(18.210.12.229) 您好!臺灣時間:2021/03/01 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴怡瑾
研究生(外文):Yi-Chin Lai
論文名稱:奈米銀片之製備及塗佈平整薄膜之研究
論文名稱(外文):Preparation of Silver Nanoplates and Smooth Thin Film by Printing Technique
指導教授:廖英志
口試委員:竇維平楊宏達衛子健葛明德
口試日期:2019-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:65
中文關鍵詞:奈米銀片微波合成法平整薄膜水轉印界面活性劑導電圖樣
DOI:10.6342/NTU201903421
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來,對於曲面製作導電圖樣的3D電子元件有所需要,能夠具有高解析度且保持原始圖樣的形狀,因此,需要尋找新的技術取代傳統2D塗佈技術。本論文提供一個簡單且迅速的水轉印方法,在曲面上塗佈導電平整薄膜。為了在水面上形成緻密堆疊的銀薄膜,需要可以控制其品質和尺寸的奈米銀片,我們使用快速微波合成並採用多元醇的方法,製備具有高結晶性的奈米銀片尺寸約為700nm且厚度僅為35nm。奈米銀片可以懸浮於乙醇溶劑中,透過Langmuir-Blodgett方法將其散佈於水面上,製作出平整的自組裝奈米銀片薄膜。藉由乙醇與水的巨大表面張力差驅動奈米銀片在水面的散佈。然而,在乙醇蒸發時容易發生奈米銀片間嚴重的堆疊及聚集,而為了避免這個問題,加入陰離子界面活性劑(SDS)提升分散性,同時減少奈米銀片產生自行堆疊的情形,使得銀片薄膜更平整排列,轉印至基材後具有低電阻率。在最佳條件下,添加0.05wt%的SDS於奈米銀片乙醇溶液中就可達到10%純銀的導電度。使用模具容易地製作出導電圖案轉印後,發現奈米銀片薄膜能夠良好的黏附於曲面(凹面和凸面)基材。並且提出幾個例子以展示該方法應用於RFID或導電線路的潛力。本研究開發一種水轉印方法,以在曲面基材上製作平整的導電薄膜圖樣,並且該方法可以應用於更多其他電子元件中。
Recent needs of electronic devices on 3D objects require conformal conductive patterns over curvilinear surfaces with great shape fidelity. Thus, new technology beyond conventional 2D printing methods is needed. In this study, we develop a simple and fast water transfer method to fabricate conductive thin film patterns on curvilinear surfaces. To create closely packed thin films over water surface, conductive nanoplates with controlled quality and sizes are needed. To quickly produce such nanomaterials, crystalline silver nanoplates with a dimension of 700 nm and a thickness of 35 nm are first synthesized via a polyol method with a microwave synthetic route to accelerate the process. The silver nanoplates suspend well in ethanol. Then, the silver nanoplates are spread over water surface via Langmuir-Blodgett approach to create a smooth self-assemble silver nanoplate thin film. The spreading ability is driven by the large surface tension difference between ethanol and water. However, serious aggregation of nanoplates occurs after the evaporation of ethanol. To avoid this issue, an anionic surfactant (SDS) is added in the silver nanoplate solution to improve the dispersibility while reducing the aggregation of the silver nanoplates. The spread silver films can be easily transferred to any 3D objects with a high conductivity as low as 10% of bulk silver under optimum condition with 0.05 wt% SDS surfactant. With a plastic mask, conductive patterns can be created easily and transferred on curvilinear substrates. These silver nanoplate thin film patterns is able to adhere well on the curvilinear (concave and convex) substrates. Several examples are also demonstrated to show the capability of this approach for RFID or circuit track applications. In summary, a water transfer method is developed to fabricate smooth thin film patterns on curvilinear substrates, and this approach can be further applied to many other electronic applications.
口試委員審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 i
表目錄 iii
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.2.1濕式薄膜技術 2
1.2.1.1 浸漬塗佈原理 3
1.2.1.2 Langmuir-Blodgett原理 5
1.2.1.3 水轉印技術 8
1.2.2 導電材料 9
1.2.2.1導電材料之形狀 9
1.2.2.2 奈米銀片之合成 10
1.2.2.3 微波輔助加熱合成法 13
1.2.3 水轉印技術 15
1.2.3.1 水轉印之銀薄膜 15
1.2.3.2 薄膜平整及貼附度 18
1.2.3.3 曲面塗佈平整膜 19
1.3研究目的 22
1.4論文架構 22
第三章 實驗系統程序 23
3.1 實驗藥品與儀器介紹 23
3.1.1 實驗藥品 23
3.1.2 實驗儀器 24
3.2 實驗流程 25
3.2.1 奈米銀片合成 25
3.2.2微波消化反應器 26
3.2.3 奈米銀片溶液之製備及水轉印塗佈 28
3.2.4 拉力移動計 28
第四章 奈米銀片表面形貌及製備 31
4.1 奈米銀片表面性質分析 31
4.1.1 奈米銀片型態及結構 31
4.2微波合成參數對奈米銀片之影響 34
4.2.1 不同反應時間及升溫速率對奈米銀片之影響 34
4.2.2 不同反應溫度對奈米銀片之影響 35
4.2.3 不同保護劑(PVP)分子量對奈米銀片之影響 37
4.2.4 奈米銀片生長機制 39
第五章 平整性奈米銀片薄膜 41
5.1 浸漬塗佈方法對銀薄膜之影響 41
5.1.1 浸塗法之奈米銀片溶液 41
5.1.2 浸塗法對薄膜之影響 42
5.1.3 浸塗法薄膜對於乾燥缺陷之影響 43
5.2 水轉印塗佈方法對銀薄膜之影響 44
5.2.1 奈米銀片之擴散機制 44
5.2.2 奈米銀片於乙醇溶液中分散性 45
5.2.3 界面活性劑之濃度對於電阻率之影響 48
5.2.4 奈米銀片濃度對於薄膜之影響 50
5.2.5 水轉印方法之探討 51
5.2.6 奈米銀片薄膜於平面及曲面基材之平整及貼附性 53
5.3 導電圖樣 56
5.3.1平面及曲面基材之導電圖樣 56
5.3.2 RFID被動式電子標籤 57
第六章 結論與未來展望 59
參考資料 60
(1) Chen, C. W.; Kang, H. W.; Hsiao, S. Y.; Yang, P. F.; Chiang, K. M.; Lin, H. W. Efficient and uniform planar‐type perovskite solar cells by simple sequential vacuum deposition. Advanced Materials 2014, 26 (38), 6647-6652.
(2) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 2008, 9 (1), 30-35.
(3) Lee, K.-Y.; Liu, L.-D.; Ta-Jo, L. Minimum wet thickness in extrusion slot coating. Chemical Engineering Science 1992, 47 (7), 1703-1713.
(4) Hall, D. B.; Underhill, P.; Torkelson, J. M. Spin coating of thin and ultrathin polymer films. Polymer Engineering & Science 1998, 38 (12), 2039-2045.
(5) Espinosa, N.; García-Valverde, R.; Urbina, A.; Lenzmann, F.; Manceau, M.; Angmo, D.; Krebs, F. C. Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing. Solar Energy Materials and Solar Cells 2012, 97, 3-13.
(6) Nasr-Esfahani, M.; Habibi, M. H. Silver doped TiO2 nanostructure composite photocatalyst film synthesized by sol-gel spin and dip coating technique on glass. International Journal of Photoenergy 2008, 2008.
(7) Jonza, J. M.; Weber, M. F.; Ouderkirk, A. J.; Stover, C. A., Optical film. Google Patents: 1999.
(8) Cioarec, C.; Melpignano, P.; Gherardi, N.; Clergereaux, R.; Villeneuve, C. Ultrasmooth silver thin film electrodes with high polar liquid wettability for OLED microcavity application. Langmuir 2011, 27 (7), 3611-3617.
(9) Nam, K. T.; Kim, D.-W.; Yoo, P. J.; Chiang, C.-Y.; Meethong, N.; Hammond, P. T.; Chiang, Y.-M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. science 2006, 312 (5775), 885-888.
(10) Cisneros‐Zevallos, L.; Krochta, J. Dependence of coating thickness on viscosity of coating solution applied to fruits and vegetables by dipping method. Journal of Food Science 2003, 68 (2), 503-510.
(11) Lu, Y.; Ganguli, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W.; Guo, Y.; Soyez, H.; Dunn, B.; Huang, M. H. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 1997, 389 (6649), 364.
(12) Strawbridge, I.; James, P. The factors affecting the thickness of sol-gel derived silica coatings prepared by dipping. Journal of non-crystalline solids 1986, 86 (3), 381-393.
(13) Processes of dip coating. http://www.dip-coater.com/english/about_dip_coating.html.
(14) Nwaogu, U. C.; Tiedje, N. S. Foundry coating technology: a review. Materials Sciences and Applications 2011, 2 (8), 1143-1160.
(15) Brinker, C.; Frye, G.; Hurd, A.; Ashley, C. Fundamentals of sol-gel dip coating. Thin solid films 1991, 201 (1), 97-108.
(16) Scriven, L. Physics and applications of dip coating and spin coating. MRS Online Proceedings Library Archive 1988, 121.
(17) Falk, Y. Z.; Schmitt, J.; Alfredsson, V. Langmuir–Blodgett monolayers of SBA-15 particles with different morphologies. Microporous and Mesoporous Materials 2018, 256, 32-38.
(18) Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir− Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano letters 2003, 3 (9), 1229-1233.
(19) Zhang, Y.; Xu, L.; Walker, W. R.; Tittle, C. M.; Backhouse, C. J.; Pope, M. A. Langmuir films and uniform, large area, transparent coatings of chemically exfoliated MoS 2 single layers. Journal of Materials Chemistry C 2017, 5 (43), 11275-11287.
(20) Ejaz, M.; Yamamoto, S.; Ohno, K.; Tsujii, Y.; Fukuda, T. Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the langmuir− blodgett and atom transfer radical polymerization techniques. Macromolecules 1998, 31 (17), 5934-5936.
(21) Dutta, A.; Misra, T.; Pal, A. A spectral study of aggregates of chrysene in an ethanol-water mixture and in Langmuir-Blodgett films. The Journal of Physical Chemistry 1994, 98 (16), 4365-4367.
(22) Baoukina, S.; Monticelli, L.; Marrink, S. J.; Tieleman, D. P. Pressure− area isotherm of a lipid monolayer from molecular dynamics simulations. Langmuir 2007, 23 (25), 12617-12623.
(23) With the growth of the surface pressure molecules reorganize because the area of the liquid subphase available in the Langmuir trough decreases. http://groups.ichf.edu.pl/kutner/research/view?id=25&name=Organized+ultrathin+films+of+organic+and+organic-inorganic+hybrid+materials+for+chemical+sensors.
(24) Langmuir film, Langmuir-Blodgett deposition, Langmuir-Schaefer deposition and multilayers obtained after repeated deposition. https://www.biolinscientific.com/measurements/langmuir-and-langmuir-blodgett.
(25) Kim, M. S.; Ma, L.; Choudhury, S.; Moganty, S. S.; Wei, S.; Archer, L. A. Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir–Blodgett process: Application in lithium–sulfur batteries. Journal of Materials Chemistry A 2016, 4 (38), 14709-14719.
(26) Le Borgne, B.; De Sagazan, O.; Crand, S.; Jacques, E.; Harnois, M. Conformal electronics wrapped around daily life objects using an original method: water transfer printing. ACS applied materials & interfaces 2017, 9 (35), 29424-29429.
(27) Luo, X.; Gelves, G. A.; Sundararaj, U.; Luo, J. L. Silver‐coated copper nanowires with improved anti‐oxidation property as conductive fillers in low‐density polyethylene. The Canadian Journal of Chemical Engineering 2013, 91 (4), 630-637.
(28) Park, B. K.; Kim, D.; Jeong, S.; Moon, J.; Kim, J. S. Direct writing of copper conductive patterns by ink-jet printing. Thin solid films 2007, 515 (19), 7706-7711.
(29) Choi, J.; Sauer, G.; Nielsch, K.; Wehrspohn, R. B.; Gösele, U. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chemistry of materials 2003, 15 (3), 776-779.
(30) Gelves, G. A.; Lin, B.; Sundararaj, U.; Haber, J. A. Low electrical percolation threshold of silver and copper nanowires in polystyrene composites. Advanced Functional Materials 2006, 16 (18), 2423-2430.
(31) Huang, C.-Y.; Lai, Y.-C.; Liao, Y.-C. Photo Curable Stretchable Conductors with Low Dynamic Resistance Variation. ACS Applied Electronic Materials 2019.
(32) Wang, Y.; Zou, X.; Ren, W.; Wang, W.; Wang, E. Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface. The Journal of Physical Chemistry C 2007, 111 (8), 3259-3265.
(33) El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of chemical research 2001, 34 (4), 257-264.
(34) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chemical reviews 2005, 105 (4), 1025-1102.
(35) Cao, Y. C.; Jin, R.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297 (5586), 1536-1540.
(36) Kim, B.-H.; Lee, J.-S. One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp. Materials Chemistry and Physics 2015, 149, 678-685.
(37) Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K.; Schatz, G. C.; Zheng, J. Photoinduced conversion of silver nanospheres to nanoprisms. science 2001, 294 (5548), 1901-1903.
(38) Tian, X.; Wang, W.; Cao, G. A facile aqueous-phase route for the synthesis of silver nanoplates. Materials Letters 2007, 61 (1), 130-133.
(39) Yi, Z.; Li, X.; Xu, X.; Luo, B.; Luo, J.; Wu, W.; Yi, Y.; Tang, Y. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 392 (1), 131-136.
(40) Marus, M.; Hubarevich, A.; Wang, H.; Smirnov, A.; Sun, X.; Fan, W. Optoelectronic performance optimization for transparent conductive layers based on randomly arranged silver nanorods. Optics express 2015, 23 (5), 6209-6214.
(41) Li, S.-S.; Chang, C.-H.; Wang, Y.-C.; Lin, C.-W.; Wang, D.-Y.; Lin, J.-C.; Chen, C.-C.; Sheu, H.-S.; Chia, H.-C.; Wu, W.-R. Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles. Energy & Environmental Science 2016, 9 (4), 1282-1289.
(42) Guo, F.; Azimi, H.; Hou, Y.; Przybilla, T.; Hu, M.; Bronnbauer, C.; Langner, S.; Spiecker, E.; Forberich, K.; Brabec, C. J. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 2015, 7 (5), 1642-1649.
(43) Zhang, G.; Deng, C.; Shi, H.; Zou, B.; Li, Y.; Liu, T.; Wang, W. ZnO/Ag composite nanoflowers as substrates for surface-enhanced Raman scattering. Applied Surface Science 2017, 402, 154-160.
(44) Li, Z.; Meng, G.; Liang, T.; Zhang, Z.; Zhu, X. Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates. Applied Surface Science 2013, 264, 383-390.
(45) Yang, B.; Liu, Z.; Guo, Z.; Zhang, W.; Wan, M.; Qin, X.; Zhong, H. In situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Applied Surface Science 2014, 316, 22-27.
(46) Huang, F.; Li, W.; Xiong, Q.; Li, X.; Yan, T.; Yu, W.; Zhang, H.; Liu, J. Preparation of flake silver powders with high diameter-to-thickness ratio. Guijinshu(Precious Metals) 2012, 33 (2), 30-35.
(47) CHEN, S.; FANG, L.; SHI, C.; LU, H.-y.; ZHU, G.-p. Fabrication and Lasing of ZnO Micro-nano Disks. Jilin Normal University Journal (Natural Science Edition) 2015, (1), 6.
(48) Yang, J.; Lu, L.; Wang, H.; Shi, W.; Zhang, H. Glycyl glycine templating synthesis of single-crystal silver nanoplates. Crystal growth & design 2006, 6 (9), 2155-2158.
(49) Zhai, A.-x.; Cai, X.-h.; Bin, D. A novel wet-chemical method for preparation of silver flakes. Transactions of Nonferrous Metals Society of China 2014, 24 (5), 1452-1457.
(50) HUANG, Y.; LIU, J.; WANG, H.-y. Gradient Changes of Vegetation Composition Along the Urban-Suburb Transection in Chongqing. Journal of Southwest University (Natural Science Edition) 2015, (1), 6.
(51) Washio, I.; Xiong, Y.; Yin, Y.; Xia, Y. Reduction by the end groups of poly (vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials 2006, 18 (13), 1745-1749.
(52) DUAN, J.-Y.; ZHANG, Q.-X.; WANG, Y.-L.; GUAN, J.-G. Facile Synthesis and Formation Mechanism of Silver Nanoplates with Edge Lengths of Several Micrometers. Acta Physico-Chimica Sinica 2009, 25 (7), 1405-1408.
(53) Darmanin, T.; Nativo, P.; Gilliland, D.; Ceccone, G.; Pascual, C.; De Berardis, B.; Guittard, F.; Rossi, F. Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process”. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 395, 145-151.
(54) Lu, Q.; Lee, K.-J.; Lee, K.-B.; Kim, H.-T.; Lee, J.; Myung, N. V.; Choa, Y.-H. Investigation of shape controlled silver nanoplates by a solvothermal process. Journal of colloid and interface science 2010, 342 (1), 8-17.
(55) Zhang, Q.; Hu, Y.; Guo, S.; Goebl, J.; Yin, Y. Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands. Nano letters 2010, 10 (12), 5037-5042.
(56) Graphical illustration of heat introduction and temperature distribution https://wiki.anton-paar.com/en/microwave-assisted-synthesis/.
(57) Loo, Y.-L.; Willett, R. L.; Baldwin, K. W.; Rogers, J. A. Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics. Applied Physics Letters 2002, 81 (3), 562-564.
(58) Gargas, D. J.; Muresan, O.; Sirbuly, D. J.; Buratto, S. K. Micropatterned Porous‐Silicon Bragg Mirrors by Dry‐Removal Soft Lithography. Advanced Materials 2006, 18 (23), 3164-3168.
(59) Menard, E.; Lee, K.; Khang, D.-Y.; Nuzzo, R. G.; Rogers, J. A. A printable form of silicon for high performance thin film transistors on plastic substrates. Applied Physics Letters 2004, 84 (26), 5398-5400.
(60) Saada, G.; Layani, M.; Chernevousky, A.; Magdassi, S. Hydroprinting Conductive Patterns onto 3D Structures. Advanced Materials Technologies 2017, 2 (5), 1600289.
(61) Carlson, A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.; Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Advanced Materials 2012, 24 (39), 5284-5318.
(62) Lee, Y.-I.; Kim, S.; Jung, S.-B.; Myung, N. V.; Choa, Y.-H. Enhanced electrical and mechanical properties of silver nanoplatelet-based conductive features direct printed on a flexible substrate. ACS applied materials & interfaces 2013, 5 (13), 5908-5913.
(63) Yang, X.; He, W.; Wang, S.; Zhou, G.; Tang, Y.; Yang, J. Effect of the different shapes of silver particles in conductive ink on electrical performance and microstructure of the conductive tracks. Journal of Materials Science: Materials in Electronics 2012, 23 (11), 1980-1986.
(64) Kim, F.; Cote, L. J.; Huang, J. Graphene oxide: surface activity and two‐dimensional assembly. Advanced Materials 2010, 22 (17), 1954-1958.
(65) Chen, S.; Carroll, D. L. Synthesis and characterization of truncated triangular silver nanoplates. Nano letters 2002, 2 (9), 1003-1007.
(66) Pienpinijtham, P.; Han, X. X.; Ekgasit, S.; Ozaki, Y. An ionic surfactant-mediated Langmuir–Blodgett method to construct gold nanoparticle films for surface-enhanced Raman scattering. Physical Chemistry Chemical Physics 2012, 14 (29), 10132-10139.
(67) Vatanparast, H.; Shahabi, F.; Bahramian, A.; Javadi, A.; Miller, R. The role of electrostatic repulsion on increasing surface activity of anionic surfactants in the presence of hydrophilic silica nanoparticles. Scientific reports 2018, 8 (1), 7251.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔