(34.201.11.222) 您好!臺灣時間:2021/02/25 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林建瑜
研究生(外文):Chien-Yu Lin
論文名稱:可調整電荷多孔球形粒子稀薄懸浮液之沉降速度與電位
論文名稱(外文):Sedimentation Velocity and Potential in Dilute Suspensions of Charge-Regulating Porous Spheres
指導教授:葛煥彰
口試委員:張有義詹正雄
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:39
中文關鍵詞:沉降速度沉降電位可解離官能基團電荷調整多孔粒子稀薄懸浮
DOI:10.6342/NTU201901265
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文解析研究任意電雙層下之可調整電荷多孔球形粒子的沉降行為,其多孔粒子通常由離子溶液可穿透之高分子電解質或奈米粒子凝聚體所構成。帶有流體摩擦阻力的可解離之官能基團均勻地分布在多孔球形粒子裡,當結合或解離反應發生在官能基團時會有電荷調整的機制使粒子之固定電荷密度與電位分佈線性相關。本論文使用正規微擾法求解主導離子濃度(或電化學位能)分佈、電位分佈和流體速度分佈之線性化電動力方程式,獲得可調整電荷多孔粒子的沉降速度和多孔粒子稀薄懸浮系統之沉降電位解析式。電荷調整效應會降低電動力對沉降速度阻礙的影響,亦會減少相對於當固定電荷密度為定值的情況下之沉降電位(可分別減少50%和25%之多),而這些降低電動力對沉降速度阻礙及減少沉降電位的效應皆會消失於粒子的等電點。當決定粒子固定電荷之離子濃度提高並越過等電點濃度時,會改變固定電荷密度的正負值且也因此反轉沉降電位的方向。電荷調整效應對多孔粒子沉降運動之影響基本上有別於硬質粒子。
The sedimentation of a charge-regulating porous sphere surrounded by an arbitrary electric double layer, that usually models a permeable polyelectrolyte coil or aggregate of nanoparticles, is analyzed for the first time. The hydrodynamic frictional segments and ionogenic functional groups uniformly distribute in the porous sphere, and a regulation mechanism for the dissociation and association reactions occurring at these functional groups linearly relates the local electric potential to fixed charge density. The linearized electrokinetic equations governing the ionic concentration (or electrochemical potential energy), electric potential, and fluid velocity fields are solved for the case of a small basic fixed charge density by the regular perturbation method. Analytical formulae for the sedimentation velocity of a porous sphere and sedimentation potential of a dilute
suspension of porous spheres are then obtained. The charge regulation tends to reduce the electrokinetic retardation to sedimentation velocity and the sedimentation potential (can be as much as 50 and 25 per cents, respectively) compared to the case that the fixed charge density is a constant. Both the electrokinetic retardation to sedimentation velocity and the sedimentation potential vanish at the isoelectric point of the particles. The increase in the bulk concentration of the potential-determining ions crossing the isoelectric point changes signs of the fixed charges and thus causes a reversal in the direction of the sedimentation potential. The effects of charge regulation on the sedimentation of porous particles differ substantially from those of hard particles.
摘要......I
Abstract......II
List of Figures......VI
Chapter 1 Introduction......1
Chapter 2 Basic Analysis......4
2.1 Equations of Charge Regulation......4
2.2 Electrokinetic Equations......6
2.3 Equilibrium Electric Potential......8
2.4 Solution of the Perturbed Quantities......8
Chapter 3 Sedimentation Velocity and Potential......11
3.1 Sedimentation Velocity......11
3.2 Sedimentation Potential......13
Chapter 4 Results and Discussion......15
4.1 Sedimentation Velocity......15
4.2 Sedimentation Potential......17
Chapter 5 Concluding Remarks......25
List of Symbols......27
References......31
Appendix......36
Biographical Sketch......39
(1) Hsieh, T. H.; Keh, H. J. Magnetohydrodynamic Effects on a Charged Colloidal Sphere with Arbitrary Double-Layer Thickness. J. Chem. Phys. 2010, 133, 134103.
(2) Satoh, A. Sedimentation Behavior of Dispersions Composed of Large and Small Charged Colloidal Particles: Development of New Technology to Improve the Visibility of Small Lakes and Ponds. Env. Eng. Sci. 2015, 32, 528-538.
(3) Adachi, Y. Sedimentation and Electrophoresis of a Porous Floc and a Colloidal Particle Coated with Polyelectrolytes. Curr. Opin. Colloid Interface Sci. 2016, 24, 72-78.
(4) Gopmandal, P. P.; Bhattacharyya, S.; Barman, B. Effect of Induced Electric Field on
Migration of a Charged Porous Particle. Eur. Phys. J. E 2014, 37, 104.
(5) Khair, A. S. Strong Deformation of the Thick Electric Double Layer around a Charged Particle during Sedimentation or Electrophoresis. Langmuir 2018, 34, 876-885.
(6) Booth, F. Sedimentation Potential and Velocity of Solid Spherical Particles. J. Chem. Phys. 1954, 22, 1956-1968.
(7) Stigter, D. Sedimentation of Highly Charged Colloidal Spheres. J. Phys. Chem. 1980, 84, 2758-2762.
(8) Ohshima, H.; Healy, T. W.; White, L. R.; O’Brien, R. W. Sedimentation Velocity and Potential in a Dilute Suspension of Charged Spherical Colloidal Particles. J. Chem. Soc., Faraday Trans. 2 1984, 80, 1299-1317.
(9) Levine, S.; Neale, G.; Epstein, N. The Prediction of Electrokinetic Phenomena within Multiparticle Systems II. Sedimentation Potential. J. Colloid Interface Sci. 1976, 57,
424-437.
(10) Ohshima, H. Sedimentation Potential in a Concentrated Suspension of Spherical Colloidal Particles. J. Colloid Interface Sci. 1998, 208, 295-301.
(11) Keh, H. J.; Ding, J. M. Sedimentation Velocity and Potential in Concentrated Suspensions of Charged Spheres with Arbitrary Double-Layer Thickness. J. Colloid Interface Sci. 2000, 227, 540-552.
(12) Carrique, F.; Arroyo, F. J.; Delgado, A. V. Sedimentation Velocity and Potential in a Concentrated Colloidal Suspension: Effect of a Dynamic Stern Layer. Colloids Surfaces A 2001, 195, 157-169.
(13) Hermans, J. J. Sedimentation and Electrophoresis of Porous Spheres. J. Polymer Sci. 1955, 18, 527-533.
(14) Liu, Y. C.; Keh, H. J. Sedimentation Velocity and Potential in a Dilute Suspension of Charged Porous Spheres. Colloids Surfaces A 1998, 140, 245-259.
(15) Keh, H. J.; Chen, W. C. Sedimentation Velocity and Potential in Concentrated Suspensions of Charged Porous Spheres. J. Colloid Interface Sci. 2006, 296, 710-720.
(16) Ohshima, H. Sedimentation Potential and Velocity in a Concentrated Suspension of Soft Particles. J. Colloid Interface Sci. 2000, 229, 140-147.
(17) Chiu, Y. S.; Keh, H. J. Sedimentation Velocity and Potential in a Concentrated Suspension of Charged Soft Spheres. Colloids Surfaces A 2014, 440, 185-196.
(18) Yeh, Y. Z.; Keh, H. J. Sedimentation Velocity and Potential in Dilute Suspensions of Charged Porous Shells. J. Phys. Chem. B 2018, 122, 10393-10400.
(19) Ninham, B. W.; Parsegian, V. A. Electrostatic Potential between Surfaces Bearing Ionizable Groups in Ionic Equilibrium with Physiologic Saline Solution. J. Theor. Biol. 1971, 31, 405-428.
(20) Carnie, S. L.; Chan, D. Y. C. Interaction Free Energy between Plates with Charge Regulation: A Linearized Model. J. Colloid Interface Sci. 1993, 161, 260-264.
(21) Pujar, N. S.; Zydney, A. L. Charge Regulation and Electrostatic Interactions for a Spherical Particle in a Cylindrical Pore. J. Colloid Interface Sci. 1997, 192, 338-349.
(22) Dan, N. Interactions between Charge-Regulating Surface Layers. Langmuir 2002, 18, 3524-3527.
(23) Ding, J. M.; Keh, H. J. Electrophoretic Mobility and Electric Conductivity in Dilute Suspensions of Charge-Regulating Composite Spheres. Langmuir 2003, 19, 7226-7239.
(24) Philipse, A. P.; Tuinier, R.; Kuipers, B. W. M.; Vrij, A.; Vis, M. On the Repulsive Interaction Between Strongly Overlapping Double Layers of Charge-regulated Surfaces. Colloid Interface Sci. Comm. 2017, 21 10-14.
(25) Ding, J. M.; Keh, H. J. Sedimentation Velocity and Potential in a Suspension of Charge Regulating Colloidal Spheres. J. Colloid Interface Sci. 2001, 243, 331-341.
(26) Biesheuvel, P. M. Evidence for Charge Regulation in the Sedimentation of Charged Colloids. J. Phys.: Condens. Matter 2004, 16, L499–L504.
(27) Yue, T.; Wu, X.; Chen, X.; Liu, T. A Study on the Flocculation and Sedimentation of Iron Tailings Slurry Based on the Regulating Behavior of Fe3+. Minerals 2018, 8, 421.
(28) Deiber, J. A.; Piaggio, M. V.; Peirotti, M. B. Determination of Electrokinetic and Hydrodynamic Parameters of Proteins by Modeling Their Electrophoretic Mobilities
through the Electrically Charged Spherical Porous Particle. Electrophoresis 2013, 34, 700-707.
(29) Huang, H. Y.; Keh, H. J. Electrophoretic Mobility and Electric Conductivity in Suspensions of Charge-Regulating Porous Particles. Colloid Polym. Sci. 2015, 293,
1903-1914.
(30) Li, W. C.; Keh, H. J., Diffusiophoretic mobility of charge-regulating porous particles. Electrophoresis 2016, 37 (15-16), 2139-46.
(31) De Groot, S. R.; Mazur, P.; Overbeek, J. Th. G. Nonequilibrium Thermodynamics of the Sedimentation Potential and Electrophoresis. J. Chem. Phys. 1952, 20, 1825-1829.
(32) van de Ven, T. G. M. Colloidal Hydrodynamics; Academic Press: London, 1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔