( 您好!臺灣時間:2021/03/06 20:18
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Shang-Cheng Tsai
論文名稱(外文):3D Printed Conductive Structure from LCD-based Stereolithography
指導教授(外文):Ying-Chih Liao
口試委員(外文):Wei-Ping DowHong-Ta YangMing-Der GerTzu-Chien Wei
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
3D列印能夠快速製造複雜的三維結構,而在眾多3D列印技術中,光固化技術具有最高的解析度以及最好的表面品質。前人在文獻中提出了利用光固化技術製備三維導電結構,但導電度都相當低(約0.1 S/cm)。為了改善導電度的問題,我們在本研究中使用高導電性的銀銅金屬。然而,銀銅金屬高密度的特性導致其在高分子樹脂中快速沉降,亦造成列印過程中銀銅金屬的不均勻分散。除此之外,為了達到高導電度,必須使用高濃度的銀銅金屬,但如此高的金屬含量會屏蔽掉UV光,使固化速度下降。這些限制使得我們難以利用光固化樹脂製備三維導電結構。
The 3D printing nature provides fast fabrication of complicated 3D structure. Among all 3D printing methods, stereolithography method has the highest resolution and surface quality. Previous studies have shown the 3D conductive structures produced with fairly low conductivity (~ 0.1 S/cm) by stereolithography method. To address this conductivity issue, highly conductive silver-coated copper (AgCu) is adopted here. However, the large density of AgCu leads to fast sedimentation in polymeric resin solution, and also non-uniform AgCu distribution in the printing process. In addition, high AgCu concentrations are needed for high conductivity, but the high metal content shields UV light and therefore leads to low curing rate. These limitations make photo-curable resin unable to be printed into 3D conductive structures.
In this study, a new photo-curable conductive resin is formulated. The AgCu is first suspended with the help of carbon nanotubes (CNT), which form a supporting network to decrease the AgCu settling speed. The content of CNT is then optimized to give both fluidity and suspension stability so that the resin composite can be printed into 3D conductive structure. Moreover, effects of various formulation parameters on the conductivity or modulus will be also evaluated and optimized. Multi-layer circuit boards are built with great quality. Taper angle of 89.68 degree is observed and the size ratio of top pad to down pad is 0.964. In summary, this study provides a new approach for conductive resin formulation and pave the way for more stereolithography innovations.
致謝 1
中文摘要 2
目錄 4
圖目錄 7
表目錄 10
第一章 緒論 11
1.1研究背景 11
1.2論文架構 12
1.3文獻回顧 13
1.3.1 積層列印 13
1.3.1-1 物件加工方法 13
1.3.1-2 3D列印原理 13
1.3.1-3 3D列印在印刷電子的運用 14
1.3.2 印刷電子 15
1.3.2-1 印刷電路板 15
1.3.2-2 高密度印刷電路板 16
1.3.3 光固化3D列印技術 17
1.3.3-1 光固化機原理 17
1.3.3-2 光固化樹脂之成分 20
1.3.3-3 光交聯反應機制及速率 22
1.3.3-4 填料對光固化3D列印之影響 23
1.3.3-5 光固化導電結構 27
1.4研究動機與目的 32
第二章 實驗系統程序 33
2.1 實驗藥品與儀器介紹 33
2.1.1 實驗藥品 33
2.1.2 實驗儀器 34
2.2 實驗流程 35
2.2.1 銀銅粉/碳管複合樹脂之製備 35
2.2.2 銀銅粉樹脂沉降特性分析 36
2.2.3 切層軟體操作 37
2.2.4 置備導電圖樣 37
第三章 光固化製備導電圖樣 38
3.1 導電填料性質分析 38
3.1.1 不含填料之光固化結果 38
3.1.2導電填料對光學性質之影響 40
3.1.3導電填料對光固化樹脂流變性質之影響 43
3.1.4銀銅片對光固化之影響 46
3.2膠體組成對樹脂穩定性及固化之影響 50
3.2.1乙二醇含量對銀銅粉沉降性之影響 50
3.2.2奈米碳管含量對銀銅粉沉降性及樹脂流變性質之影響 52
3.2.3起始劑含量對固化時間及程度之影響 54
3.3三維導電結構列印 57
3.3.1列印結構之電性分析 57
3.3.2兩種材料於單層結構的列印 62
3.3.3多層電路板製作 63
第四章 結論與未來展望 69
參考資料 70
1.Ashley, S., Rapid prototyping systems. Mechanical Engineering, 1991. 113(4): p. 34.
2.Gibson, I., D.W. Rosen, and B. Stucker, Additive manufacturing technologies. Vol. 17. 2014: Springer.
3.Gebhardt, A., Understanding additive manufacturing. 2011.
4.Joe Lopes, A., E. MacDonald, and R.B. Wicker, Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyping Journal, 2012. 18(2): p. 129-143.
5.Wicker, R.B., et al., Methods and systems for embedding filaments in 3D structures, structural components, and structural electronic, electromagnetic and electromechanical components/devices. 2014, Google Patents.
6.Fu, L., J. Qu, and H.J.C.W. Chen, Mechanical drilling of printed circuit boards: the state-of-the-art. 2007. 33(4): p. 3-8.
7.Im, Y., et al., Functional prototype development of multi-layer board (MLB) using rapid prototyping technology. 2007. 187: p. 619-622.
8.Charles, D., Electrical apparatus and method of manufacturing the same. 1925, Google Patents.
9.Paul, E., Manufacture of electric circuit components. 1948, Google Patents.
10.林定皓, 高密度印刷電路板技術. 2016.
11.Melchels, F.P., J. Feijen, and D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010. 31(24): p. 6121-6130.
12.Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography. 1986, Google Patents.
13.Decker, C., Photoinitiated crosslinking polymerisation. Progress in polymer science, 1996. 21(4): p. 593-650.
14.Schwalm, R., UV coatings: basics, recent developments and new applications. 2006: Elsevier.
15.Endruweit, A., M. Johnson, and A. Long, Curing of composite components by ultraviolet radiation: A review. Polymer composites, 2006. 27(2): p. 119-128.
16.Boey, F., et al., Cationic UV cure kinetics for multifunctional epoxies. Journal of Applied Polymer Science, 2002. 86(2): p. 518-525.
17.Andrzejewska, E., Photopolymerization kinetics of multifunctional monomers. Progress in polymer science, 2001. 26(4): p. 605-665.
18.Perry, M.F., G.W.J.M.t. Young, and simulations, A mathematical model for photopolymerization from a stationary laser light source. 2005. 14(1): p. 26-39.
19.dos Santos, M.N., et al., Thermal and mechanical properties of a nanocomposite of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes. 2011. 528(13-14): p. 4318-4324.
20.Martin-Gallego, M., et al., Cationic photocured epoxy nanocomposites filled with different carbon fillers. 2012. 53(9): p. 1831-1838.
21.Sangermano, M., et al., UV‐Cured Acrylic Conductive Inks for Microelectronic Devices. 2013. 298(6): p. 607-611.
22.Choi, J.-H., et al., Direct imprint of conductive silver patterns using nanosilver particles and UV curable resin. Microelectronic Engineering, 2009. 86(4-6): p. 622-627.
23.Jacobs, P.F., Rapid prototyping & manufacturing: fundamentals of stereolithography. 1992: Society of Manufacturing Engineers.
24.Abouliatim, Y., et al., Optical characterization of stereolithography alumina suspensions using the Kubelka–Munk model. Journal of the European Ceramic Society, 2009. 29(5): p. 919-924.
25.Shenoy, A.V., Rheology of filled polymer systems. 2013: Springer Science & Business Media.
26.White, J.L., L. Czarnecki, and H. Tanaka, Experimental studies of the influence of particle and fiber reinforcement on the rheological properties of polymer melts. Rubber Chemistry and Technology, 1980. 53(4): p. 823-835.
27.Kataoka, T., et al., Viscosity of particle filled polymer melts. Rheologica Acta, 1978. 17(2): p. 149-155.
28.Gonzalez, G., et al., Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer, 2017. 109: p. 246-253.
29.Stokes, G., On the effect of internal friction of fluids on the motion of pendulums. Trans. Camb. phi1. S0c, 1850. 9(8): p. 106.
30.Shante, V.K. and S.J.A.i.P. Kirkpatrick, An introduction to percolation theory. 1971. 20(85): p. 325-357.
31.Göktürk, H.S., T.J. Fiske, and D.M.J.J.o.a.p.s. Kalyon, Effects of particle shape and size distributions on the electrical and magnetic properties of nickel/polyethylene composites. 1993. 50(11): p. 1891-1901.
32.Xue, Q.J.E.P.J., The influence of particle shape and size on electric conductivity of metal–polymer composites. 2004. 40(2): p. 323-327.
33.Chalker, J. and P. Coddington, Percolation, quantum tunnelling and the integer Hall effect. Journal of Physics C: Solid State Physics, 1988. 21(14): p. 2665.
34.Lantada, A.D., et al., Quantum tunnelling composites: Characterisation and modelling to promote their applications as sensors. Sensors and Actuators A: Physical, 2010. 164(1-2): p. 46-57.
35.Mu, Q., et al., Digital light processing 3D printing of conductive complex structures. Additive Manufacturing, 2017. 18: p. 74-83.
36.Scordo, G., et al., A novel highly electrically conductive composite resin for stereolithography. Materials Today Communications, 2019. 19: p. 12-17.
37.Lin, D., et al., 3D stereolithography printing of graphene oxide reinforced complex architectures. 2015. 26(43): p. 434003.
38.Schultz, A.R., et al., 3D printing phosphonium ionic liquid networks with mask projection microstereolithography. 2014. 3(11): p. 1205-1209.
39.Korhonen, H., et al., Fabrication of graphene‐based 3D structures by stereolithography. 2016. 213(4): p. 982-985.
40.Lee, J.W., I.H. Lee, and D.-W. Cho, Development of micro-stereolithography technology using metal powder. Microelectronic engineering, 2006. 83(4-9): p. 1253-1256.
41.Cheng, W., Y. Chih, and C. Lin, Formulation and characterization of UV-light-curable electrically conductive pastes. Journal of adhesion science and technology, 2005. 19(7): p. 511-523.
42.Li, F., et al., Facile, low-cost, UV-curing approach to prepare highly conductive composites for flexible electronics applications. Journal of Electronic Materials, 2016. 45(7): p. 3603-3611.
43.Cong, H. and T. Pan, Photopatternable conductive PDMS materials for microfabrication. Advanced Functional Materials, 2008. 18(13): p. 1912-1921.
44.Poslinski, A., et al., Rheological behavior of filled polymeric systems I. Yield stress and shear‐thinning effects. 1988. 32(7): p. 703-735.
45.Chiou, B.-S. and S.A.J.M. Khan, Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers. 1997. 30(23): p. 7322-7328.
46.Steeman, P.A., et al., Polymerization and network formation of UV-curable systems monitored by hyphenated real-time dynamic mechanical analysis and near-infrared spectroscopy. 2004. 37(18): p. 7001-7007.
47.Detloff, T., T. Sobisch, and D. Lerche, Instability index. Dispersion Letters Technical, 2013. 4: p. 1-4.
48.Foygel, M., et al., Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. 2005. 71(10): p. 104201.
49.Kim, K.-R., et al., High-precision and ultrafast UV laser system for next-generation flexible PCB drilling. 2016. 38: p. 107-113.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔