(3.238.7.202) 您好!臺灣時間:2021/03/03 23:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳炳翰
研究生(外文):Ping-Han Wu
論文名稱:低介電常數與低消散因子感光聚醯亞胺之合成鑑定
論文名稱(外文):Synthesis of Photosensitive Polyimide with Low Dielectric Constant and Low Dissipation Factor
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
口試委員:郭霽慶蔡榮訓蘇鴻文
口試委員(外文):Chi-Ching KuoJung-Hsun TsaiHong-Wen Su
口試日期:2019-03-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:128
中文關鍵詞:感光聚醯亞胺高頻應用低介電常數低消散因子軟性印刷電路板(阻焊)覆蓋層網版印刷
DOI:10.6342/NTU201900703
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,聚醯亞胺在軟性印刷電路板領域中已引起許多關注,它因為良好的熱穩定性、抗化學溶劑腐蝕性以及良好的機械性質而能夠被用於印刷電路板的基板或覆蓋。但在傳統的聚醯亞胺圖案化過程較為繁雜,因此我們需要引入新穎感光壓克力交聯系統,透過負型光阻的模式來幫助顯影成像。另一方面在高頻傳輸是一個十分重要的領域,而當中有個最嚴重的問題便是高頻傳輸下的訊號遺失及能量損耗,所以我們需要引入具有較低介電常數與消散因子的單體來合成聚醯亞胺,傳統的芳香環聚醯亞胺介電常數多高於3.5,消散因子則高於0.02 (於一兆赫茲頻譜),此一數值是無法應用於新穎的商業化高頻傳輸材料當中的,因此著實需要開發低介電常數與消散因子的聚醯亞胺材料。
本研究第二章,我們成功引入含氟原子的基團於聚醯亞胺高分子中,透過C-F鍵結極低的極化率使得電子在特定電場中並不會過度震盪導致訊號損失而能降低介電常數與消散因子,我們也比較不同的商品化二酐及二胺,透過位置與鍊段長度的不同最適化出最佳性質的聚醯亞胺,此一系統的介電常數最低可降至2.5以下,且消散因子能降至0.005~0.008(於一兆赫茲頻譜)。並且我們發現到降低了介電常數與消散因子的聚醯亞胺在熱穩定性質與機械強度上仍可以維持與傳統聚醯亞胺相近的數值,感光性方面解析度約為50微米左右。
本研究第三章,透過合成引入高立障之二胺單體增加整體結構的自由體積,使得空氣部分在整體高分子中佔有更多的比例,空氣的介電常數為1,因此可以透過增加自由體積來達到降低介電常數與消散因子的目的。不過本方法也有一個新的難題在於雖可降低介電常數至2.8、消散因子0.01,但立體障礙過大的分子使得反應性較差且成膜性不佳,讓我們在製膜應用上遇到極大的阻礙,因此仍需要混入其他單體提升反應性,使成膜性得到強化。
本研究第四章,透過混摻我們的聚醯胺酸(聚醯亞胺前驅物)至一些填充物以及染劑中,我們將高分子製成油墨配方,以工業用網版印刷將其覆蓋於電路板上進行測試,檢測其是否易於處理操作,結果顯示做成油墨配方的高分子仍然具有相當的熱穩定性與機械性質,且介電性質仍在一定的範圍內,而這個油墨配方也能夠完美的進行感光顯影,讓整個印刷電路板的製程能夠更簡便、更實惠。
In modern days, photosensitive polyimides (PSPIs) have been attracting great attention in flexible printed circuit (FPC) industry. Polyimide can be used as a substrate or cover layer due to its’ high thermal stability, high chemical resistance, and excellent mechanical properties. However, it is difficult to make pattern on a printed circuit, so we introduce acrylate cross-linker to get a negative-working patterns formation. On the other hands, for the future printed circuit with higher transmission frequency, some problems must be overcome. The signal loss under high frequency transmission is the main purpose of introducing monomers with low dielectric constant (Dk) and low dissipation factor (Df). Conventional polyimides with aromatic rings usually give more than 3.5 dielectric constant and 0.02 dissipation factor (@10G Hz).
In chapter 2, we successfully introduce fluorinated group in the polymer chain. Due to the low polarizability of a carbon-fluorine bond, we minimize the electrons oscillation under a specific electric field. We compare different commercialized fluorinated dianhydrides and diamine to optimize the properties of the polyimide film. The polyimide film we made shows great dielectric constant around 2.5 and dissipation factor around 0.005~0.008 (10G Hz). On the other hands, thermal properties and mechanical properties remain the same as conventional polyimides with proper photosensitivity.
In chapter 3, we synthesize bulky diamine to increase the free volume in our system. By increasing the free volume, we can introduce more air in our polyimide chain. The dielectric constant of air is 1, so increasing air content can reduce the dielectric constant and dissipation factor. However, the bulky chain makes the free-standing film brittle. Although we can still reduce Dk and Df to around 2.8 and 0.01, the poor mechanical properties make it difficult for us to use as a printed circuit cover layer. We need to synthesis copolymer to strengthen film integrity.
In conclusion, we successfully synthesized some polyimides with enough low Dk, Df, and proper film properties. After blending our poly (amic acids) with some filler and dye to do ink test, we demonstrate the easy-processable characteristic of our polymer, we use industrialized screen printing process to test our polyimide ink film. The result shows great dielectric properties and mechanical properties, which is enough for applying in the flexible printed circuit cover layer (solder resist). These splendid polyimides can also combine with our acrylate photosensitive system, which makes the process easier, cheaper and can save more time in laminating layers on PCB.
Abstract I
摘要 III
Table Captions IX
Scheme Captions XI
Figure Captions XII
Chapter 1 1
1.1 General Introduction 1
1.2 Printed Circuit Board Materials 2
1.2.1 Electrical Considerations for Printed Circuit Board Materials 3
1.2.2 Other Requirements for Printed Circuit Board Materials 6
1.3 Classifications of Low Dielectric Constant and Low Dissipation Factor Materials 7
1.3.1 Polyimides 7
1.3.2 Poly (aryl ethers) 9
1.3.3 Poly (phenylene ethers) 10
1.3.4 Other Polymers and Chemicals 11
1.4 Photosensitive Polyimides in Printed Circuit Board Materials 12
1.4.1 Positive-Working Photosensitive Polyimides 14
1.4.2 Negative-Working Photosensitive Polyimides 17
1.4.3 Future Consideration of PSPIs 19
1.5 Research Objectives 20
Chapter 2 32
2.1 Introduction 32
2.2 Experimental Section 34
2.2.1 Materials 34
2.2.2 Synthesis of fluorinated poly (amic acid) 35
2.2.2.1 4,4-Oxydiphthalic anhydride (ODPA) series 35
2.2.2.2 4,4''-(Hexafluoroisopropylidene) diphthalic anhydride series 37
2.2.2.3 P-phenylenebis (trimellitate anhydride) (TAHQ) series 37
2.2.3 Photolithography procedure 38
2.2.4 Film preparation for dielectric properties and mechanical properties. 39
2.2.5 Other characterization 40
2.3 Results and Discussions 41
2.3.1 Chemical Structure Characterization 41
2.3.1.1 NMR and FTIR results of ODPA series 41
2.3.1.2 NMR and FTIR results of 6FDA series 42
2.3.1.1 NMR and FTIR results of TAHQ series 43
2.3.2 Thermal Properties 44
2.3.3 Film integrity and dielectric properties 46
2.3.4 Photolithography and solubility 48
2.4 Conclusions 49
Chapter 3 81
3.1 Introduction 81
3.2 Experimental Section 83
3.2.1 Materials 83
3.2.2 Synthesis of poly (amic acid) with bulky group. 85
3.2.2.1 Bulky diamine synthesis 85
3.2.2.2 Synthesis of poly (amic acid) with bulky group 86
3.2.3 Photolithography procedure 87
3.2.4 Film preparation for dielectric properties and mechanical properties. 88
3.2.5 Other characterization 89
3.3 Results and Discussions 90
3.3.1 Chemical Structure Characterization 90
3.3.2 Thermal Properties 91
3.3.3 Film integrity and dielectric properties 93
3.3.4 Photolithography and solubility 94
3.4 Conclusion 95
Chapter 4 118
4.1 Conclusion 118
4.2 Future Works 120
Reference 123
[1] Analog Devices Inc. Engineeri. Linear Circuit Design Handbook, 2011, 2nd ed., Burlington: Newnes.
[2] "Mass Production of FPCs with Conductive Paste Connection that Achieves Thinner Circuit Boards and Higher Density Circuit Patterns," Japan 2013.
[3] D. Lu, C.P Wong. Materials for Advanced Packaging, 2009, New York: Springer Science & Business Media
[4] S. Hall. IEEE Trans. Microw. Theory Tech. 2007, 55, 12
[5] C.K Hu. Mater. Res. Soc. Symp. Proc., 1998, 511, 305
[6] J. Nunoshige. Department of Electronic Materials and Devices Research, Hitachi Research Laboratory, Hitachi, Ltd., 2009.
[7] G. L. Johnson, Solid State Tesla Coil, 2001.
[8] Z. Ahmad, "Polymer Dielectric Materials," 2012.
[9] C.E. Sroog. Progr Polym Sci., 1991, 16, 561
[10] W. Volksen, R. D. Miller, and G. Dubois, "Low dielectric constant materials," Chem Rev, vol. 110, pp. 56-110, Jan 2010.
[11] Bei, Runxin," Journal of Materials Chemistry (2017): 12807-12815.
[12] Mousa Ghaemy, Farshad Rahimi Berenjestanaki. Design monomers and polymers 101-110 (2013)
[13] J. O. Simpson & A. K. St.Clair, "Fundamental insight on developing low dielectric constant polyimides," Thin Solid Films, vol. 308-309, pp. 480-485, 1997.
[14] W. Volksen. Adv. Polym. Sci., 1994, 117, 111
[15] W. Volksen, T. Pascal, J. Labadie, M. Sanchez. Polym. Mater. Sci. Engng., 1992, 66, 235
[16] S.T Chen. Mater Res. Soc. Symp. Proc., 1995, 381, 141
[17] M.K. Ghosh, K.L. Mittal. Polyimides: fundamentals and applications, 1996, New York: CRC Press
[18] J.R. Pratt, T.L. StClair, D.A. Blackwell, N.L. Alphin. Polym. Engng. Sci., 1989, 29, 63
[19] B. Sillion, G. Rabilloud, J. Garapon, O. Gain, J. Vallet. Mater Res. Soc. Symp. Proc., 1993, 381, 93
[20] D.W. Van Krevelen. Properties of polymers, 1990, 4th ed., New York: Elsevier
[21] B.C. Auman, D.P. Higley, K.V. Scherer. Polym. Prepr., 1993, 34, 389
[22] M. Yusa, S. Takeda, Y. Miyadera. Polym. Prepr. Jpn., 1990, 39, 897
[23] T. Matsuura, Y. Hasuda, S. Nishi, N. Yamada. Macromolecules, 1991, 24, 5001
[24] S. Ando, T. Matsuura, S. Nishi. Polymer, 1992, 33, 2934
[25] F.W. Harris, S.L.C Hsu. High Perform. Polym., 1989, 1, 1
[26] F.W. Harris, S.L.C Hsu, C.C Tso. Polym. Prepr., 1990, 33, 342
[27] F.W Harris, S.L.C Hsu, C.J Lee, B.S Lee, F. Arnold, S.Z.D Cheng. Mater Res. Soc. Symp. Proc., 1991, 227, 3
[28] G. Hougham, G. Tesoro. Polym. Mater Sci. Engng., 1989, 61, 369
[29] M.K. Gerber, J.R. Pratt, A.K. StClair, T.L. StClair. Polym. Prepr., 1990, 31, 340
[30] R.A. Buchanan, R.F. Mundhenke, H.C. Lin. Polym. Prepr., 1991, 32, 193
[31] A.C. Misra, G. Tesoro, G. Hougham, S.M. Pendarkar. Polymer, 1992, 33, 1078
[32] T. Matsuura, M. Ishizawa, Y. Hasuda, S. Nishi. Macromolecules, 1992, 25, 3540
[33] R. Reuter, H. Franke, C. Feger. Appl. Optics., 1988, 27, 4565
[34] C. Feger, M.M. Khojasteh, S. Htoo. Polyimide sci. and tech., 1993, 15
[35] M. Haider, E. Chenevey, R.H. Vora, W. Cooper, M. Glick, M. Jaffe. Mater Res. Soc. Symp. Proc., 1991, 227, 35
[36] K.R. Carter. Mater Res. Soc. Symp. Proc., 1997, 476, 87
[37] A.E. Feiring, B.C. Auman, E.R. Wonchoba. Macromolecules, 1993, 26, 2779
[38] C. Feger, M.M. Khojasteh, S. Htoo. Adv. in polyimi. Sci. and Tech., 1993, 33
[39] J. Pellerin, R. Fox, H.M. Ho. Mater Res. Soc. Symp. Proc., 1997, 476, 113
[40] A.J. McKerrow, C.N. Liao, H.C. Liou, P.S. Ho, J. Leu, B.C. Auman. Polym. Prepr., 1996, 37, 176
[41] N.H. Hendricks. Solid State Technol., 1995, 7, 117
[42] D. Towery, M.A. Fury. J Electron Mater., 1998, 27, 1088
[43] N.H. Hendricks, K.S.Y. Lau, A.R. Smith, W.B. Wan. Polym. Mater. Sci. Symp. Proc., 1995, 381, 59
[44] A.S. Hay, H.S. Blanchard, G.F. Endres, J.W. Eustance. Am. Chern. Soc., 1959, 81, 6335
[45] A.S. Hay, U.S. Paten No.3306875, 1967
[46] A.F. Yee. Polym. Eng. Sci., 1977, 17, 213
[47] S.T. Wellinghoff, E.J. Baer. Appl. Polym. Sci., 1978, 22, 2025
[48] A.S. Hay. J. Polym. Sci., 1962, 58, 581
[49] T. Fukuhara, Y. Shibasaki, S. Ando, M. Ueda. Polymer, 2004, 45, 843
[50] J. Nunoshige, H. Akahoshi, Y. Shibasaki, M. Ueda. Chem Lett, 2007, 36, 238
[51] S. Amou, S. Yamada, A. Takahashi, A. Nagai, M. Tomoi. J. Appl. Polym. Sci., 2004, 92, 1252
[52] J. Nunoshige, H. Akahoshi, Y. Liao, S. Horiuchi, Y. Shibasaki, M. Ueda. Polym. J., 2007, 39, 828
[53] D.W Fox. U.S Patent No. 3375298, 1968
[54] R. Sezi, A. Weber, M. Keitmann. Eur. Paten No. EP 905169, 1999
[55] Fukukawa, Ken-ichi, and Mitsuru Ueda. "Recent progress of photosensitive polyimides." Polymer Journal 40.4 (2008): 281.
[56] S. Kubota, T. Moriwaki, T. Ando, and A. Fukami, J. Appl. Polym. Sci., 33, 1763 (1987).
[57] S. MacDonald, C. G. Willson, and J. M. J. Fre´chet, Acc. Chem. Res.,27, 151 (1994).
[58] T. Yamaoka, H. Watanabe, K. Koseki, and T. Asano, J. Imaging Sci. Technol., 34, 50 (1990).
[59] T. Fukushima, T. Oyama, T. Iijima, M. Tomoi, and H. Itatani, J. Polym. Sci., Part A: Polym. Chem., 39, 3451 (2001).
[60] K. H. Chae, Macromol. Rapid Commun., 19, 1 (1998).
[61] Y. M. Jang, J. Y. Seo, K. H. Chae, and M. H. Yi, Macromol. Res., 14,300 (2006).
[62] J. C. Dubois and J. M. Bureau, M. J. M. Abadie and B. Sillion, Ed., Elsevier Science Publishers, Amsterdam, 1991, p 461.
[63] O. Rohde, P. Smolka, P. A. Falcigno, and J. Pfeifer, Polym. Eng. Sci., 32, 1623 (1992).
[64] Z. Tao, S. Yang, Z. Ge, J. Chen, and L. Fan. European Polymer Journal, vol. 43, pp. 550-560, 2007.
[65] Shigekuni Sasaki & Shiro Nishi, “Synthesis of fluorinated polyimides” Tokyo, Japan.
[66] C.P. Yang, S.H Hsiao. Polymer International, vol. 54, 716-724, 2005
[67] Wang Y.W, and W.C. Chen. Materials Chemistry and Physics126.1-2 ,2011,: 24-30.
[68] Yen, Cheng-Tyng, W.C. Chen. Polymer, 2003, 44.23: 7079-7087.
[69] Yi, Mi Hie. Macromolecules 30.19 (1997): 5606-5611.
[70] Yi, Mi Hie, Journal of Polymer Science Part A: Polymer Chemistry 37.17 (1999): 3449-3454.
[71] Chern, Yaw‐Terng, and Hann‐Chyan Shiue. Macromolecular Chemistry and Physics 199.6 (1998): 963-969.
[72] Lv, Pengxia, et al. Journal of Polymer Science Part A: Polymer Chemistry 56.5 (2018): 549-559.
[73] Gangani, Bhavesh J., 2006, Thesis PhD, Saurashtra University
[74] Choi, Kil‐Yeong & Mi Hie Yi. Macromolecular Symposia. Vol. 142. No. 1. Weinheim, Germany: WILEY‐VCH Verlag GmbH & Co. KGaA, 1999.
[75] Matsuura, Tohru. Macromolecules 24.18 (1991): 5001-5005.
[76] Kung, Yi‐Chun, Guey‐Sheng Liou. Journal of Polymer Science Part A: Polymer Chemistry 47.7 (2009): 1740-1755.
[77] Goto, Kohei, Yasutake Inoue, and Minoru Matsubara. Journal of Photopolymer Science and Technology14.1 (2001): 33-36.
[78] Fukukawa, Ken-ichi, Yuji Shibasaki, & Mitsuru Ueda. Chemistry letters 33.9 (2004): 1156-1157.
[79] Fukukawa, Ken-ichi, et al. Chemistry letters 34.10 (2005): 1372-1373.
[80] Haitao Huo, Song Mo & Hongjie Sun. Institute of Chemistry, Chinese Academy of Sciences, Beijing, China 2012
[81] An, Hao‐Yuan, Mao‐Sheng Zhan, Polymer Engineering & Science 51.8 (2011): 1533-1540.
[82] Tomikawa, Masao, et al. 2018 IEEE CPMT Symposium Japan (ICSJ). IEEE, 2018.
[83] Chang, Cha‐Wen, et al. Journal of Polymer Science Part A: Polymer Chemistry 46.24 (2008): 7937-7949.
[84] Wu, Tingting, et al. Applied Surface Science 440 (2018): 595-605.
[85] Jia, Mingchen, et al. Polymer Chemistry 9.7 (2018): 920-930.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔