|
[1] Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2-18. [2] Monk, P.; Mortimer, R.; Rosseinsky, D. Electrochromism and Electrochromic Devices, Cambridge University Press: New York, USA, 2007; Chapter 1, p 1-18. [3] Chang, T.-H.; Hu, C.-W.; Kao, S.-Y.; Kung, C.-W.; Chen, H.-W.; Ho, K.-C. An all-organic solid-state electrochromic device containing poly(vinylidene fluoride-co-hexafluoropropylene), succinonitrile, and ionic liquid. Sol. Energy Mater. Sol. Cells 2015, 143, 606-612. [4] Lu, H.-C.; Kao, S.-Y.; Chang, T.-H.; Kung, C.-W.; Ho, K.-C. An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene. Sol. Energy Mater. Sol. Cells 2016, 147, 75-84. [5] Dmitrieva, E.; Rosenkranz, M.; Alesanco, Y.; Viñuales, A. The reduction mechanism of p-cyanophenylviologen in PVA-borax gel polyelectrolyte-based bicolor electrochromic devices. Electrochim. Acta 2018, 292, 81-87. [6] Zhu, C.-R.; Long, J.-F.; Tang, Q.; Gong, C.-B.; Fu, X.-K. Multi-colored electrochromic devices based on mixed mono- and bi-substituted 4,4′-bipyridine derivatives containing an ester group. J. Appl. Electrochem. 2018, 48, 1121-1129. [7] Kao, S. Y.; Lu, H. C.; Kung, C. W.; Chen, H. W.; Chang, T. H.; Ho, K. C. Thermally cured dual functional viologen-based all-in-one electrochromic devices with panchromatic modulation. ACS Appl. Mater. Interfaces 2016, 8, 4175-4184. [8] Guerfi, A.; Dao, L. H. Electrochromic molybdenum oxide thin films prepared by electrodeposition. J. Electrochem. Soc. 1989, 136, 2435-2436. [9] Granqvist, C. G. Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 2000, 60, 201-262. [10] Yin, Y.; Lan, C.; Guo, H.; Li, C. Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices. ACS Appl. Mater. Interfaces 2016, 8, 3861-3867. [11] Dong, W.; Lv, Y.; Xiao, L.; Fan, Y.; Zhang, N.; Liu, X. Bifunctional MoO3-WO3/Ag/MoO3-WO3 films for efficient ITO-free electrochromic devices. ACS Appl. Mater. Interfaces 2016, 8, 33842-33847. [12] Li, H.; McRae, L.; Elezzabi, A. Y. Solution-processed interfacial PEDOT:PSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Appl. Mater. Interfaces 2018, 10, 10520-10527. [13] Cheng, K.-C.; Chen, F.-R.; Kai, J.-J. Electrochromic property of nano-composite Prussian blue based thin film. Electrochim. Acta 2007, 52, 3330-3335. [14] Itaya, K.; Shibayama, K.; Akahoshi, H.; Toshima, S. Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device. J. Appl. Phys. 1982, 53, 804-805. [15] Mortimer, R. J.; Rosseinsky, D. R.; Monk, P. M. Electrochromic Materials and Devices, Wiley-VCH: Weinheim, Germany, 2015; Chapter 2, p 41-56. [16] Jelle, B. P.; Hagen, G. Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. J. Electrochem. Soc. 1993, 140, 3560-3564. [17] Kholmanov, I. N.; Domingues, S. H.; Chou, H.; Wang, X.; Tan, C.; Kim, J. Y.; Li, H.; Piner, R.; Zarbin, A. J. G.; Ruoff, R. S. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano 2013, 7, 1811-1816. [18] Schmidt, A.; Husmann, S.; Zarbin, A. J. G. Carbon nanotube thin films modified with a mixture of Prussian blue and ruthenium purple: Combining materials and properties. J. Solid State Electrochem. 2018, 22, 2003-2012. [19] Yu, Z.; Cai, G.; Ren, R.; Tang, D. A new enzyme immunoassay for alpha-fetoprotein in a separate setup coupling an aluminium/Prussian blue-based self-powered electrochromic display with a digital multimeter readout. Analyst 2018, 143, 2992-2996. [20] Gelinas, B.; Das, D.; Rochefort, D. Air-stable, self-bleaching electrochromic device based on viologen- and ferrocene-containing triflimide redox ionic liquids. ACS Appl. Mater. Interfaces 2017, 9, 28726-28736. [21] Sydam, R.; Ghosh, A.; Deepa, M. Enhanced electrochromic write–erase efficiency of a device with a novel viologen: 1,1′-bis (2-(1H-indol-3-yl)ethyl)-4,4′-bipyridinium diperchlorate. Org. Electron. 2015, 17, 33-43. [22] Yun, T. Y.; Moon, H. C. Highly stable ion gel-based electrochromic devices: Effects of molecular structure and concentration of electrochromic chromophores. Org. Electron. 2018, 56, 178-185. [23] Mortimer, R. J. Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971-2981. [24] Pittelli, S. L.; Shen, D. E.; Österholm, A. M.; Reynolds, J. R. Chemical oxidation of polymer electrodes for redox active devices: Stabilization through interfacial interactions. ACS Appl. Mater. Interfaces 2018, 10, 970-978. [25] Kim, D.; Kim, J.; Ko, Y.; Shim, K.; Kim, J. H.; You, J. A facile approach for constructing conductive polymer patterns for application in electrochromic devices and flexible microelectrodes. ACS Appl. Mater. Interfaces 2016, 8, 33175-33182. [26] Kai, H.; Suda, W.; Ogawa, Y.; Nagamine, K.; Nishizawa, M. Intrinsically stretchable electrochromic display by a composite film of poly(3,4-ethylenedioxythiophene) and polyurethane. ACS Appl. Mater. Interfaces 2017, 9, 19513-19518. [27] Dyer, A. L.; Thompson, E. J.; Reynolds, J. R. Completing the color palette with spray-processable polymer electrochromics. ACS Appl. Mater. Interfaces 2011, 3, 1787-1795. [28] Silva, A. J. C.; Ferreira, S. M.; Santos, D. d. P.; Navarro, M.; Tonholo, J.; Ribeiro, A. S. A multielectrochromic copolymer based on pyrrole and thiophene derivatives. Sol. Energy Mater. Sol. Cells 2012, 103, 108-113. [29] Hu, C. W.; Sato, T.; Zhang, J.; Moriyama, S.; Higuchi, M. Three-dimensional Fe(II)-based metallo-supramolecular polymers with electrochromic properties of quick switching, large contrast, and high coloration efficiency. ACS Appl. Mater. Interfaces 2014, 6, 9118-9125. [30] Hsu, C. Y.; Zhang, J.; Sato, T.; Moriyama, S.; Higuchi, M. Black-to-transmissive electrochromism with visible-to-near-infrared switching of a Co(II)-based metallo-supramolecular polymer for smart window and digital signage applications. ACS Appl. Mater. Interfaces 2015, 7, 18266-18272. [31] Eguchi, M.; Momotake, M.; Inoue, F.; Oshima, T.; Maeda, K.; Higuchi, M. Inert layered silicate improves the electrochemical responses of a metal complex polymer. ACS Appl. Mater. Interfaces 2017, 9, 35498-35503. [32] Işık Büyükekşi, S.; Orman, E. B.; Acar, N.; Altındal, A.; Özkaya, A. R.; Şengül, A. Electrochemical, photovoltaic and DFT studies on hybrid materials based on supramolecular self-assembly of a ditopic twisted perylene diimide with square-planar platinum(II)- and/or palladium(II)-2,2′:6′,2″-terpyridyl complex ions. Dyes Pigments 2019, 161, 66-78. [33] Deb, S. K. A novel electrophotographic system. Appl. Opt. 1969, 8, 192-195. [34] Cannistraro, M.; Castelluccio, M. E.; Germanò, D. New sol-gel deposition technique in the smart-windows – Computation of possible applications of smart-windows in buildings. J. Building Eng. 2018, 19, 295-301. [35] Wang, W. Q.; Wang, X. L.; Xia, X. H.; Yao, Z. J.; Zhong, Y.; Tu, J. P. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window. Nanoscale 2018, 10, 8162-8169. [36] Kao, S.-Y.; Lin, Y.-S.; Chin, K.; Hu, C.-W.; Leung, M.-k.; Ho, K.-C. High contrast and low-driving voltage electrochromic device containing triphenylamine dendritic polymer and zinc hexacyanoferrate. Sol. Energy Mater. Sol. Cells 2014, 125, 261-267. [37] Lu, H. C.; Kao, S. Y.; Yu, H. F.; Chang, T. H.; Kung, C. W.; Ho, K. C. Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids. ACS Appl. Mater. Interfaces 2016, 8, 30351-30361. [38] Alesanco, Y.; Vinuales, A.; Palenzuela, J.; Odriozola, I.; Cabanero, G.; Rodriguez, J.; Tena-Zaera, R. Multicolor electrochromics: Rainbow-like devices. ACS Appl. Mater. Interfaces 2016, 8, 14795-14801. [39] Barile, C. J.; Slotcavage, D. J.; Hou, J.; Strand, M. T.; Hernandez, T. S.; McGehee, M. D. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 2017, 1, 133-145. [40] Byker, H. J. Electrochromics and polymers. Electrochim. Acta 2001, 46, 2015-2022. [41] He, J.; Mukherjee, S.; Zhu, X.; You, L.; Boudouris, B. W.; Mei, J. Highly transparent crosslinkable radical copolymer thin film as the ion storage layer in organic electrochromic devices. ACS Appl. Mater. Interfaces 2018, 10, 18956-18963. [42] Lampert, C. M. Large-area smart glass and integrated photovoltaics. Sol. Energy Mater. Sol. Cells 2003, 76, 489-499. [43] Monk, P. M.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism: Fundamentals and Applications, Wiley-VCH: Weinheim, Germany, 2008; Chapter 1, p 3-18. [44] Bechtel, J. H.; Byker, H. J., Automatic rearview mirror system for automotive vehicles. Google Patents: 1990. [45] Dürr, H.; Bouas-Laurent, H. Photochromism: Molecules and Systems, Elsevier: New York, USA, 2003; Chapter 1, p 1-25. [46] Cheng, Y.; Zhang, X.; Fang, C.; Chen, J.; Wang, Z. Discoloration mechanism, structures and recent applications of thermochromic materials via different methods: A review. J. Mater. Sci. Technol. 2018, 34, 2225-2234. [47] Mortimer, R. J.; Rosseinsky, D. R.; Monk, P. M. Electrochromic Materials and Devices, Wiley-VCH: Weinheim, Germany, 2015; Appendix, p 623-624. [48] Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat. Mater. 2008, 7, 795-9. [49] Honda, K.; Fujita, M.; Ishida, H.; Yamamoto, R.; Ohgaki, K. Solid‐state electrochromic devices composed of Prussian blue, WO3, and poly(ethylene oxide)‐polysiloxane hybrid‐type ionic conducting membrane. J. Electrochem. Soc. 1988, 135, 3151-3154. [50] Garino, N.; Zanarini, S.; Bodoardo, S.; Nair, J.; Pereira, S.; Pereira, L.; Martins, R.; Fortunato, E.; Penazzi, N. Fast switching electrochromic devices containing optimized BEMA/PEGMA gel polymer electrolytes. Int. J. Electrochem. 2013, 2013, 1-10. [51] Cummins, D.; Boschloo, G.; Ryan, M.; Corr, D.; Rao, S. N.; Fitzmaurice, D. Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J. Phys. Chem. B 2000, 104, 11449-11459. [52] Shin, H.; Kim, Y.; Bhuvana, T.; Lee, J.; Yang, X.; Park, C.; Kim, E. Color combination of conductive polymers for black electrochromism. ACS Appl. Mater. Interfaces 2011, 4, 185-191. [53] Chandrasekhar, P. Conducting Polymers, Fundamentals and Applications: A Practical Approach, Kluwer Academic: New York, USA, 2017; Chapter 3, p 43-76. [54] Ah, C. S.; Song, J.; Cho, S. M.; Kim, T. Y.; Kim, H. N.; Oh, J. Y.; Chu, H. Y.; Ryu, H. Double‐layered black electrochromic device with a single electrode and long‐term bistability. Bull. Korean Chem. Soc. 2015, 36, 548-552. [55] Alesanco, Y.; Vinuales, A.; Cabanero, G.; Rodriguez, J.; Tena-Zaera, R. Colorless to neutral color electrochromic devices based on asymmetric viologens. ACS Appl. Mater. Interfaces 2016, 8, 29619-29627. [56] Alesanco, Y.; Viñuales, A.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Colorless-to-black/gray electrochromic devices based on single 1-alkyl-1′-aryl asymmetric viologen-modified monolayered electrodes. Adv. Optical Mater. 2017, 5, 1600989. [57] Hassab, S.; Shen, D. E.; Ӧsterholm, A. M.; Da Rocha, M.; Song, G.; Alesanco, Y.; Viñuales, A.; Rougier, A.; Reynolds, J. R.; Padilla, J. A new standard method to calculate electrochromic switching time. Sol. Energy Mater. Sol. Cells 2018, 185, 54-60. [58] Argun, A. A.; Aubert, P.-H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Multicolored electrochromism in polymers: Structures and devices. Chem. Mater. 2004, 16, 4401-4412. [59] Cinnsealach, R.; Boschloo, G.; Rao, S. N.; Fitzmaurice, D. Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores. Sol. Energy Mater. Sol. Cells 1999, 57, 107-125. [60] Kao, S.-Y.; Kung, C.-W.; Chen, H.-W.; Hu, C.-W.; Ho, K.-C. An electrochromic device based on all-in-one polymer gel through in-situ thermal polymerization. Sol. Energy Mater. Sol. Cells 2016, 145, 61-68. [61] Dyer, A. L.; Grenier, C. R. G.; Reynolds, J. R. A poly(3,4‐alkylenedioxythiophene) electrochromic variable optical attenuator with near‐infrared reflectivity tuned independently of the visible region. Adv. Funct. Mater. 2007, 17, 1480-1486. [62] Grange, C. S.; Meijer, A. J. H. M.; Ward, M. D. Trinuclear ruthenium dioxolene complexes based on the bridging ligand hexahydroxytriphenylene: Electrochemistry, spectroscopy, and near-infrared electrochromic behaviour associated with a reversible seven-membered redox chain. Dalton T. 2010, 39, 200-211. [63] Rose, T.; D''Antonio, S.; Jillson, M.; Kon, A.; Suresh, R.; Wang, F. A microwave shutter using conductive polymers. Synth. Met. 1997, 85, 1439-1440. [64] Chang, I.; Gilbert, B.; Sun, T. Electrochemichromic systems for display applications. J. Electrochem. Soc. 1975, 122, 955-962. [65] Mortimer, R. J. Electrochromic materials. Annu. Rev. Mater. Res. 2011, 41, 241-268. [66] Granqvist, C. G. Handbook of inorganic electrochromic materials, Elsevier: New York, USA, 1995; Chapter 1, p 1-13. [67] Niklasson, G. A.; Granqvist, C. G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127-156. [68] Granqvist, C. G. Oxide electrochromics: Why, how, and whither. Sol. Energy Mater. Sol. Cells 2008, 92, 203-208. [69] Estrada, W.; Andersson, A. M.; Granqvist, C. G. Electrochromic nickel‐oxide‐based coatings made by reactive dc magnetron sputtering: Preparation and optical properties. J. Appl. Phys. 1988, 64, 3678-3683. [70] Zhang, J.; Tu, J.; Xia, X.; Qiao, Y.; Lu, Y. An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte. Sol. Energy Mater. Sol. Cells 2009, 93, 1840-1845. [71] Lin, F.; Cheng, J.; Engtrakul, C.; Dillon, A. C.; Nordlund, D.; Moore, R. G.; Weng, T.-C.; Williams, S.; Richards, R. M. In situ crystallization of high performing WO3-based electrochromic materials and the importance for durability and switching kinetics. J. Mater. Chem. 2012, 22, 16817-16823. [72] Kraft, A. On the discovery and history of Prussian blue. Bull. Hist. Chem. 2008, 33, 61-67. [73] Robin, M. B. The color and electronic configurations of Prussian blue. Inorg. Chem. Commun. 1962, 1, 337-342. [74] Neff, V. D. Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 1978, 125, 886-887. [75] Honda, K.; Ochiai, J.; Hayashi, H. Polymerization of transition metal complexes in solid polymer electrolytes. J. Chem. Soc., Chem. Commun. 1986, 168-170. [76] Carpenter, M. K.; Conell, R. S. A single‐film electrochromic device. J. Electrochem. Soc. 1990, 137, 2464-2467. [77] Itaya, K.; Uchida, I.; Neff, V. D. Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 1986, 19, 162-168. [78] Itaya, K.; Ataka, T.; Toshima, S. Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc. 1982, 104, 4767-4772. [79] Mortimer, R. J.; Rosseinsky, D. R. Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide. J. Electroanal. Chem. 1983, 151, 133-147. [80] Mortimer, R. J.; Rosseinsky, D. R. Iron hexacyanoferrate films: Spectroelectrochemical distinction and electrodeposition sequence of ''soluble'' (K+-containing) and ''insoluble'' (K+-free) Prussian blue, and composition changes in polyelectrochromic switching. J. Chem. Soc., Dalton Trans. 1984, 2059-2062. [81] Husmann, S.; Zarbin, A. J. Multifunctional carbon nanotubes/ruthenium purple thin films: Preparation, characterization and study of application as sensors and electrochromic materials. Dalton T. 2015, 44, 5985-5995. [82] Kulesza, P. J.; Malik, M. A.; Skorek, J.; Miecznikowski, K.; Zamponi, S.; Berrettoni, M.; Giorgetti, M.; Marassi, R. Hybrid metal cyanometallates electrochemical charging and spectrochemical identity of heteronuclear nickel/cobalt hexacyanoferrate. J. Electrochem. Soc. 1999, 146, 3757-3761. [83] Baioni, A. P.; Vidotti, M.; Fiorito, P. A.; Ponzio, E.; Córdoba de Torresi, S. I. Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes. Langmuir 2007, 23, 6796-6800. [84] Ho, K. C.; Chen, J. C. Spectroelectrochemical studies of indium hexacyanoferrate electrodes prepared by the sacrificial anode method. J. Electrochem. Soc. 1998, 145, 2334-2340. [85] Lee, K.-M.; Tanaka, H.; Takahashi, A.; Kim, K. H.; Kawamura, M.; Abe, Y.; Kawamoto, T. Accelerated coloration of electrochromic device with the counter electrode of nanoparticulate Prussian blue-type complexes. Electrochim. Acta 2015, 163, 288-295. [86] Tsiafoulis, C. G.; Trikalitis, P. N.; Prodromidis, M. I. Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochem. Commun. 2005, 7, 1398-1404. [87] Song, Y.; He, J.; Wu, H.; Li, X.; Yu, J.; Zhang, Y.; Wang, L. Preparation of porous hollow CoOx nanocubes via chemical etching Prussian blue analogue for glucose sensing. Electrochim. Acta 2015, 182, 165-172. [88] Hu, L.; Zhang, P.; Chen, Q.; Zhong, H.; Hu, X.; Zheng, X.; Wang, Y.; Yan, N. Morphology-controllable synthesis of metal organic framework Cd3[Co(CN)6]2·nH2O nanostructures for hydrogen storage applications. Cryst. Growth Des. 2012, 12, 2257-2264. [89] Kong, B.; Selomulya, C.; Zheng, G.; Zhao, D. New faces of porous Prussian blue: Interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 2015, 44, 7997-8018. [90] Luangdilok, C. H.; Arent, D. J.; Bocarsly, A. B.; Wood, R. Investigation of the structure-reactivity relationship in the platinum/metal cadmium hexacyanoferrate (Pt/MxCdFe(CN)6)-modified electrode system. Langmuir 1992, 8, 650-657. [91] Bharathi, S.; Joseph, J.; Jeyakumar, D.; Rao, G. P. Modified electrodes with mixed metal hexacyanoferrates. J. Electroanal. Chem. 1992, 332, 371. [92] Dong, S.; Jin, Z. Molybdenum hexacyanoferrate film modified electrodes. J. Electroanal. Chem. 1988, 256, 193-198. [93] Liu, S.; Li, H.; Jiang, M.; Li, P. Platinum hexacyanoferrate: A novel Prussian blue analogue with stable electroactive properties. J. Electroanal. Chem. 1997, 426, 27-30. [94] Jiang, M.; Zhou, X.; Zhao, Z. Preparation and characterization of mixed-valent titanium hexacyanoferrate film modified glassy carbon electrode. J. Electrochem. Soc. 1990, 292, 289-296. [95] Kurth, D. G.; López, J. P.; Dong, W.-F. A new Co(II)-metalloviologen-based electrochromic material integrated in thin multilayer films. Chem. Commun. 2005, 2119-2121. [96] Higuchi, M. Stimuli-responsive metallo-supramolecular polymer films: Design, synthesis and device fabrication. J. Mater. Chem. C 2014, 2, 9331-9341. [97] Han, F. S.; Higuchi, M.; Kurth, D. G. Metallo‐supramolecular polymers based on functionalized bis‐terpyridines as novel electrochromic materials. Adv. Mater. 2007, 19, 3928-3931. [98] Han, F. S.; Higuchi, M.; Kurth, D. G. Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: Photophysical, electrochemical, and electrochromic properties. J. Am. Chem. Soc. 2008, 130, 2073-2081. [99] Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4‐ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 2000, 12, 481-494. [100] Reynolds, J. R.; Sundaresan, N.; Pomerantz, M.; Basak, S.; Baker, C. K. Self-doped conducting copolymers: A charge and mass transport study of poly{pyrrole-co-[3-(pyrrol-1-yl)propanesulfonate]}. J. Electroanal. Chem. 1988, 250, 355-371. [101] Wang, J.-Y.; Yu, C.-M.; Hwang, S.-C.; Ho, K.-C.; Chen, L.-C. Influence of coloring voltage on the optical performance and cycling stability of a polyaniline–indium hexacyanoferrate electrochromic system. Sol. Energy Mater. Sol. Cells 2008, 92, 112-119. [102] Lin, T.-H.; Ho, K.-C. A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene). Sol. Energy Mater. Sol. Cells 2006, 90, 506-520. [103] Ahuja, T.; Mir, I. A.; Kumar, D. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 2007, 28, 791-805. [104] Wang, K.; Meng, Q.; Zhang, Y.; Wei, Z.; Miao, M. High‐performance two‐ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 2013, 25, 1494-1498. [105] Bien, H. S.; Stawitz, J.; Wunderlich, K. Anthraquinone dyes and intermediates. Ullmann''s Ency. Ind. Chem. 2000, 3, 514-573. [106] Van Uitert, L. G.; Zydzik, G. J.; Singh, S.; Camlibel, I. Anthraquinoide red display cells. Appl. Phys. Lett. 1980, 36, 109-111. [107] Song, Z.; Zhan, H.; Zhou, Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem. Commun. (Camb.) 2009, 448-450. [108] Hsiao, S.-H.; Lin, J.-Y. Synthesis and electrochromic properties of novel aromatic fluorinated poly(ether-imide)s bearing anthraquinone units. J. Fluorine Chem. 2015, 178, 115-130. [109] Sharmoukh, W.; Ko, K. C.; Ko, J. H.; Jung, I. G.; Noh, C.; Lee, J. Y.; Son, S. U. Designed synthesis of ferrocenylanthraquinones and their bifunctional electrochromic properties. Org. Lett. 2010, 12, 3226-3229. [110] Michaelis, L.; Hill, E. S. The viologen indicators. J. Gen. Physiol. 1933, 16, 859. [111] Moon, H. C.; Lodge, T. P.; Frisbie, C. D. Solution processable, electrochromic ion gels for sub-1 V, flexible displays on plastic. Chem. Mater. 2015, 27, 1420-1425. [112] Paul, M. Evidence for the product of the viologen comproportionation reaction being a spin-paired radical cation dimer. J. Chem. Soc. Perk. Trans. 2 1992, 2, 2039-2041. [113] Moon, H. C.; Kim, C. H.; Lodge, T. P.; Frisbie, C. D. Multicolored, low-power, flexible electrochromic devices based on ion gels. ACS Appl. Mater. Interfaces 2016, 8, 6252-6260. [114] Belinko, K. Electrochemical studies of the viologen system for display applications. Appl. Phys. Lett. 1976, 29, 363-365. [115] Ho, K. C.; Rukavina, T. G.; Greenberg, C. B. Tungsten oxide‐Prussian blue electrochromic system based on a proton‐conducting polymer electrolyte. J. Electrochem. Soc. 1994, 141, 2061-2067. [116] Cai, G.; Darmawan, P.; Cui, M.; Wang, J.; Chen, J.; Magdassi, S.; Lee, P. S. Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 2016, 6, 1501882. [117] Layani, M.; Kamyshny, A.; Magdassi, S. Transparent conductors composed of nanomaterials. Nanoscale 2014, 6, 5581-5591. [118] Green, S.; Backholm, J.; Georén, P.; Granqvist, C.-G.; Niklasson, G. Electrochromism in nickel oxide and tungsten oxide thin films: Ion intercalation from different electrolytes. Sol. Energy Mater. Sol. Cells 2009, 93, 2050-2055. [119] Hu, C.-W.; Lee, K.-M.; Huang, J.-H.; Hsu, C.-Y.; Kuo, T.-H.; Yang, D.-J.; Ho, K.-C. Incorporation of a stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in an electrochromic device. Sol. Energy Mater. Sol. Cells 2009, 93, 2102-2107. [120] Ho, K.-C.; Fang, Y.-W.; Hsu, Y.-C.; Chen, L.-C. The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD. Solid State Ionics 2003, 165, 279-287. [121] Chidichimo, G.; Imbardelli, D.; De Simone, B. C.; Barone, P.; Barberio, M.; Bonanno, A.; Camarca, M.; Oliva, A. Spectroscopic and kinetic investigation of ethyl viologen reduction in novel electrochromic plastic films. J. Phys. Chem. C 2010, 114, 16700-16705. [122] Lin, C.-F.; Hsu, C.-Y.; Lo, H.-C.; Lin, C.-L.; Chen, L.-C.; Ho, K.-C. A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution. Sol. Energy Mater. Sol. Cells 2011, 95, 3074-3080. [123] Watanabe, Y.; Imaizumi, K.; Nakamura, K.; Kobayashi, N. Effect of counter electrode reaction on coloration properties of phthalate-based electrochromic cell. Sol. Energy Mater. Sol. Cells 2012, 99, 88-94. [124] Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman, D.; Stocking, A. Organic electroluminescent devices. Science 1996, 273, 884-888. [125] Argun, A. A.; Reynolds, J. R. Line patterning for flexible and laterally configured electrochromic devices. J. Mater. Chem. 2005, 15, 1793-1800. [126] Ma, C.; Taya, M.; Xu, C. Smart sunglasses based on electrochromic polymers. Polym. Eng. Sci. 2008, 48, 2224-2228. [127] Azens, A.; Avendano, E.; Backholm, J.; Berggren, L.; Gustavsson, G.; Karmhag, R.; Niklasson, G.; Roos, A.; Granqvist, C. Flexible foils with electrochromic coatings: Science, technology and applications. Mater. Sci. Eng., B 2005, 119, 214-223. [128] Oh, H.; Seo, D. G.; Yun, T. Y.; Lee, S. B.; Moon, H. C. Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability. Org. Electron. 2017, 51, 490-495. [129] Seo, D. G.; Moon, H. C. Mechanically robust, highly ionic conductive gels based on random copolymers for bending durable electrochemical devices. Adv. Funct. Mater. 2018, 28, 1706948. [130] Hsiao, S.-H.; Kung, Y.-R. Synthesis and properties of new aromatic polyimides containing redox-active anthraquinone moieties. Polym. Int. 2013, 62, 573-580. [131] Batista, R. M. F.; Oliveira, E.; Costa, S. P. G.; Lodeiro, C.; Raposo, M. M. M. Synthesis and ion sensing properties of new colorimetric and fluorimetric chemosensors based on bithienyl-imidazo-anthraquinone chromophores. Org. Lett. 2007, 9, 3201-3204. [132] Hsiao, S.-H.; Lin, J.-Y. Electrosynthesis of ambipolar electrochromic polymer films from anthraquinone-triarylamine hybrids. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 644-655. [133] Lee, C.; Lee, Y. M.; Moon, M. S.; Park, S. H.; Park, J. W.; Kim, K. G.; Jeon, S.-J. UV-vis-NIR and Raman spectroelectrochemical studies on viologen cation radicals: Evidence for the presence of various types of aggregate species. J. Electroanal. Chem. 1996, 416, 139-144. [134] Lee, C.; Moon, M. S.; Park, J. W. Spectroelectrochemical study on monomer/dimer equilibria of methylalkylviologen cation radicals with and without α-cyclodextrin. J. Electroanal. Chem. 1996, 407, 161-167. [135] Lu, T.; Cotton, T. M.; Hurst, J. K.; Thompson, D. H. A Raman and surface-enhanced Raman study of asymmetrically substituted viologens. J. Phys. Chem. 1988, 92, 6978-6985. [136] Misono, Y.; Shibasaki, K.; Yamasawa, N.; Mineo, Y.; Itoh, K. Time-resolved resonance Raman and surface-enhanced resonance Raman scattering study on monocation radical formation processes of heptylviologen at silver electrode surfaces. J. Phys. Chem. 1993, 97, 6054-6059. [137] Papadakis, R.; Deligkiozi, I.; Tsolomitis, A. Synthesis and characterization of a group of new medium responsive non-symmetric viologens. Chromotropism and structural effects. Dyes Pigments 2012, 95, 478-484. [138] Alesanco, Y.; Viñuales, A.; Ugalde, J.; Azaceta, E.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Consecutive anchoring of symmetric viologens: Electrochromic devices providing colorless to neutral-color switching. Sol. Energy Mater. Sol. Cells 2017, 177, 110-119. [139] Chang, T.-H.; Lu, H.-C.; Lee, M.-H.; Kao, S.-Y.; Ho, K.-C. Multi-color electrochromic devices based on phenyl and heptyl viologens immobilized with UV-cured polymer electrolyte. Sol. Energy Mater. Sol. Cells 2017, 177, 75-81. [140] Susan, M. A. B. H.; Tani, K.; Watanabe, M. Surface activity and redox behavior of nonionic surfactants containing an anthraquinone group as the redox-active site. Colloid. Polym. Sci. 1999, 277, 1125-1133. [141] Kawai, T.; Oyaizu, K.; Nishide, H. High-density and robust charge storage with poly(anthraquinone-substituted norbornene) for organic electrode-active materials in polymer–air secondary batteries. Macromolecules 2015, 48, 2429-2434. [142] Fan, M.-S.; Kao, S.-Y.; Chang, T.-H.; Vittal, R.; Ho, K.-C. A high contrast solid-state electrochromic device based on nano-structural Prussian blue and poly(butyl viologen) thin films. Sol. Energy Mater. Sol. Cells 2016, 145, 35-41. [143] Monk, P. M. S. The effect of ferrocyanide on the performance of heptyl viologen-based electrochromic display devices. J. Electroanal. Chem. 1997, 432, 175-179. [144] El-Shafei, A. A. Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J. Electroanal. Chem. 1999, 471, 89-95. [145] Bard, A. J.; Faulkner, L. R. Electrochemical methods: Fundamentals and applications, John Wiley & Sons New York, USA, 2001; Chapter 5, p 161-164. [146] Monk, P. The Viologens: Synthesis, Physicochemical Properties and Applications of the Salts of 4, 4′-Bipyridine, John Wiley & Sons: New York, USA, 1998; Chapter 1, p 1-20. [147] Li, S.; Purdy, W. C. Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 1992, 92, 1457-1470. [148] Yasuda, A.; Kondo, H.; Itabashi, M.; Seto, J. Structure changes of viologen + β-cyclodextrin inclusion complex corresponding to the redox state of viologen. J. Electroanal. Chem. 1986, 210, 265-275. [149] Yasuda, A.; Mori, H.; Seto, J. Electrochromic properties of alkylviologen-cyclodextrin systems. J. Appl. Electrochem. 1987, 17, 567-573. [150] Forster, M.; Girling, R.; Hester, R. Infrared, Raman and resonance Raman investigations of methylviologen and its radical cation. J. Raman Spectrosc. 1982, 12, 36-48. [151] Ohsawa, M.; Nishijima, K.; Suëtaka, W. Potential modulation Raman spectroscopy for in situ observation of electrode/electrolyte interface. Surf. Sci. 1981, 104, 270-281. [152] Kamata, K.; Suzuki, T.; Kawai, T.; Iyoda, T. Voltammetric anion recognition by a highly cross-linked polyviologen film. J. Electroanal. Chem. 1999, 473, 145-155.
|