, G.F. Tu, Rapid recovery of polycrystalline silicon from kerf loss slurry using double-layer organic solvent sedimentation method, Int. J. Min. Met. Mater. 20 (2013) 947-952. [22]S.A. Sergiienko, B.V. Pogorelov, V.B. Daniliuk, Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots, Sep. Purif. Technol. 133 (2014) 16-21. [23]S. Liu, K. Huang, H. Zhu, Separation of Si and SiC microparticles of solar grade silicon cutting slurry by micropore membrane, Energy Technol. (2014) 321-329. [24]M.S. Kong, H.C. Jung, H.S. Hong, H.S Chung, A study of hot consolidation properties for recycled silicon powder, Curr. Appl. Phys. 11 (2011) S54-S58. [25]黄美玲、熊裕华、魏秀琴、尹传强、周浪,''硅片线锯砂浆中硅粉与碳化硅粉的泡沫浮选分离回收'',电子元件与材料,4 (2010) 74-77。 [26]N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, F. Aratani, Purification of metallurgical‐grade silicon up to solar grade, Prog. Photovolt. Res. Appl. 9 (2001) 203-209. [27]T.Y. Wang, Y.C. Lin, C.Y. Tai, R. Sivakumar, D.K. Raia, C.W. Lan, A novel approach for recycling of kerf loss silicon from cutting slurry waste for solar cell applications, J. Cryst. Growth 310 (2008) 3403-3406. [28]S. Liu, K. Huang, H. Zhu, Removal of Fe, B and P impurities by enhanced separation technique from silicon-rich powder of the multi-wire sawing slurry, Chem. Eng. J. 299 (2016) 276-281. [29]T. Buonassisi, A. Istratov, M.D. Pickett, J.P. Rakotoniain, O. Breitenstein, M.A. Marcus, S.M. Heald, E.R. Weber, Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon: Assessing the role of impurities in silicon nitride crucible lining material, J. Cryst. Growth 287 (2006) 402-407. [30]E. Olsen, E.J. Øvrelid, Silicon nitride coating and crucible—effects of using upgraded materials in the casting of multicrystalline silicon ingots, Prog. Photovolt. Res. Appl. 16 (2008) 93-100. [31]R. Kvande, L. Arnberg, C. Martin, Influence of crucible and coating quality on the properties of multicrystalline silicon for solar cells, J. Cryst. Growth 311 (2009) 765-768. [32]M.C. Schubert, J. Schon, F. Schindler, W. Kwapil, A. Abdollahinia, B. Michl, S. Riepe, C. Schmid, M. Schumann, S. Meyer, W. Warta, Impact of impurities from crucible and coating on mc-silicon quality—The example of iron and cobalt, IEEE J. Photovolt. 3 (2013) 1250-1258. [33]林明獻 (Lin Ming Xian),“矽晶圓半導體材料技術”,第三版,全華圖書股份有限公司,台灣 (2013)。 [34]S. Liu, K. Huang, H. Zhu, Source of boron and phosphorus impurities in the silicon wiresawing slurry and their removal by acid leaching, Sep. Purif. Technol. 172 (2017) 113-118. [35]M.V. Pufleau, T.S. Chadha, G. Yablonsky, P. Biswas, Carbon elimination from silicon kerf: Thermogravimetric analysis and mechanistic considerations, Sci. Rep. 7 (2017) 40535. [36]G. Dou, D. Wang, X. Zhong, B. Qin, Effectiveness of catechin and poly (ethylene glycol) at inhibiting the spontaneous combustion of coal, Fuel Process. Technol. 120 (2014) 123–127. [37]W. Carl, Passivity during the oxidation of silicon at elevated temperatures, J. Appl. Phys. 29 (1958) 1295-1297. [38]M.N. Ranaman, A.J. Moulson, The removal of surface silica and its effect on the nitridation of high-purity silicon, J. Mater. Sci. 19 (1984) 189-194. [39]P. Ravishankar, Liquid Encapsulated Bridgman (LEB) method for directional solidification of silicon using calcium chloride, J. Cryst. Growth 94 (1989) 62-68. [40]O. Minster, J. Granier, C. Potard, N. Eustathopoulos, Molding and directional solidification of solar-grade silicon using an insulating molten salt, J. Cryst. Growth 82 (1987) 155-161. [41]T. Saito, A. Shimura, S. Ichikawa, A reusable mold in directional solidification for silicon solar cells, Sol. Energy Mater. 9 (1983) 337-345. [42]M. Müller, W. Bauer, R. Knitter, Processing of micro-components made of sintered reaction-bonded silicon nitride (SRBSN). Part 1: Factors influencing the reaction-bonding process, Ceram. Int. 35 (2009) 2577-2585. [43]N. Thallapalli, C. Rao, Preparation and characterization of Si3N4-BN ceramic composites by gel-casting, Mat. Sci. Res. India 13 (2016) 28-33. [44]J. Rakshit, J. Mukerji, Properties of reaction bonded silicon nitride obtained from slip cast preforms, Bull. Mater. Sci. 13 (1990) 259-270. [45]K. Somton, K. Dateraksa, P. Laoratanakul, M. Rodchoma, R. McCuiston, A study of slip solids content and wall thickness on thermal shock behavior of a slip cast reaction bonded silicon nitride ladle, Ceram. Int. 41 (2015) 3324-3329. [46]D. Yao, Y.F. Xia, Y.P. Zeng, K.H. Zuo, L.J. Dong, Porous Si3N4 ceramics prepared via slip casting of Si and reaction bonded silicon nitride, Ceram. Int. 37 (2011) 3071–3076. [47]E. Olsen, A. Solheim, H. SØrheim, Mould parts of silicon nitride and method for producing such mould parts. U.S. patent No. 7422631B2 (2006). [48]E.K. Erik, Growth of multiple silicon ingots in a new type of reusable silicon nitride crucible, 9th CSSC, Arizona (2016). [49]V. Schneider, C. Reimann, J. Friedrich, 2012, Cleaning a crucible, preferably silicon crucible for processing semiconductor materials, comprises e.g. melting contaminated crucible with a semiconductor material such that impurities from crucible are included by semiconductor material. DE102012201116A1. [50]K.H. Koa, K.S. Banga, K.T. Limb, D.S. Park, H.D. Kim, C. Parka, Microstructural study of a discoloration process during in reaction bonding of silicon nitride, J. Ceram. Process. Res. 8 (2007) 199-202. [51]X. Zhu, Y. Zhou, K. Hirao, Effects of processing method and additive composition on microstructure and thermal conductivity of Si3N4 ceramics, J. Eur. Ceram. Soc. 26 (2006) 711–718. [52]H.N. Kim, J.W. Koa, J.M. Kim, Y.J. Parka, J.W. Lee, H.D. Kim, S.S. Baek, S.J. Lee, L. Seo, Enhanced nitridation of silicon compacts by Yb2O3 addition, Ceram. Int. 42 (2016) 7072–7079. [53]H. Hyuga, K. Yoshida, N. Kondo, H. Kita, H. Okano, J. Sugai, J. Tsuchida, Influence of zirconia addition on reaction bonded silicon nitride produced from various silicon particle sizes, J. Ceram. Soc. JPN. 116 (2008) 688-693. [54]H. Hyuga, K. Yoshida, N. Kondo, H. Kita, H. Okano, J. Sugai, J. Tsuchida, Nitridation enhancing effect of ZrO2 on silicon powder, Mater. Lett. 62 (2008) 3475–3477. [55]M.W. Lindley, D.P. Elias, B.F. Jones, K.C. Pitman, The influence of hydrogen in the nitriding gas on the strength, structure and composition of reaction-sintered silicon nitride, J. Mater. Sci. 14 (1979) 70-85. [56]H. Dervisbegovic, F.L. Riley, The Role of Hydrogen in the Nitridation of Silicon Powder Compacts, J. Mater. Sci. 16 (1981) 1945-1965. [57]H.M. Jennings, On reactions between silicon and nitrogen, J. Mater. Sci. 23 (1983) 2573-2583. [58]M. Maalmi, A. Varma, Intrinsic nitridation kinetics of high-purity silicon powder, AIChE J. 42 (1996) 3477-3483. [59]M. Maalmi, A. Varma, W.C. Strieder, Reaction-bonded silicon nitride synthesis: experiments and model, Chem. Eng. Sci. 53 (1998) 679-689. [60]B.F. Jones, M.W. Lindley, Reaction sintered silicon nitride, J. Mater. Sci. 11 (1976) 1288-1295. [61]R. Roligheten, G. Rian, S. Julsrud, Reusable crucibles and method of manufacturing them, U.S. patent No. 20090249999A1 (2003). [62]V. Schneider, C. Reimann, J. Friedrich, G. Müller, Nitride bonded silicon nitride as a reusable crucible material for directional solidification of silicon, Cryst. Res. Technol. 51 (2016) 74-86. [63]S.I. Raider, R. Flitsch, J.A. Aboaf, W.A. Pliskin, Surface oxidation of silicon nitride films, J. Electrochem. Soc. 123 (1976) 560-565. [64]H. Wang, G.S. Fischman, In situ synthesis of silicon carbide whiskers from silicon nitride powders, J. Am. Ceram. Soc. 74 (1991) 1519-1522. [65]M. Hillert, S. Jonsson, B. Sundman, Thermodynamic calculation of the Si-N-O system, J. Am. Ceram. Soc. 83 (1992) 648-654. [66]M.P. Bellmann, G. Stokkan, A. Ciftj, J. Denafasc, T. Kadend, Crystallization of multicrystalline silicon from reusable silicon nitride crucibles: material properties and solar cell efficiency, J. Cryst. Growth 504 (2018) 51-55. [67]C. Reimann, A reusable crucible made of a silicon nitride ceramic as well as its use in the preparation of a mono- or multi-crystalline semi-metal body from a melt, Patent DE102013109024A1 (2013). [68]G. Stokkan, C. Rosario, M. Berg, O. Lohne, Solar power: High temperature annealing of dislocations in multicrystalline silicon for solar cells, Intechopen (2012) 293-308. [69]H. Mostaghaci, Processing of ceramic and metal matrix composites, Elsevier (1989). [70]C.P. Gazzara, D.R. Messier, Determination of phase content of Si3N4 by x-ray diffraction analysis, Am. Ceram. Soc. Bull. 56 9 (1977) 777. [71]Y.M. Chiang, R.P. Messner Chrysanthe, D. Terwilliger, D.R. Behrendt, Reaction formed silicon carbide, Mat. Sci. Eng. A 144 (1991) 63-74. [72]A. Alem, A.L. Robin, D. Martin, D. Pugh, The influence of α- and β-Si3N4 seeds on the properties of reaction bonded silicon nitride foams produced via wet processing, Ceram. Int. 40 (2014) 14287–14294. [73]H. Kawaoka, Effect of α/β phase ratio on microstructure and mechanical properties of silicon nitride ceramics, J. Mater. Res. 16 (2001) 8. [74]V. Schneider, C. Reimann, J. Friedrich, Wetting and infiltration of nitride bonded silicon nitride by liquid silicon, J. Cryst. Growth 440 (2016) 31–37. [75]D.J. Park, Y. Jung, H. G. Kim, J.Y. Park, Y.H. Koo, Oxidation behavior of silicon carbide at 1200°C in both air and water–vapor-rich environments, Corro. Sci. 88 (2014) 416–422. [76]M. Wang, W. Harue, Synthesis and characterization of silicon nitride whiskers, J. Mater. Res. 25 (1990) 1690-1698. [77] D. Kusano, Effects of impurity oxygen content in raw Si powder on thermal and mechanical properties of sintered reaction-bonded silicon nitrides, Int. J. Appl. Ceram. Technol. 9 2 (2012) 229–238. [78] B.T Lee, J.H. Yoo, H.D. Kim, Size effect of raw Si powder on microstructures and mechanical properties of RBSN and gpsed-RBSN bodies, Mat. Sci. Eng. A 333 (2002) 306–313.
|