(3.220.231.235) 您好!臺灣時間:2021/03/07 11:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉浩汶
研究生(外文):Hao-Wen Liu
論文名稱:抑制鋁離子電池負極枝晶生成之研究
論文名稱(外文):Preventing Dendrite Formation for Aluminum Ion Battery
指導教授:吳乃立
指導教授(外文):Nae-Lih Wu
口試委員:方家振黃筱雯
口試委員(外文):Chia-Chen FangHsiao-Wen Huang
口試日期:2019-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:76
中文關鍵詞:鋁離子電池石墨離子液體高分子介面膜工作電壓鋁枝晶
DOI:10.6342/NTU201903414
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著電動車及儲能技術地擴展,電池產業一直在追求技術上的突破,以達到電容量高、能量密度大、安全性佳、以及便宜及壽命長且能夠快速充放電的需求,目前電池市場由鋰電池所主宰,但鋰電池的爆炸事件在近幾年來不斷的浮出水面使得安全性有待感善,也因為其廣泛被使用,隨著需求量的大增,鋰金屬的供應成了鋰電池的一大隱憂。反之,鋁是地殼中蘊藏量極為豐富的金屬,約佔地殼8%,且其具有價格便宜和安全等特性。在鋁電池的低成本、低可燃性和高理論電容量、工作溫度區間大和快速充放電的特性是儲能市場中具有極大發展潛能的研究。2015 年,美國史丹佛大學戴宏傑教授與台灣工研院首次合作,研究發表在Nature 期刊,此研究以超高電流密度下進行鋁電池的快速充電,且循環壽命可達7500 圈,解決了鋁電池過去30 年,缺乏合適的電解液與陰極材料的阻礙,開啟了鋁電池研究的新的里程。工研院綠能所,在放大製程的過程中,發現了疑似鋁枝晶的生成,影響鋁電池壽命,但此問題並無被詳細研究,也無相關技術改善,因此本研究主要著重探討於鋁枝晶的產生所造成安全性的隱憂。研究構想主要以AlCl3/[EMIm]Cl系統為基礎,設計一個可充放電的玻璃電池,利用原位光學顯微鏡觀測的方法,在充放電的過程中,觀測鋁枝晶成核生長的形貌變化觀測。並利用簡單且方便的高分子塗層(polymer-coating)或高分子/陶瓷材料的複合塗層(polymer/Ceramic-coating)的方式,挑選具有不同官能基的高分子,及不同陶瓷材料在電極和材料表面上建造一層人工固態電解質界面(Artificial SEI),這層界面的功用主要是用來均勻電場,但仍具有讓鋁離子(Al2Cl7-)通過的特性,使得鋁沉積呈二維方向分佈,以此方法達到抑制枝晶的效果,進一步延伸探討高分子官能基及帶電性高分子對鋁電池電性影響,使鋁離子電池之電極材料能有良好的安全性及電化學表現。本研究是目前鋁電池領域,第一位成功利用原位光學顯微鏡觀測,發現了鋁離子電池的枝晶生成條件,以及研發出一套利用高分子/陶瓷材料的複合塗層(polymer/Ceramic-coating)的技術去抑制鋁電池的枝晶生成,同時提高鋁電池的循環壽命。
In recent years, rechargeable batteries are one of the most attractive options for both grid electrical energy storage and electrical vehicle (EV) applications due to the steadily increasing demands. Lithium-ion batteries have dominated the consumer electronics market over the past two decades and the EV applications, but the supply of lithium metal to these growing industries becomes a major concern as the lithium source is limited. On the other hand, aluminum is the most abundant as well as cheap metal in the earth’s crust. Rechargeable aluminum-ion batteries (AIBs) is a promising research for future energy storage technologies due to its impressive advantages such as high anode capacity (gravimetric capacity of 2980 mAh g−1, and volumetric capacity of 8040 mAh cm−3), cost effectiveness, and safety. A recent report from Lin et al. in cooperation with ITRI opened a new research direction by employing an AlCl3/[EMIm]Cl ionic liquid electrolyte and graphitic cathode. This pioneering work has stimulated the re earch enthusiasm in aluminum-ion batteries (AIBs). At present, there are multiple challenges that need to be overcome by AIBs applications. For example, decomposition of the cathode material, the small charge/discharge voltage window of the battery, the small energy/power densities, (compared with commercially available lithium batteries), the high electrolyte cost and the formation of aluminum dendrites and safety. Here, we focused on studying AlCl3/[EMIm]Cl electreolyte system. We aim to observe aluminum dendrite formation that causing short-circuit by in-situ optical microscopy. In this study, we will investigate the reason behind the dendrite formation and resolve the problem using a new strategy of polymer-coating (called Artificial SEI) having different functional groups on the aluminum metal anode to suppress dendrites. This Artificial SEI not only suppress the aluminum dendrite formation but also help to attain uniform electric field distribution while allowing smooth passage of aluminum ions (Al2Cl7 to intercalate with graphite. The successful inhibition of dendrite formation through this method has opened another path to study further and explore the effects of different functional groups and charged polymers on aluminum ion batteries. This research is the first of its kind in the field of aluminum ion batteries. The first successful use of in-situ optical microscopy to study the dendrite formation mechanism has revealed the conditions that lead to dendrite formation in aluminum-ion batteries and the development of a new composite coating using polymer/ceramic materials (polymer/Ceramic- The technique of coating) that suppress the dendrite formation of aluminum ion battery as well as improving the cycle life of the aluminum battery. We hope this strategy will help to expand the overall operating voltage of the aluminum ion batteries and find other innovative pathways to resolve aluminum ion battery related issues in the future.
Table of Contents
口試委員會審定書…………………………………………………………………… I
誌謝……………………………………………………….......……………………… II
摘要………………………………………………………………………………… III
Abstract……………………………………...………………………………………. IIV
Table of Contents……………………………………………..…………………… VI
List of Figures……………………………………...……………………………….. X
List of Tables………………………………………………………………….... XXVI
Chapter 1 Introduction………………………………………………………………... 1
1-1 Background………………………………………………………………….. 1
1-2 Motivation and Objectives…………………………………………………... 2
Chapter 2 Literature Review………………………………………………………….. 4
2-1 Rechargeable Aluminium Ion Batteries………….……………………... 4
2-1-1 Introduction of Rechargeable Aluminium ion batteries………………... 4
2-2-2 Theory of Rechargeable Aluminium Ion Batteries…………………….. 6
2-3-3 Challenges of Rechargeable Aluminium Ion Batteries………………… 7
2-3 Contemporary Research Status of Aluminium Ion Batteries………………... 9
2-3-1 Advanced Materials for Cathodes……………………………… 9
2-3-1-1 FeS2…………………………………………………………… 9
2-3-1-2 VO2……………………………………………………………… 9
2-3-1-3 V2O5…………………………………………………………… 10
2-3-1-4 Graphite Layer…………………………………………………. 12
2-3-2 Research of Ionic Liquid (IL) ………………………………………… 16
2-3-3 Research of Aluminium Metal Anodes……………………………….. 17
Chapter 3 Experimental……………………………………………………………… 20
3-1 Materials and Chemical……………………………………………….…… 20
3-2 Materials and Chemicals…………………………………………………… 21
3-3 Preparation of Cathode Materials………………………………………….. 23
3-3-1 Preparation of Nature Graphite Electrode for Cathode Material……… 23
3-4 Surface Modification Using Polymeric Coating…………………………… 23
3-4-1 Polymeric Modification by Polyethylenimine (PEI) on Aluminium anode………………………………………………………………………… 23
3-4-2 Polymeric Modification by Polyvinylpyrrolidone (PVP) on Aluminium anode…………………………………………………...……………………. 23
3-4-3 Polymeric Modification by Polyvinylidene fluoride (PVDF) on Aluminium anode.. ………………………………………………………….. 24
3-4-4 Polymer/Ceramic Modification on Aluminium anode………………... 24
3-5 Preparation of [EMIm]AlxCly Ionic Liquid Electrolyte…………………… 27
3-6 Material Characterizations and Analyses………………………………….. 28
3-6-1 Microscopy……………………………………………………………. 28
3-6-2 X-ray Diffraction……………………………………………………… 28
3-5-3 Fourier Transform Infrared Spectroscopy…………………………….. 29
3-7 Electrochemical Characterizations ……………………………………….....30
3-7-1 Fabrication of Al/NG Pouch Cell……………………………………... 30
3-7-2 Charge/Discharge Test………………………………………………… 30
3-7-3 Cyclic Voltammetry………………...………………….…………...… 31
3-7-4 Electrochemical Impedance Spectroscopy……….…………………… 31
3-8 In-operando Digital microscopic Analysis………………………………… 32
3-8-1 Fabrication of Al-Al Symmetric Glass-cell………………………… …32
3-8-2 Setup for in-operando Microscopy…………………………………. …34
Chapter 4 In-operando Digital microscopic Analysis by Al-Al Symmetric Glass-cell ………………………………………………………………………………………..35
4-1 Introduction………………………………………………………………… 35
4-2 Real Time imaging analysis for Aluminium Electrochemical Plating/Stripping in [EMIm]AlxCly Ionic Liquid Electrolyte Utilizing Glass-Cell Design …………………………………………………………………………36
4-2-1 Aluminium Electrochemical Plating/Stripping at 3 mA/cm2 Current Density……………………………………………………………………… 36
4-2-2 Aluminium Electrochemical Plating/Stripping at 5 mA/cm2 Current Density………………………………………………………………………. 39
4-2-3 Aluminium Electrochemical Plating/Stripping at 10 mA/cm2 Current Density………………………………………………………………………. 43
Chapter 5 Surface Modification for Dendrite-Free Aluminium Metal Anode………. 46
5-1 Introduction………………………………………………………………… 46
5-2 Complete Polymer Selection and Polymer Suitability Test for AlCl3 /[EMIm]Cl Ionic Liquid………………………………………………………... 47
5-2-1 Polymer Selection…………………………………………………....... 47
5-2-2 Polymer Suitability Test for AlCl3 /[EMIm]Cl Ionic Liquid………. ….48
5-3 In-operando Observation of Aluminium Deposition under Different Polymer Coatings ……………………………………………………………………….49
5-3-1 PEI@Al Electrochemical Plating/Stripping at 10 mA/cm2 Current Density……………………………………………………………………. ....50
5-3-2 PEI@Al Electrochemical Plating/Stripping at 3 mA/cm2 Current Density ……………………………………………………………………….53
5-3-3 PEI with 2% Al2O3@Al Electrochemical Plating/Stripping by 3 mA/cm2 Current Density…………………………………………………….. 55
5-3-4 SEM Morphology of PEI with 2% Al2O3@Al……………….............. 57
5-4 In-operando Observation of Aluminium Deposition on Different Polymer/Ceramic Composite Coatings……………………………...…………. 58
5-4-1 PEI with 2%Al2O3@Al and PVP with 2% Al2O3 Electrochemical Plating/Stripping at 3 mA/cm2 current density……………………………… 58
5-4-2 PEI with 2%Al2O3@Al and PEI with 2% SiO2 Electrochemical Plating/Stripping by 3 mA/cm2 Current Density…………………………. 60
Chapter 6 Electrochemical Performance of Aluminium Anode in AlCl3/[EMIm]Cl electrolyte …………………………………………………………………………….62
6-1 Introduction………………………………………………………………… 62
6-2 Electrochemical Performance of Pristine Aluminium Anode in AlCl3/[EMIm]Cl Electrolyte…………………………………………………… 63
6-2-1 Comparisons of Electrochemical Performance between Aluminium Foil Package and Plastic Package Using 18 mm Circular Plates………………… 63
6-2-2 The Rate Performance Package Using 18mm Circular Plates by Aluminium Foil……………………………………………………………… 65
6-3 Study on The Electrochemical Characteristics of Aluminium Anodes Coated with Polymer……………………………………………………………………68
6-4 Study on the Electrochemical Characteristics of Aluminium Anodes Coated with Polymer/Cerimic Composite……………………………………………… 69
Chapter 7 Conclusions………………………………………………………………. 72
References…………………………………………………………………………… 74
Appendix A………………………………………………………………………….. 76
1.D. Lin, Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology, 2017. 12(3): p. 194.
2.Z. Yang, Zhang, J.,Michael C. W. ,Xiao K. M. Lu C., Daiwon ChoiJohn P. Lemmon Jun Liu, Electrochemical energy storage for green grid. Chemical reviews, 2011. 111(5): p. 3577-3613.
3.H. Pan, Y.-S. Hu, and L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 2013. 6(8): p. 2338-2360.
4.Das, S.K., S. Mahapatra, and H. Lahan, Aluminium-ion batteries: developments and challenges. Journal of Materials Chemistry A, 2017. 5(14): p. 6347-6367.
5.D.-Y. Wang, C. Y. Wei, M. C. Lin, C. J. Pan, H. L. Chou, H. A. Chen, M. Gong, Y. P. Wu, C. Yuan, M. Angell, Y. J. Hsieh, Y. H. Chen, C. Y. Wen, C. W. Chen, B. J. Hwang, C. C. Chen and H. J. Dai, Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nature communications, 2017. 8: p. 14283.
6.Li, Q. and N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. Journal of Power Sources, 2002. 110(1): p. 1-10.
7.Armand, M. and J.-M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652.
8.Lin M. C., Gong M., Lu B., Wu Y. P., Wang D. Y., Guan M., Michael. A, Chen C. X.,Yang J. Huang B. J., Dai H. J., An ultrafast rechargeable aluminium-ion battery. Nature, 2015. 520(7547): p. 324.
9.Chen, H., Xu H. Y., Wang T., Xi J. B, Cai S. Gao F., Xu Z., Gao W. W., Cao C., Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Science Advances, 2017. 3(12): p. eaao7233.
10.Dymek, C., et al., An Aluminum Acid‐Base Concentration Cell Using Room Temperature Chloroaluminate Ionic Liquids. Journal of The Electrochemical Society, 1984. 131(12): p. 2887-2892.
11.Jayaprakash, N., S. Das, and L. Archer, The rechargeable aluminum-ion battery. Chemical Communications, 2011. 47(47): p. 12610-12612.
12.Das, S.K., Graphene: A Cathode Material of Choice for Aluminum‐Ion Batteries. Angewandte Chemie International Edition, 2018. 57(51): p. 16606-16617.
13.Hudak, N.S., Chloroaluminate-doped conducting polymers as positive electrodes in rechargeable aluminum batteries. The Journal of Physical Chemistry C, 2014. 118(10): p. 5203-5215.
14.Gifford, P. and J. Palmisano, An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte. Journal of The Electrochemical Society, 1988. 135(3): p. 650-654.
15.Chen, H.,Xu H., Zheng B., Wang S., Huang T., Guo F., Gao W. W., and Gao C., Oxide film efficiently suppresses dendrite growth in aluminum-ion battery. ACS applied materials & interfaces, 2017. 9(27): p. 22628-22634.
16.Berretti, E., Giaccherini A., Martinuzzi S. M., Innocenti M., Schubert Tomas J. S., Sriemke F. M. and Caporali S.,Aluminium electrodeposition from ionic liquid: Effect of deposition temperature and sonication. Materials, 2016. 9(9): p. 719.
17.Koura, N., A preliminary investigation for an Al/AlCl3-NaCl/FeS2 secondary cell. Journal of The Electrochemical Society, 1980. 127: p. 1529-1531.
18.Mori, T., Orikasa Y., Nakanishi K., Chen. K., Hattori M., Ohta T., Uchimoto Y., Discharge/charge reaction mechanisms of FeS2 cathode material for aluminum rechargeable batteries at 55° C. Journal of Power Sources, 2016. 313: p. 9-14.
19.Wang, W., Jiang B., Xiong W.,Sun H., Lin Z., Tu J., Hou J., Zhu H. and Jiao S., A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Scientific reports, 2013. 3: p. 3383.
20.Holleck, G.L. and J. Giner, The Aluminum Electrode in AlCl3‐Alkali‐Halide Melts. Journal of the Electrochemical Society, 1972. 119(9): p. 1161-1166.
21.Holleck, G.L., The Reduction of Chlorine on Carbon in AlCl3‐KCl‐NaCl Melts. Journal of The Electrochemical Society, 1972. 119(9): p. 1158-1161.
22.Gale, R. and R. Osteryoung, Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures. Inorganic Chemistry, 1979. 18(6): p. 1603-1605.
23.Conway, B. and J. Bockris, Modern Aspects of Electrochemistry No. 9. Ed. J. O''M, 1972.
24.Luo, J., C.C. Fang, and N.L. Wu, High Polarity Poly (vinylidene difluoride) Thin Coating for Dendrite‐Free and High‐Performance Lithium Metal Anodes. Advanced Energy Materials, 2018. 8(2): p. 1701482.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔