|
1.Ashley, S., Rapid prototyping systems. Mechanical Engineering, 1991. 113(4): p. 34. 2.Gibson, I., D.W. Rosen, and B. Stucker, Additive manufacturing technologies. Vol. 17. 2014: Springer. 3.Gebhardt, A., Understanding additive manufacturing. 2011. 4.Joe Lopes, A., E. MacDonald, and R.B. Wicker, Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyping Journal, 2012. 18(2): p. 129-143. 5.Wicker, R.B., et al., Methods and systems for embedding filaments in 3D structures, structural components, and structural electronic, electromagnetic and electromechanical components/devices. 2014, Google Patents. 6.Fu, L., J. Qu, and H.J.C.W. Chen, Mechanical drilling of printed circuit boards: the state-of-the-art. 2007. 33(4): p. 3-8. 7.Im, Y., et al., Functional prototype development of multi-layer board (MLB) using rapid prototyping technology. 2007. 187: p. 619-622. 8.Charles, D., Electrical apparatus and method of manufacturing the same. 1925, Google Patents. 9.Paul, E., Manufacture of electric circuit components. 1948, Google Patents. 10.林定皓, 高密度印刷電路板技術. 2016. 11.Melchels, F.P., J. Feijen, and D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010. 31(24): p. 6121-6130. 12.Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography. 1986, Google Patents. 13.Decker, C., Photoinitiated crosslinking polymerisation. Progress in polymer science, 1996. 21(4): p. 593-650. 14.Schwalm, R., UV coatings: basics, recent developments and new applications. 2006: Elsevier. 15.Endruweit, A., M. Johnson, and A. Long, Curing of composite components by ultraviolet radiation: A review. Polymer composites, 2006. 27(2): p. 119-128. 16.Boey, F., et al., Cationic UV cure kinetics for multifunctional epoxies. Journal of Applied Polymer Science, 2002. 86(2): p. 518-525. 17.Andrzejewska, E., Photopolymerization kinetics of multifunctional monomers. Progress in polymer science, 2001. 26(4): p. 605-665. 18.Perry, M.F., G.W.J.M.t. Young, and simulations, A mathematical model for photopolymerization from a stationary laser light source. 2005. 14(1): p. 26-39. 19.dos Santos, M.N., et al., Thermal and mechanical properties of a nanocomposite of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes. 2011. 528(13-14): p. 4318-4324. 20.Martin-Gallego, M., et al., Cationic photocured epoxy nanocomposites filled with different carbon fillers. 2012. 53(9): p. 1831-1838. 21.Sangermano, M., et al., UV‐Cured Acrylic Conductive Inks for Microelectronic Devices. 2013. 298(6): p. 607-611. 22.Choi, J.-H., et al., Direct imprint of conductive silver patterns using nanosilver particles and UV curable resin. Microelectronic Engineering, 2009. 86(4-6): p. 622-627. 23.Jacobs, P.F., Rapid prototyping & manufacturing: fundamentals of stereolithography. 1992: Society of Manufacturing Engineers. 24.Abouliatim, Y., et al., Optical characterization of stereolithography alumina suspensions using the Kubelka–Munk model. Journal of the European Ceramic Society, 2009. 29(5): p. 919-924. 25.Shenoy, A.V., Rheology of filled polymer systems. 2013: Springer Science & Business Media. 26.White, J.L., L. Czarnecki, and H. Tanaka, Experimental studies of the influence of particle and fiber reinforcement on the rheological properties of polymer melts. Rubber Chemistry and Technology, 1980. 53(4): p. 823-835. 27.Kataoka, T., et al., Viscosity of particle filled polymer melts. Rheologica Acta, 1978. 17(2): p. 149-155. 28.Gonzalez, G., et al., Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer, 2017. 109: p. 246-253. 29.Stokes, G., On the effect of internal friction of fluids on the motion of pendulums. Trans. Camb. phi1. S0c, 1850. 9(8): p. 106. 30.Shante, V.K. and S.J.A.i.P. Kirkpatrick, An introduction to percolation theory. 1971. 20(85): p. 325-357. 31.Göktürk, H.S., T.J. Fiske, and D.M.J.J.o.a.p.s. Kalyon, Effects of particle shape and size distributions on the electrical and magnetic properties of nickel/polyethylene composites. 1993. 50(11): p. 1891-1901. 32.Xue, Q.J.E.P.J., The influence of particle shape and size on electric conductivity of metal–polymer composites. 2004. 40(2): p. 323-327. 33.Chalker, J. and P. Coddington, Percolation, quantum tunnelling and the integer Hall effect. Journal of Physics C: Solid State Physics, 1988. 21(14): p. 2665. 34.Lantada, A.D., et al., Quantum tunnelling composites: Characterisation and modelling to promote their applications as sensors. Sensors and Actuators A: Physical, 2010. 164(1-2): p. 46-57. 35.Mu, Q., et al., Digital light processing 3D printing of conductive complex structures. Additive Manufacturing, 2017. 18: p. 74-83. 36.Scordo, G., et al., A novel highly electrically conductive composite resin for stereolithography. Materials Today Communications, 2019. 19: p. 12-17. 37.Lin, D., et al., 3D stereolithography printing of graphene oxide reinforced complex architectures. 2015. 26(43): p. 434003. 38.Schultz, A.R., et al., 3D printing phosphonium ionic liquid networks with mask projection microstereolithography. 2014. 3(11): p. 1205-1209. 39.Korhonen, H., et al., Fabrication of graphene‐based 3D structures by stereolithography. 2016. 213(4): p. 982-985. 40.Lee, J.W., I.H. Lee, and D.-W. Cho, Development of micro-stereolithography technology using metal powder. Microelectronic engineering, 2006. 83(4-9): p. 1253-1256. 41.Cheng, W., Y. Chih, and C. Lin, Formulation and characterization of UV-light-curable electrically conductive pastes. Journal of adhesion science and technology, 2005. 19(7): p. 511-523. 42.Li, F., et al., Facile, low-cost, UV-curing approach to prepare highly conductive composites for flexible electronics applications. Journal of Electronic Materials, 2016. 45(7): p. 3603-3611. 43.Cong, H. and T. Pan, Photopatternable conductive PDMS materials for microfabrication. Advanced Functional Materials, 2008. 18(13): p. 1912-1921. 44.Poslinski, A., et al., Rheological behavior of filled polymeric systems I. Yield stress and shear‐thinning effects. 1988. 32(7): p. 703-735. 45.Chiou, B.-S. and S.A.J.M. Khan, Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers. 1997. 30(23): p. 7322-7328. 46.Steeman, P.A., et al., Polymerization and network formation of UV-curable systems monitored by hyphenated real-time dynamic mechanical analysis and near-infrared spectroscopy. 2004. 37(18): p. 7001-7007. 47.Detloff, T., T. Sobisch, and D. Lerche, Instability index. Dispersion Letters Technical, 2013. 4: p. 1-4. 48.Foygel, M., et al., Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. 2005. 71(10): p. 104201. 49.Kim, K.-R., et al., High-precision and ultrafast UV laser system for next-generation flexible PCB drilling. 2016. 38: p. 107-113.
|