(54.236.58.220) 您好!臺灣時間:2021/03/01 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠逸
研究生(外文):Kuan-I Chen
論文名稱:含蒽醌之新穎不對稱紫精應用於全波段吸收電致色變元件
論文名稱(外文):Electrochromic Devices with Panchromatic Absorption Based on Novel Asymmetric Viologens with Anthraquinone Unit
指導教授:何國川
指導教授(外文):Kuo-Chuan Ho
口試委員:周澤川龔仲偉蔡麗端
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:151
中文關鍵詞:蒽醌不對稱紫精電致色變元件膠態電解質全波段吸收拉曼光譜
DOI:10.6342/NTU201901207
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,被稱作紫精的1,1''-雙取代-4,4''-雙吡啶鹽,因其顯著且具高度可逆的電致色變性質而受到高度關注。紫精的雙吡啶部份擁有兩個活性氮原子,不同的官能基可以鍵結到它們上並成為它們的取代基。當兩個活性氮原子上的取代基相同時,該紫精稱為對稱紫精,相反地,當兩個活性氮原子上的取代基不同時,該紫精稱為不對稱紫精。本論文的主要想法是將蒽醌單元和芳基鍵結到紫精上,因芳基紫精通常在光波長大約530奈米處缺乏吸光度,而蒽醌恰好可在光波長大約530奈米處提供吸光度。因此,透過將芳基紫精與蒽醌單元的結合,以合成出新穎的不對稱紫精,預期可以創造出全波段吸收。在這種情況下,本文所提出的紫精將可以從其他大多數只能發出藍色或綠色的紫精中脫穎而出。
本文第三章,選擇蒽醌單元以及對氰基苯作為該不對稱紫精的兩個取代基,從循環伏安圖來看,該不對稱紫精擁有三對氧化還原對,有別於只有兩對氧化還原對的一般紫精,表示蒽醌單元在受到施加電位時也會進行氧化還原反應。本論文提出含有不對稱紫精和作為氧化還原對的二茂鐵的電致色變元件。該電致色變元件在−1.3 V 以及 0 V來回操作時可以在光波長530奈米處提供65.0%之初始光學穿透度變化,以及快速的著去色響應時間(3.05秒著色時間及1.89秒去色時間)。同時,將高分子添加到電解質中以增加黏度後,可以得到良好的長期穩定性,達成在一萬圈連續操作後仍保有其最初83.3%之光學穿透度變化。此外,該電致色變元件的表觀質傳系數也透過Cottrell方程式計算出來,並確認元件內部的工作機制。
本文第四章,追求更佳的長期穩定性一直都是研究電致色變元件學者的終極目標,因此,決定更進一步提升第三章所合成之不對稱紫精的長期穩定性。在此選擇了蒽醌單元以及對第三丁基苯作為第四章中不對稱紫精的兩個取代基,從過去文獻中發現當某個紫精的取代基變得更為龐大時可以改善該紫精的長期穩定性,因龐大的取代基可以避免紫精團聚或形成二聚體。在第四章中合成出的不對稱紫精和第三章中所合成之紫精具有相似的電化學性質,只有在達成全波段吸收的能力上稍有衰減,其可能的原因為不同取代基具有不同的誘導效應所導致。在與第三章具有相同的條件下,第四章所提出的電致色變元件最終可以達成在一萬圈連續操作後仍可保持其最初95.0%之光學穿透度變化。最後,拉曼光譜數據提供本文兩章節所合成之紫精的訊號差異,通過此數據得到改變紫精的取代基確實可以影響其團聚或形成二聚體的傾向,進而提供影響其長期穩定性的直接證據。
本文透過結合蒽醌單元與紫精,成功製作出全波段吸收電致色變元件,使得含紫精的電致色變元件的顏色得以多樣化,並探討當蒽醌單元與不同的紫精結合時對電致色變元件的顏色以及長期穩定性的影響,同時,本文也證實結合兩種不同電致色變材料的構想是可以實現的。
Viologens, also referring as 1,1''-disubstituted-4,4''-bipyridiniums salts, are electrochromic (EC) materials that gain much attention for their dramatic and highly reversible EC properties in recent years. Viologens possess two reactive nitrogen atoms on its bipyridine part, different functional groups can graft onto them and become their substituents. They would be regarded as symmetric viologens when the two substituents of them are the same. In contrast, they would be regarded as asymmetric viologens when the two substituents of them are different. The main idea of this thesis is to graft an anthraquinone unit and an aryl group onto viologen. Aryl viologens often lack absorbance at about 530 nm light wavelength, while anthraquinone happens to provide absorbance at about 530 nm light wavelength. Therefore, we would combine aryl viologens and anthraquinone unit and synthesize novel asymmetric viologens, expecting to produce panchromatic absorbance. In this case, the proposed viologens could stand out from most of the other viologens, which could only produce blue or green color.
In Chapter 3, we would choose anthraquinone unit and p-cyanophenyl group as the two substituents of the asymmetric viologen. Differ from other viologens, which only have two redox pairs in their cyclic voltammetric curve, our asymmetric viologen have three redox pairs in its cyclic voltammetric curve, indicating anthraquinone unit also involves redox process as we applied voltages. Through combining the asymmetric viologen with a redox mediator, ferrocene, the electrochromic device (ECD) was fabricated. The ECD could give 65.0% transmittance change (ΔT%) initially at 530 nm light wavelength when being switched between −1.3 V and 0 V. Fast response times (3.05 s in coloring and 1.89 s in bleaching) were observed. Meanwhile, good long-term stability can be obtained after adding polymers into electrolyte to increase the viscosity, maintaining 83.3% of its initial ∆T% after 10,000 continuous cycles. In addition, the apparent diffusion coefficient (Dapp) of the ECD was calculated by Cottrell equation, and the working mechanism of the ECD was also determined.
In Chapter 4, pursuing a better long-term stability is always an ambitious goal for researchers investigating ECDs. Therefore, we decided to further improve the long-term stability of the viologen in Chapter 3. We chose anthraquinone unit and 4-tert-butylphenyl group as the two substituents of the asymmetric viologen. From the reported literatures, we found out that the long-term stability could be improved as the substituents of viologens get bulkier, bulkier substituents can prevent viologens from aggregation or forming dimers. The electrochemical properties of the proposed viologen in Chapter 4 are nearly the same with the one in Chapter 3, with only a little decay in the ability of reaching panchromatic absorbance. The possible reason may due to the different inductive effect among the functional groups. The proposed ECD in Chapter 4 could finally retain 95.0% of its initial ∆T% after 10,000 continuous cycles under the same condition with the one in Chapter 3. At the end, Raman spectra data was provided to compare the signals between the viologens in Chapter 3 and Chapter 4, this data provide a direct evidence that by changing the substituents of viologens can actually affect their tendency to form aggregates or dimers and thus further affect their long-term stability.
In this thesis, we successfully produced ECDs with panchromatic absorption by combining anthraquinone unit and viologens, making the color of viologen-based ECDs diverse, and discussed the influences on the color and long-term stability of ECDs when anthraquinone unit combined with different viologens. In addition, this thesis also proved that the idea of combining two different EC materials is implementable.
Table of contents
致謝 .....I
中文摘要 .....II
Abstract .....IV
Table of Contents .....VI
List of Tables .....IX
List of Figures .....X
Nomenclatures .....XVI
Chapter 1 Introduction .....1
1.1 Introduction of electrochromism .....1
1.2 Introduction of electrochromic materials .....6
1.2.1 Metal related materials .....7
1.2.2 Organic materials .....17
1.3 Electrochromic devices (ECDs) .....28
1.4 Scope of this thesis .....37
Chapter 2 Experimental Procedure .....40
2.1 General experimental details .....40
2.1.1 Materials .....40
2.1.2 Apparatus .....41
2.1.3 Cleaning procedure for ITO glass .....42
2.1.4 Fabrication of the ECDs .....42
2.1.5 General synthesis process .....42
2.2 Experimental details related to Chapter 3 .....45
2.2.1 Synthesis process .....45
2.2.2 Composition details of the EC mixture and fabrication of the ECDs .....54
2.3 Experimental details related to Chapter 4 .....55
2.3.1 Synthesis process .....55
2.3.2 Composition details of the EC mixture and fabrication of the ECDs .....60
2.3.3 Preparation of samples for Raman spectra .....60
Chapter 3 Single Viologen with Anthraquinone Unit in Electrochromic Devices with Panchromatic Absorption .....61
3.1 Introduction .....61
3.2 Results and discussions .....64
3.2.1 Color of radical-cation state for alkyl or aryl substituted viologens .....64
3.2.2 Characterization of AQVpCN(BF4)2 .....66
3.2.3 Characterization of the ECD with AQVpCN(BF4)2 and Ferrocene .....69
3.2.4 Apparent diffusion coefficient, coloration efficiencies, and long term stability of AQVpCN(BF4)2 ECD .....78
3.3 Conclusions .....94
Chapter 4 Investigation on the Electrochemical and Dimer Properties of Anthraquinone-based Viologens .....95
4.1. Introduction .....95
4.2 Results and discussion .....98
4.2.1 Characterization of AQVtBP(BF4)2 .....98
4.2.2 Characterization of the ECD with AQVtBP(BF4)2 and Ferrocene .....100
4.2.3 Apparent diffusion coefficient, coloration efficiencies, and long term stability of AQVtBP(BF4)2 ECD .....106
4.2.4 Raman spectra for viologen dimers and comparison between AQVpCN(BF4)2 and AQVtBP(BF4)2 .....125
4.3 Conclusions .....129
Chapter 5 Conclusions and Suggestions .....130
5.1 General conclusions .....130
5.2 Suggestions .....132
References .....136
[1] Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2-18.
[2] Monk, P.; Mortimer, R.; Rosseinsky, D. Electrochromism and Electrochromic Devices, Cambridge University Press: New York, USA, 2007; Chapter 1, p 1-18.
[3] Chang, T.-H.; Hu, C.-W.; Kao, S.-Y.; Kung, C.-W.; Chen, H.-W.; Ho, K.-C. An all-organic solid-state electrochromic device containing poly(vinylidene fluoride-co-hexafluoropropylene), succinonitrile, and ionic liquid. Sol. Energy Mater. Sol. Cells 2015, 143, 606-612.
[4] Lu, H.-C.; Kao, S.-Y.; Chang, T.-H.; Kung, C.-W.; Ho, K.-C. An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene. Sol. Energy Mater. Sol. Cells 2016, 147, 75-84.
[5] Dmitrieva, E.; Rosenkranz, M.; Alesanco, Y.; Viñuales, A. The reduction mechanism of p-cyanophenylviologen in PVA-borax gel polyelectrolyte-based bicolor electrochromic devices. Electrochim. Acta 2018, 292, 81-87.
[6] Zhu, C.-R.; Long, J.-F.; Tang, Q.; Gong, C.-B.; Fu, X.-K. Multi-colored electrochromic devices based on mixed mono- and bi-substituted 4,4′-bipyridine derivatives containing an ester group. J. Appl. Electrochem. 2018, 48, 1121-1129.
[7] Kao, S. Y.; Lu, H. C.; Kung, C. W.; Chen, H. W.; Chang, T. H.; Ho, K. C. Thermally cured dual functional viologen-based all-in-one electrochromic devices with panchromatic modulation. ACS Appl. Mater. Interfaces 2016, 8, 4175-4184.
[8] Guerfi, A.; Dao, L. H. Electrochromic molybdenum oxide thin films prepared by electrodeposition. J. Electrochem. Soc. 1989, 136, 2435-2436.
[9] Granqvist, C. G. Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 2000, 60, 201-262.
[10] Yin, Y.; Lan, C.; Guo, H.; Li, C. Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices. ACS Appl. Mater. Interfaces 2016, 8, 3861-3867.
[11] Dong, W.; Lv, Y.; Xiao, L.; Fan, Y.; Zhang, N.; Liu, X. Bifunctional MoO3-WO3/Ag/MoO3-WO3 films for efficient ITO-free electrochromic devices. ACS Appl. Mater. Interfaces 2016, 8, 33842-33847.
[12] Li, H.; McRae, L.; Elezzabi, A. Y. Solution-processed interfacial PEDOT:PSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Appl. Mater. Interfaces 2018, 10, 10520-10527.
[13] Cheng, K.-C.; Chen, F.-R.; Kai, J.-J. Electrochromic property of nano-composite Prussian blue based thin film. Electrochim. Acta 2007, 52, 3330-3335.
[14] Itaya, K.; Shibayama, K.; Akahoshi, H.; Toshima, S. Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device. J. Appl. Phys. 1982, 53, 804-805.
[15] Mortimer, R. J.; Rosseinsky, D. R.; Monk, P. M. Electrochromic Materials and Devices, Wiley-VCH: Weinheim, Germany, 2015; Chapter 2, p 41-56.
[16] Jelle, B. P.; Hagen, G. Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. J. Electrochem. Soc. 1993, 140, 3560-3564.
[17] Kholmanov, I. N.; Domingues, S. H.; Chou, H.; Wang, X.; Tan, C.; Kim, J. Y.; Li, H.; Piner, R.; Zarbin, A. J. G.; Ruoff, R. S. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano 2013, 7, 1811-1816.
[18] Schmidt, A.; Husmann, S.; Zarbin, A. J. G. Carbon nanotube thin films modified with a mixture of Prussian blue and ruthenium purple: Combining materials and properties. J. Solid State Electrochem. 2018, 22, 2003-2012.
[19] Yu, Z.; Cai, G.; Ren, R.; Tang, D. A new enzyme immunoassay for alpha-fetoprotein in a separate setup coupling an aluminium/Prussian blue-based self-powered electrochromic display with a digital multimeter readout. Analyst 2018, 143, 2992-2996.
[20] Gelinas, B.; Das, D.; Rochefort, D. Air-stable, self-bleaching electrochromic device based on viologen- and ferrocene-containing triflimide redox ionic liquids. ACS Appl. Mater. Interfaces 2017, 9, 28726-28736.
[21] Sydam, R.; Ghosh, A.; Deepa, M. Enhanced electrochromic write–erase efficiency of a device with a novel viologen: 1,1′-bis (2-(1H-indol-3-yl)ethyl)-4,4′-bipyridinium diperchlorate. Org. Electron. 2015, 17, 33-43.
[22] Yun, T. Y.; Moon, H. C. Highly stable ion gel-based electrochromic devices: Effects of molecular structure and concentration of electrochromic chromophores. Org. Electron. 2018, 56, 178-185.
[23] Mortimer, R. J. Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971-2981.
[24] Pittelli, S. L.; Shen, D. E.; Österholm, A. M.; Reynolds, J. R. Chemical oxidation of polymer electrodes for redox active devices: Stabilization through interfacial interactions. ACS Appl. Mater. Interfaces 2018, 10, 970-978.
[25] Kim, D.; Kim, J.; Ko, Y.; Shim, K.; Kim, J. H.; You, J. A facile approach for constructing conductive polymer patterns for application in electrochromic devices and flexible microelectrodes. ACS Appl. Mater. Interfaces 2016, 8, 33175-33182.
[26] Kai, H.; Suda, W.; Ogawa, Y.; Nagamine, K.; Nishizawa, M. Intrinsically stretchable electrochromic display by a composite film of poly(3,4-ethylenedioxythiophene) and polyurethane. ACS Appl. Mater. Interfaces 2017, 9, 19513-19518.
[27] Dyer, A. L.; Thompson, E. J.; Reynolds, J. R. Completing the color palette with spray-processable polymer electrochromics. ACS Appl. Mater. Interfaces 2011, 3, 1787-1795.
[28] Silva, A. J. C.; Ferreira, S. M.; Santos, D. d. P.; Navarro, M.; Tonholo, J.; Ribeiro, A. S. A multielectrochromic copolymer based on pyrrole and thiophene derivatives. Sol. Energy Mater. Sol. Cells 2012, 103, 108-113.
[29] Hu, C. W.; Sato, T.; Zhang, J.; Moriyama, S.; Higuchi, M. Three-dimensional Fe(II)-based metallo-supramolecular polymers with electrochromic properties of quick switching, large contrast, and high coloration efficiency. ACS Appl. Mater. Interfaces 2014, 6, 9118-9125.
[30] Hsu, C. Y.; Zhang, J.; Sato, T.; Moriyama, S.; Higuchi, M. Black-to-transmissive electrochromism with visible-to-near-infrared switching of a Co(II)-based metallo-supramolecular polymer for smart window and digital signage applications. ACS Appl. Mater. Interfaces 2015, 7, 18266-18272.
[31] Eguchi, M.; Momotake, M.; Inoue, F.; Oshima, T.; Maeda, K.; Higuchi, M. Inert layered silicate improves the electrochemical responses of a metal complex polymer. ACS Appl. Mater. Interfaces 2017, 9, 35498-35503.
[32] Işık Büyükekşi, S.; Orman, E. B.; Acar, N.; Altındal, A.; Özkaya, A. R.; Şengül, A. Electrochemical, photovoltaic and DFT studies on hybrid materials based on supramolecular self-assembly of a ditopic twisted perylene diimide with square-planar platinum(II)- and/or palladium(II)-2,2′:6′,2″-terpyridyl complex ions. Dyes Pigments 2019, 161, 66-78.
[33] Deb, S. K. A novel electrophotographic system. Appl. Opt. 1969, 8, 192-195.
[34] Cannistraro, M.; Castelluccio, M. E.; Germanò, D. New sol-gel deposition technique in the smart-windows – Computation of possible applications of smart-windows in buildings. J. Building Eng. 2018, 19, 295-301.
[35] Wang, W. Q.; Wang, X. L.; Xia, X. H.; Yao, Z. J.; Zhong, Y.; Tu, J. P. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window. Nanoscale 2018, 10, 8162-8169.
[36] Kao, S.-Y.; Lin, Y.-S.; Chin, K.; Hu, C.-W.; Leung, M.-k.; Ho, K.-C. High contrast and low-driving voltage electrochromic device containing triphenylamine dendritic polymer and zinc hexacyanoferrate. Sol. Energy Mater. Sol. Cells 2014, 125, 261-267.
[37] Lu, H. C.; Kao, S. Y.; Yu, H. F.; Chang, T. H.; Kung, C. W.; Ho, K. C. Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids. ACS Appl. Mater. Interfaces 2016, 8, 30351-30361.
[38] Alesanco, Y.; Vinuales, A.; Palenzuela, J.; Odriozola, I.; Cabanero, G.; Rodriguez, J.; Tena-Zaera, R. Multicolor electrochromics: Rainbow-like devices. ACS Appl. Mater. Interfaces 2016, 8, 14795-14801.
[39] Barile, C. J.; Slotcavage, D. J.; Hou, J.; Strand, M. T.; Hernandez, T. S.; McGehee, M. D. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 2017, 1, 133-145.
[40] Byker, H. J. Electrochromics and polymers. Electrochim. Acta 2001, 46, 2015-2022.
[41] He, J.; Mukherjee, S.; Zhu, X.; You, L.; Boudouris, B. W.; Mei, J. Highly transparent crosslinkable radical copolymer thin film as the ion storage layer in organic electrochromic devices. ACS Appl. Mater. Interfaces 2018, 10, 18956-18963.
[42] Lampert, C. M. Large-area smart glass and integrated photovoltaics. Sol. Energy Mater. Sol. Cells 2003, 76, 489-499.
[43] Monk, P. M.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism: Fundamentals and Applications, Wiley-VCH: Weinheim, Germany, 2008; Chapter 1, p 3-18.
[44] Bechtel, J. H.; Byker, H. J., Automatic rearview mirror system for automotive vehicles. Google Patents: 1990.
[45] Dürr, H.; Bouas-Laurent, H. Photochromism: Molecules and Systems, Elsevier: New York, USA, 2003; Chapter 1, p 1-25.
[46] Cheng, Y.; Zhang, X.; Fang, C.; Chen, J.; Wang, Z. Discoloration mechanism, structures and recent applications of thermochromic materials via different methods: A review. J. Mater. Sci. Technol. 2018, 34, 2225-2234.
[47] Mortimer, R. J.; Rosseinsky, D. R.; Monk, P. M. Electrochromic Materials and Devices, Wiley-VCH: Weinheim, Germany, 2015; Appendix, p 623-624.
[48] Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat. Mater. 2008, 7, 795-9.
[49] Honda, K.; Fujita, M.; Ishida, H.; Yamamoto, R.; Ohgaki, K. Solid‐state electrochromic devices composed of Prussian blue, WO3, and poly(ethylene oxide)‐polysiloxane hybrid‐type ionic conducting membrane. J. Electrochem. Soc. 1988, 135, 3151-3154.
[50] Garino, N.; Zanarini, S.; Bodoardo, S.; Nair, J.; Pereira, S.; Pereira, L.; Martins, R.; Fortunato, E.; Penazzi, N. Fast switching electrochromic devices containing optimized BEMA/PEGMA gel polymer electrolytes. Int. J. Electrochem. 2013, 2013, 1-10.
[51] Cummins, D.; Boschloo, G.; Ryan, M.; Corr, D.; Rao, S. N.; Fitzmaurice, D. Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J. Phys. Chem. B 2000, 104, 11449-11459.
[52] Shin, H.; Kim, Y.; Bhuvana, T.; Lee, J.; Yang, X.; Park, C.; Kim, E. Color combination of conductive polymers for black electrochromism. ACS Appl. Mater. Interfaces 2011, 4, 185-191.
[53] Chandrasekhar, P. Conducting Polymers, Fundamentals and Applications: A Practical Approach, Kluwer Academic: New York, USA, 2017; Chapter 3, p 43-76.
[54] Ah, C. S.; Song, J.; Cho, S. M.; Kim, T. Y.; Kim, H. N.; Oh, J. Y.; Chu, H. Y.; Ryu, H. Double‐layered black electrochromic device with a single electrode and long‐term bistability. Bull. Korean Chem. Soc. 2015, 36, 548-552.
[55] Alesanco, Y.; Vinuales, A.; Cabanero, G.; Rodriguez, J.; Tena-Zaera, R. Colorless to neutral color electrochromic devices based on asymmetric viologens. ACS Appl. Mater. Interfaces 2016, 8, 29619-29627.
[56] Alesanco, Y.; Viñuales, A.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Colorless-to-black/gray electrochromic devices based on single 1-alkyl-1′-aryl asymmetric viologen-modified monolayered electrodes. Adv. Optical Mater. 2017, 5, 1600989.
[57] Hassab, S.; Shen, D. E.; Ӧsterholm, A. M.; Da Rocha, M.; Song, G.; Alesanco, Y.; Viñuales, A.; Rougier, A.; Reynolds, J. R.; Padilla, J. A new standard method to calculate electrochromic switching time. Sol. Energy Mater. Sol. Cells 2018, 185, 54-60.
[58] Argun, A. A.; Aubert, P.-H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Multicolored electrochromism in polymers: Structures and devices. Chem. Mater. 2004, 16, 4401-4412.
[59] Cinnsealach, R.; Boschloo, G.; Rao, S. N.; Fitzmaurice, D. Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores. Sol. Energy Mater. Sol. Cells 1999, 57, 107-125.
[60] Kao, S.-Y.; Kung, C.-W.; Chen, H.-W.; Hu, C.-W.; Ho, K.-C. An electrochromic device based on all-in-one polymer gel through in-situ thermal polymerization. Sol. Energy Mater. Sol. Cells 2016, 145, 61-68.
[61] Dyer, A. L.; Grenier, C. R. G.; Reynolds, J. R. A poly(3,4‐alkylenedioxythiophene) electrochromic variable optical attenuator with near‐infrared reflectivity tuned independently of the visible region. Adv. Funct. Mater. 2007, 17, 1480-1486.
[62] Grange, C. S.; Meijer, A. J. H. M.; Ward, M. D. Trinuclear ruthenium dioxolene complexes based on the bridging ligand hexahydroxytriphenylene: Electrochemistry, spectroscopy, and near-infrared electrochromic behaviour associated with a reversible seven-membered redox chain. Dalton T. 2010, 39, 200-211.
[63] Rose, T.; D''Antonio, S.; Jillson, M.; Kon, A.; Suresh, R.; Wang, F. A microwave shutter using conductive polymers. Synth. Met. 1997, 85, 1439-1440.
[64] Chang, I.; Gilbert, B.; Sun, T. Electrochemichromic systems for display applications. J. Electrochem. Soc. 1975, 122, 955-962.
[65] Mortimer, R. J. Electrochromic materials. Annu. Rev. Mater. Res. 2011, 41, 241-268.
[66] Granqvist, C. G. Handbook of inorganic electrochromic materials, Elsevier: New York, USA, 1995; Chapter 1, p 1-13.
[67] Niklasson, G. A.; Granqvist, C. G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127-156.
[68] Granqvist, C. G. Oxide electrochromics: Why, how, and whither. Sol. Energy Mater. Sol. Cells 2008, 92, 203-208.
[69] Estrada, W.; Andersson, A. M.; Granqvist, C. G. Electrochromic nickel‐oxide‐based coatings made by reactive dc magnetron sputtering: Preparation and optical properties. J. Appl. Phys. 1988, 64, 3678-3683.
[70] Zhang, J.; Tu, J.; Xia, X.; Qiao, Y.; Lu, Y. An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte. Sol. Energy Mater. Sol. Cells 2009, 93, 1840-1845.
[71] Lin, F.; Cheng, J.; Engtrakul, C.; Dillon, A. C.; Nordlund, D.; Moore, R. G.; Weng, T.-C.; Williams, S.; Richards, R. M. In situ crystallization of high performing WO3-based electrochromic materials and the importance for durability and switching kinetics. J. Mater. Chem. 2012, 22, 16817-16823.
[72] Kraft, A. On the discovery and history of Prussian blue. Bull. Hist. Chem. 2008, 33, 61-67.
[73] Robin, M. B. The color and electronic configurations of Prussian blue. Inorg. Chem. Commun. 1962, 1, 337-342.
[74] Neff, V. D. Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 1978, 125, 886-887.
[75] Honda, K.; Ochiai, J.; Hayashi, H. Polymerization of transition metal complexes in solid polymer electrolytes. J. Chem. Soc., Chem. Commun. 1986, 168-170.
[76] Carpenter, M. K.; Conell, R. S. A single‐film electrochromic device. J. Electrochem. Soc. 1990, 137, 2464-2467.
[77] Itaya, K.; Uchida, I.; Neff, V. D. Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 1986, 19, 162-168.
[78] Itaya, K.; Ataka, T.; Toshima, S. Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc. 1982, 104, 4767-4772.
[79] Mortimer, R. J.; Rosseinsky, D. R. Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide. J. Electroanal. Chem. 1983, 151, 133-147.
[80] Mortimer, R. J.; Rosseinsky, D. R. Iron hexacyanoferrate films: Spectroelectrochemical distinction and electrodeposition sequence of ''soluble'' (K+-containing) and ''insoluble'' (K+-free) Prussian blue, and composition changes in polyelectrochromic switching. J. Chem. Soc., Dalton Trans. 1984, 2059-2062.
[81] Husmann, S.; Zarbin, A. J. Multifunctional carbon nanotubes/ruthenium purple thin films: Preparation, characterization and study of application as sensors and electrochromic materials. Dalton T. 2015, 44, 5985-5995.
[82] Kulesza, P. J.; Malik, M. A.; Skorek, J.; Miecznikowski, K.; Zamponi, S.; Berrettoni, M.; Giorgetti, M.; Marassi, R. Hybrid metal cyanometallates electrochemical charging and spectrochemical identity of heteronuclear nickel/cobalt hexacyanoferrate. J. Electrochem. Soc. 1999, 146, 3757-3761.
[83] Baioni, A. P.; Vidotti, M.; Fiorito, P. A.; Ponzio, E.; Córdoba de Torresi, S. I. Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes. Langmuir 2007, 23, 6796-6800.
[84] Ho, K. C.; Chen, J. C. Spectroelectrochemical studies of indium hexacyanoferrate electrodes prepared by the sacrificial anode method. J. Electrochem. Soc. 1998, 145, 2334-2340.
[85] Lee, K.-M.; Tanaka, H.; Takahashi, A.; Kim, K. H.; Kawamura, M.; Abe, Y.; Kawamoto, T. Accelerated coloration of electrochromic device with the counter electrode of nanoparticulate Prussian blue-type complexes. Electrochim. Acta 2015, 163, 288-295.
[86] Tsiafoulis, C. G.; Trikalitis, P. N.; Prodromidis, M. I. Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochem. Commun. 2005, 7, 1398-1404.
[87] Song, Y.; He, J.; Wu, H.; Li, X.; Yu, J.; Zhang, Y.; Wang, L. Preparation of porous hollow CoOx nanocubes via chemical etching Prussian blue analogue for glucose sensing. Electrochim. Acta 2015, 182, 165-172.
[88] Hu, L.; Zhang, P.; Chen, Q.; Zhong, H.; Hu, X.; Zheng, X.; Wang, Y.; Yan, N. Morphology-controllable synthesis of metal organic framework Cd3[Co(CN)6]2·nH2O nanostructures for hydrogen storage applications. Cryst. Growth Des. 2012, 12, 2257-2264.
[89] Kong, B.; Selomulya, C.; Zheng, G.; Zhao, D. New faces of porous Prussian blue: Interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 2015, 44, 7997-8018.
[90] Luangdilok, C. H.; Arent, D. J.; Bocarsly, A. B.; Wood, R. Investigation of the structure-reactivity relationship in the platinum/metal cadmium hexacyanoferrate (Pt/MxCdFe(CN)6)-modified electrode system. Langmuir 1992, 8, 650-657.
[91] Bharathi, S.; Joseph, J.; Jeyakumar, D.; Rao, G. P. Modified electrodes with mixed metal hexacyanoferrates. J. Electroanal. Chem. 1992, 332, 371.
[92] Dong, S.; Jin, Z. Molybdenum hexacyanoferrate film modified electrodes. J. Electroanal. Chem. 1988, 256, 193-198.
[93] Liu, S.; Li, H.; Jiang, M.; Li, P. Platinum hexacyanoferrate: A novel Prussian blue analogue with stable electroactive properties. J. Electroanal. Chem. 1997, 426, 27-30.
[94] Jiang, M.; Zhou, X.; Zhao, Z. Preparation and characterization of mixed-valent titanium hexacyanoferrate film modified glassy carbon electrode. J. Electrochem. Soc. 1990, 292, 289-296.
[95] Kurth, D. G.; López, J. P.; Dong, W.-F. A new Co(II)-metalloviologen-based electrochromic material integrated in thin multilayer films. Chem. Commun. 2005, 2119-2121.
[96] Higuchi, M. Stimuli-responsive metallo-supramolecular polymer films: Design, synthesis and device fabrication. J. Mater. Chem. C 2014, 2, 9331-9341.
[97] Han, F. S.; Higuchi, M.; Kurth, D. G. Metallo‐supramolecular polymers based on functionalized bis‐terpyridines as novel electrochromic materials. Adv. Mater. 2007, 19, 3928-3931.
[98] Han, F. S.; Higuchi, M.; Kurth, D. G. Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: Photophysical, electrochemical, and electrochromic properties. J. Am. Chem. Soc. 2008, 130, 2073-2081.
[99] Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4‐ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 2000, 12, 481-494.
[100] Reynolds, J. R.; Sundaresan, N.; Pomerantz, M.; Basak, S.; Baker, C. K. Self-doped conducting copolymers: A charge and mass transport study of poly{pyrrole-co-[3-(pyrrol-1-yl)propanesulfonate]}. J. Electroanal. Chem. 1988, 250, 355-371.
[101] Wang, J.-Y.; Yu, C.-M.; Hwang, S.-C.; Ho, K.-C.; Chen, L.-C. Influence of coloring voltage on the optical performance and cycling stability of a polyaniline–indium hexacyanoferrate electrochromic system. Sol. Energy Mater. Sol. Cells 2008, 92, 112-119.
[102] Lin, T.-H.; Ho, K.-C. A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene). Sol. Energy Mater. Sol. Cells 2006, 90, 506-520.
[103] Ahuja, T.; Mir, I. A.; Kumar, D. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 2007, 28, 791-805.
[104] Wang, K.; Meng, Q.; Zhang, Y.; Wei, Z.; Miao, M. High‐performance two‐ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 2013, 25, 1494-1498.
[105] Bien, H. S.; Stawitz, J.; Wunderlich, K. Anthraquinone dyes and intermediates. Ullmann''s Ency. Ind. Chem. 2000, 3, 514-573.
[106] Van Uitert, L. G.; Zydzik, G. J.; Singh, S.; Camlibel, I. Anthraquinoide red display cells. Appl. Phys. Lett. 1980, 36, 109-111.
[107] Song, Z.; Zhan, H.; Zhou, Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem. Commun. (Camb.) 2009, 448-450.
[108] Hsiao, S.-H.; Lin, J.-Y. Synthesis and electrochromic properties of novel aromatic fluorinated poly(ether-imide)s bearing anthraquinone units. J. Fluorine Chem. 2015, 178, 115-130.
[109] Sharmoukh, W.; Ko, K. C.; Ko, J. H.; Jung, I. G.; Noh, C.; Lee, J. Y.; Son, S. U. Designed synthesis of ferrocenylanthraquinones and their bifunctional electrochromic properties. Org. Lett. 2010, 12, 3226-3229.
[110] Michaelis, L.; Hill, E. S. The viologen indicators. J. Gen. Physiol. 1933, 16, 859.
[111] Moon, H. C.; Lodge, T. P.; Frisbie, C. D. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chem. Mater. 2015, 27, 1420-1425.
[112] Paul, M. Evidence for the product of the viologen comproportionation reaction being a spin-paired radical cation dimer. J. Chem. Soc. Perk. Trans. 2 1992, 2, 2039-2041.
[113] Moon, H. C.; Kim, C. H.; Lodge, T. P.; Frisbie, C. D. Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces 2016, 8, 6252-6260.
[114] Belinko, K. Electrochemical studies of the viologen system for display applications. Appl. Phys. Lett. 1976, 29, 363-365.
[115] Ho, K. C.; Rukavina, T. G.; Greenberg, C. B. Tungsten oxide‐Prussian blue electrochromic system based on a proton‐conducting polymer electrolyte. J. Electrochem. Soc. 1994, 141, 2061-2067.
[116] Cai, G.; Darmawan, P.; Cui, M.; Wang, J.; Chen, J.; Magdassi, S.; Lee, P. S. Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 2016, 6, 1501882.
[117] Layani, M.; Kamyshny, A.; Magdassi, S. Transparent conductors composed of nanomaterials. Nanoscale 2014, 6, 5581-5591.
[118] Green, S.; Backholm, J.; Georén, P.; Granqvist, C.-G.; Niklasson, G. Electrochromism in nickel oxide and tungsten oxide thin films: Ion intercalation from different electrolytes. Sol. Energy Mater. Sol. Cells 2009, 93, 2050-2055.
[119] Hu, C.-W.; Lee, K.-M.; Huang, J.-H.; Hsu, C.-Y.; Kuo, T.-H.; Yang, D.-J.; Ho, K.-C. Incorporation of a stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in an electrochromic device. Sol. Energy Mater. Sol. Cells 2009, 93, 2102-2107.
[120] Ho, K.-C.; Fang, Y.-W.; Hsu, Y.-C.; Chen, L.-C. The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD. Solid State Ionics 2003, 165, 279-287.
[121] Chidichimo, G.; Imbardelli, D.; De Simone, B. C.; Barone, P.; Barberio, M.; Bonanno, A.; Camarca, M.; Oliva, A. Spectroscopic and kinetic investigation of ethyl viologen reduction in novel electrochromic plastic films. J. Phys. Chem. C 2010, 114, 16700-16705.
[122] Lin, C.-F.; Hsu, C.-Y.; Lo, H.-C.; Lin, C.-L.; Chen, L.-C.; Ho, K.-C. A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution. Sol. Energy Mater. Sol. Cells 2011, 95, 3074-3080.
[123] Watanabe, Y.; Imaizumi, K.; Nakamura, K.; Kobayashi, N. Effect of counter electrode reaction on coloration properties of phthalate-based electrochromic cell. Sol. Energy Mater. Sol. Cells 2012, 99, 88-94.
[124] Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman, D.; Stocking, A. Organic electroluminescent devices. Science 1996, 273, 884-888.
[125] Argun, A. A.; Reynolds, J. R. Line patterning for flexible and laterally configured electrochromic devices. J. Mater. Chem. 2005, 15, 1793-1800.
[126] Ma, C.; Taya, M.; Xu, C. Smart sunglasses based on electrochromic polymers. Polym. Eng. Sci. 2008, 48, 2224-2228.
[127] Azens, A.; Avendano, E.; Backholm, J.; Berggren, L.; Gustavsson, G.; Karmhag, R.; Niklasson, G.; Roos, A.; Granqvist, C. Flexible foils with electrochromic coatings: Science, technology and applications. Mater. Sci. Eng., B 2005, 119, 214-223.
[128] Oh, H.; Seo, D. G.; Yun, T. Y.; Lee, S. B.; Moon, H. C. Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability. Org. Electron. 2017, 51, 490-495.
[129] Seo, D. G.; Moon, H. C. Mechanically robust, highly ionic conductive gels based on random copolymers for bending durable electrochemical devices. Adv. Funct. Mater. 2018, 28, 1706948.
[130] Hsiao, S.-H.; Kung, Y.-R. Synthesis and properties of new aromatic polyimides containing redox-active anthraquinone moieties. Polym. Int. 2013, 62, 573-580.
[131] Batista, R. M. F.; Oliveira, E.; Costa, S. P. G.; Lodeiro, C.; Raposo, M. M. M. Synthesis and ion sensing properties of new colorimetric and fluorimetric chemosensors based on bithienyl-imidazo-anthraquinone chromophores. Org. Lett. 2007, 9, 3201-3204.
[132] Hsiao, S.-H.; Lin, J.-Y. Electrosynthesis of ambipolar electrochromic polymer films from anthraquinone-triarylamine hybrids. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 644-655.
[133] Lee, C.; Lee, Y. M.; Moon, M. S.; Park, S. H.; Park, J. W.; Kim, K. G.; Jeon, S.-J. UV-vis-NIR and Raman spectroelectrochemical studies on viologen cation radicals: Evidence for the presence of various types of aggregate species. J. Electroanal. Chem. 1996, 416, 139-144.
[134] Lee, C.; Moon, M. S.; Park, J. W. Spectroelectrochemical study on monomer/dimer equilibria of methylalkylviologen cation radicals with and without α-cyclodextrin. J. Electroanal. Chem. 1996, 407, 161-167.
[135] Lu, T.; Cotton, T. M.; Hurst, J. K.; Thompson, D. H. A Raman and surface-enhanced Raman study of asymmetrically substituted viologens. J. Phys. Chem. 1988, 92, 6978-6985.
[136] Misono, Y.; Shibasaki, K.; Yamasawa, N.; Mineo, Y.; Itoh, K. Time-resolved resonance Raman and surface-enhanced resonance Raman scattering study on monocation radical formation processes of heptylviologen at silver electrode surfaces. J. Phys. Chem. 1993, 97, 6054-6059.
[137] Papadakis, R.; Deligkiozi, I.; Tsolomitis, A. Synthesis and characterization of a group of new medium responsive non-symmetric viologens. Chromotropism and structural effects. Dyes Pigments 2012, 95, 478-484.
[138] Alesanco, Y.; Viñuales, A.; Ugalde, J.; Azaceta, E.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Consecutive anchoring of symmetric viologens: Electrochromic devices providing colorless to neutral-color switching. Sol. Energy Mater. Sol. Cells 2017, 177, 110-119.
[139] Chang, T.-H.; Lu, H.-C.; Lee, M.-H.; Kao, S.-Y.; Ho, K.-C. Multi-color electrochromic devices based on phenyl and heptyl viologens immobilized with UV-cured polymer electrolyte. Sol. Energy Mater. Sol. Cells 2017, 177, 75-81.
[140] Susan, M. A. B. H.; Tani, K.; Watanabe, M. Surface activity and redox behavior of nonionic surfactants containing an anthraquinone group as the redox-active site. Colloid. Polym. Sci. 1999, 277, 1125-1133.
[141] Kawai, T.; Oyaizu, K.; Nishide, H. High-density and robust charge storage with poly(anthraquinone-substituted norbornene) for organic electrode-active materials in polymer–air secondary batteries. Macromolecules 2015, 48, 2429-2434.
[142] Fan, M.-S.; Kao, S.-Y.; Chang, T.-H.; Vittal, R.; Ho, K.-C. A high contrast solid-state electrochromic device based on nano-structural Prussian blue and poly(butyl viologen) thin films. Sol. Energy Mater. Sol. Cells 2016, 145, 35-41.
[143] Monk, P. M. S. The effect of ferrocyanide on the performance of heptyl viologen-based electrochromic display devices. J. Electroanal. Chem. 1997, 432, 175-179.
[144] El-Shafei, A. A. Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J. Electroanal. Chem. 1999, 471, 89-95.
[145] Bard, A. J.; Faulkner, L. R. Electrochemical methods: Fundamentals and applications, John Wiley & Sons New York, USA, 2001; Chapter 5, p 161-164.
[146] Monk, P. The Viologens: Synthesis, Physicochemical Properties and Applications of the Salts of 4, 4′-Bipyridine, John Wiley & Sons: New York, USA, 1998; Chapter 1, p 1-20.
[147] Li, S.; Purdy, W. C. Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 1992, 92, 1457-1470.
[148] Yasuda, A.; Kondo, H.; Itabashi, M.; Seto, J. Structure changes of viologen + β-cyclodextrin inclusion complex corresponding to the redox state of viologen. J. Electroanal. Chem. 1986, 210, 265-275.
[149] Yasuda, A.; Mori, H.; Seto, J. Electrochromic properties of alkylviologen-cyclodextrin systems. J. Appl. Electrochem. 1987, 17, 567-573.
[150] Forster, M.; Girling, R.; Hester, R. Infrared, Raman and resonance Raman investigations of methylviologen and its radical cation. J. Raman Spectrosc. 1982, 12, 36-48.
[151] Ohsawa, M.; Nishijima, K.; Suëtaka, W. Potential modulation Raman spectroscopy for in situ observation of electrode/electrolyte interface. Surf. Sci. 1981, 104, 270-281.
[152] Kamata, K.; Suzuki, T.; Kawai, T.; Iyoda, T. Voltammetric anion recognition by a highly cross-linked polyviologen film. J. Electroanal. Chem. 1999, 473, 145-155.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔