|
(1) What Is Cancer? https://www.cancer.gov/about-cancer/understanding/what-is-cancer (accessed May 29, 2019). (2) Klein, C. A. The Metastasis Cascade. Science 2008, 321 (5897), 1785–1787. https://doi.org/10.1126/science.1164853. (3) Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics. CA. Cancer J. Clin. 2011, 61 (2), 69–90. https://doi.org/10.3322/caac.20107. (4) Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2018, 68 (6), 394–424. https://doi.org/10.3322/caac.21492. (5) 衛生福利部 https://www.mohw.gov.tw/mp-1.html (accessed Jun 19, 2019). (6) Collins, F. S.; Varmus, H. A New Initiative on Precision Medicine. N. Engl. J. Med. 2015, 372 (9), 793–795. https://doi.org/10.1056/NEJMp1500523. (7) 台灣癌症登月計畫 https://leavenoonebehind.com.tw/zh/article.php?unit=454&content=132532 (accessed Jun 20, 2019). (8) Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Capella, F. V. and G. Recent Advances in Cancer Therapy: An Overview http://www.eurekaselect.com/70602/article (accessed Jun 21, 2019). (9) Sun, T.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M.; Xia, Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Chem. Int. Ed. 2014, 53 (46), 12320–12364. https://doi.org/10.1002/anie.201403036. (10) Cancer Treatment Options | Houston Methodist https://www.houstonmethodist.org/cancer/treatment-options/ (accessed Jun 21, 2019). (11) Cytotoxic chemotherapy: clinical aspectsClinicalKey 臨床醫學資料庫 https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S1357303907003490?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1357303907003490%3Fshowall%3Dtrue&referrer=https:%2F%2Fzh.wikipedia.org%2F (accessed Jun 24, 2019). (12) julia. 從實驗到上市,一款藥物的開發可以耗費多少青春與成本? https://www.thenewslens.com/article/95507 (accessed Jun 25, 2019). (13) Markolin, P. Dynamic undocking, a structure guided tool for virtual drug discovery https://medium.com/advances-in-biological-science/dynamic-undocking-a-structure-guided-tool-for-virtual-drug-discovery-bd380ff30435 (accessed Jun 26, 2019). (14) Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. K. Drug Delivery Systems: An Updated Review. Int. J. Pharm. Investig. 2012, 2 (1), 2. https://doi.org/10.4103/2230-973X.96920. (15) Matsumura, Y.; Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46 (12 Part 1), 6387–6392. (16) Maeda, H. The Enhanced Permeability and Retention (EPR) Effect in Tumor Vasculature: The Key Role of Tumor-Selective Macromolecular Drug Targeting. Adv. Enzyme Regul. 2001, 41 (1), 189–207. https://doi.org/10.1016/S0065-2571(00)00013-3. (17) Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M. The Effect of Particle Design on Cellular Internalization Pathways. Proc. Natl. Acad. Sci. 2008, 105 (33), 11613–11618. https://doi.org/10.1073/pnas.0801763105. (18) Wang, M.; Thanou, M. Targeting Nanoparticles to Cancer. Pharmacol. Res. 2010, 62 (2), 90–99. https://doi.org/10.1016/j.phrs.2010.03.005. (19) Role of Particle Size in Phagocytosis of Polymeric Microspheres | SpringerLink https://link.springer.com/article/10.1007%2Fs11095-008-9562-y (accessed Jun 25, 2019). (20) Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W. Mediating Tumor Targeting Efficiency of Nanoparticles Through Design. Nano Lett. 2009, 9 (5), 1909–1915. https://doi.org/10.1021/nl900031y. (21) Wang, A. Z.; Langer, R.; Farokhzad, O. C. Nanoparticle Delivery of Cancer Drugs. Annu. Rev. Med. 2012, 63 (1), 185–198. https://doi.org/10.1146/annurev-med-040210-162544. (22) Haag, R.; Kratz, F. Polymere Therapeutika: Konzepte und Anwendungen. Angew. Chem. 2006, 118 (8), 1218–1237. https://doi.org/10.1002/ange.200502113. (23) Gatenby, R. A.; Gillies, R. J. Why Do Cancers Have High Aerobic Glycolysis? Nat. Rev. Cancer 2004, 4 (11), 891. https://doi.org/10.1038/nrc1478. (24) Fung, D. J. The Paradox of Cancer’s Warburg Effect - Dr. Jason Fung https://medium.com/@drjasonfung/the-paradox-of-cancers-warburg-effect-7fb572364b81 (accessed Jun 26, 2019). (25) Owen, S. C.; Doak, A. K.; Wassam, P.; Shoichet, M. S.; Shoichet, B. K. Colloidal Aggregation Affects the Efficacy of Anticancer Drugs in Cell Culture. ACS Chem. Biol. 2012, 7 (8), 1429–1435. https://doi.org/10.1021/cb300189b. (26) Huh, K. M.; Lee, S. C.; Cho, Y. W.; Lee, J.; Jeong, J. H.; Park, K. Hydrotropic Polymer Micelle System for Delivery of Paclitaxel. J. Controlled Release 2005, 101 (1), 59–68. https://doi.org/10.1016/j.jconrel.2004.07.003. (27) Torchilin, V. P.; Lukyanov, A. N.; Gao, Z.; Papahadjopoulos-Sternberg, B. Immunomicelles: Targeted Pharmaceutical Carriers for Poorly Soluble Drugs. Proc. Natl. Acad. Sci. 2003, 100 (10), 6039–6044. https://doi.org/10.1073/pnas.0931428100. (28) McConnell, E. L.; Fadda, H. M.; Basit, A. W. Gut Instincts: Explorations in Intestinal Physiology and Drug Delivery. Int. J. Pharm. 2008, 364 (2), 213–226. https://doi.org/10.1016/j.ijpharm.2008.05.012. (29) Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99 (Pt A), 28–51. https://doi.org/10.1016/j.addr.2015.09.012. (30) Abuchowski, A.; McCoy, J. R.; Palczuk, N. C.; Es, T. van; Davis, F. F. Effect of Covalent Attachment of Polyethylene Glycol on Immunogenicity and Circulating Life of Bovine Liver Catalase. J. Biol. Chem. 1977, 252 (11), 3582–3586. (31) Duncan, R. The Dawning Era of Polymer Therapeutics. Nat. Rev. Drug Discov. 2003, 2 (5), 347. https://doi.org/10.1038/nrd1088. (32) Duncan, R. Polymer Conjugates as Anticancer Nanomedicines. Nat. Rev. Cancer 2006, 6 (9), 688. https://doi.org/10.1038/nrc1958. (33) Göpferich, A. Mechanisms of Polymer Degradation and Erosion. Biomaterials 1996, 17 (2), 103–114. https://doi.org/10.1016/0142-9612(96)85755-3. (34) Arifin, D. Y.; Lee, L. Y.; Wang, C.-H. Mathematical Modeling and Simulation of Drug Release from Microspheres: Implications to Drug Delivery Systems. Adv. Drug Deliv. Rev. 2006, 58 (12), 1274–1325. https://doi.org/10.1016/j.addr.2006.09.007. (35) Robitzki, A. A.; Kurz, R. Biosensing and Drug Delivery at the Microscale. In Drug Delivery; Schäfer-Korting, M., Ed.; Handbook of Experimental Pharmacology; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; pp 87–112. https://doi.org/10.1007/978-3-642-00477-3_3. (36) Kim, H.-J.; Matsuda, H.; Zhou, H.; Honma, I. Ultrasound-Triggered Smart Drug Release from a Poly(Dimethylsiloxane)– Mesoporous Silica Composite. Adv. Mater. 2006, 18 (23), 3083–3088. https://doi.org/10.1002/adma.200600387. (37) Felber, A. E.; Dufresne, M.-H.; Leroux, J.-C. PH-Sensitive Vesicles, Polymeric Micelles, and Nanospheres Prepared with Polycarboxylates. Adv. Drug Deliv. Rev. 2012, 64 (11), 979–992. https://doi.org/10.1016/j.addr.2011.09.006. (38) Mo, R.; Jiang, T.; DiSanto, R.; Tai, W.; Gu, Z. ATP-Triggered Anticancer Drug Delivery. Nat. Commun. 2014, 5, 3364. https://doi.org/10.1038/ncomms4364. (39) Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-Responsive Nanocarriers for Drug Delivery. Nat. Mater. 2013, 12 (11), 991–1003. https://doi.org/10.1038/nmat3776. (40) Cheng, R.; Meng, F.; Deng, C.; Klok, H.-A.; Zhong, Z. Dual and Multi-Stimuli Responsive Polymeric Nanoparticles for Programmed Site-Specific Drug Delivery. Biomaterials 2013, 34 (14), 3647–3657. https://doi.org/10.1016/j.biomaterials.2013.01.084. (41) Sirsi, S. R.; Borden, M. A. State-of-the-Art Materials for Ultrasound-Triggered Drug Delivery. Adv. Drug Deliv. Rev. 2014, 72, 3–14. https://doi.org/10.1016/j.addr.2013.12.010. (42) Schmaljohann, D. Thermo- and PH-Responsive Polymers in Drug Delivery. Adv. Drug Deliv. Rev. 2006, 58 (15), 1655–1670. https://doi.org/10.1016/j.addr.2006.09.020. (43) Xiong, M.-H.; Bao, Y.; Yang, X.-Z.; Wang, Y.-C.; Sun, B.; Wang, J. Lipase-Sensitive Polymeric Triple-Layered Nanogel for “On-Demand” Drug Delivery. J. Am. Chem. Soc. 2012, 134 (9), 4355–4362. https://doi.org/10.1021/ja211279u. (44) Minelli, C.; Lowe, S. B.; Stevens, M. M. Engineering Nanocomposite Materials for Cancer Therapy. Small 2010, 6 (21), 2336–2357. https://doi.org/10.1002/smll.201000523. (45) Zhao, Y.; Luo, Z.; Li, M.; Qu, Q.; Ma, X.; Yu, S.-H.; Zhao, Y. A Preloaded Amorphous Calcium Carbonate/Doxorubicin@Silica Nanoreactor for PH-Responsive Delivery of an Anticancer Drug. Angew. Chem. Int. Ed. 2015, 54 (3), 919–922. https://doi.org/10.1002/anie.201408510. (46) Cölfen, H.; Mann, S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem. Int. Ed. 2003, 42 (21), 2350–2365. https://doi.org/10.1002/anie.200200562. (47) Murai, K.; Kinoshita, T.; Nagata, K.; Higuchi, M. Mineralization of Calcium Carbonate on Multifunctional Peptide Assembly Acting as Mineral Source Supplier and Template. Langmuir 2016, 32 (36), 9351–9359. https://doi.org/10.1021/acs.langmuir.6b02439. (48) Helman, Y.; Natale, F.; Sherrell, R. M.; LaVigne, M.; Starovoytov, V.; Gorbunov, M. Y.; Falkowski, P. G. Extracellular Matrix Production and Calcium Carbonate Precipitation by Coral Cells in Vitro. Proc. Natl. Acad. Sci. 2008, 105 (1), 54–58. https://doi.org/10.1073/pnas.0710604105. (49) Wolf, S. E.; Leiterer, J.; Pipich, V.; Barrea, R.; Emmerling, F.; Tremel, W. Strong Stabilization of Amorphous Calcium Carbonate Emulsion by Ovalbumin: Gaining Insight into the Mechanism of ‘Polymer-Induced Liquid Precursor’ Processes. J. Am. Chem. Soc. 2011, 133 (32), 12642–12649. https://doi.org/10.1021/ja202622g. (50) Wolf, S. L. P.; Jähme, K.; Gebauer, D. Synergy of Mg2+ and Poly(Aspartic Acid) in Additive-Controlled Calcium Carbonate Precipitation. CrystEngComm 2015, 17 (36), 6857–6862. https://doi.org/10.1039/C5CE00452G. (51) Politi, Y.; Batchelor, D. R.; Zaslansky, P.; Chmelka, B. F.; Weaver, J. C.; Sagi, I.; Weiner, S.; Addadi, L. Role of Magnesium Ion in the Stabilization of Biogenic Amorphous Calcium Carbonate: A Structure−Function Investigation. Chem. Mater. 2010, 22 (1), 161–166. https://doi.org/10.1021/cm902674h. (52) Long, X.; Ma, Y.; Qi, L. In Vitro Synthesis of High Mg Calcite under Ambient Conditions and Its Implication for Biomineralization Process. Cryst. Growth Des. 2011, 11 (7), 2866–2873. https://doi.org/10.1021/cg200028x. (53) Zhang, J.; Zhou, X.; Dong, C.; Sun, Y.; Yu, J. Investigation of Amorphous Calcium Carbonate’s Formation under High Concentration of Magnesium: The Prenucleation Cluster Pathway. J. Cryst. Growth 2018, 494, 8–16. https://doi.org/10.1016/j.jcrysgro.2018.05.001. (54) Nezhad, E. H.; Ghorbani, M.; Zeinalkhani, M.; Heidari, A. DNA Encapsulation in an Anionic Reverse Micellar Solution of Dioctyl Sodium Sulfosuccinate. Phys. Chem. 2013, 3 (1), 7–10. (55) Matzke, S. F.; Creagh, A. L.; Haynes, C. A.; Prausnitz, J. M.; Blanch, H. W. Mechanisms of Protein Solubilization in Reverse Micelles. Biotechnol. Bioeng. 1992, 40 (1), 91–102. https://doi.org/10.1002/bit.260400114. (56) Lemyre, J.-L.; Lamarre, S.; Beaupré, A.; Ritcey, A. M. A New Approach for the Characterization of Reverse Micellar Systems by Dynamic Light Scattering. Langmuir 2010, 26 (13), 10524–10531. https://doi.org/10.1021/la100541m. (57) Bragg condition for the constructive interference of waves https://www.didaktik.physik.uni-muenchen.de/elektronenbahnen/en/elektronenbeugung/einfuehrung/bragg-bedingung.php (accessed Jun 30, 2019). (58) Addadi, L.; Raz, S.; Weiner, S. Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization. Adv. Mater. 2003, 15 (12), 959–970. https://doi.org/10.1002/adma.200300381. (59) Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed.; Springer US, 2009. (60) Lowe, I. J. Free Induction Decays of Rotating Solids. Phys. Rev. Lett. 1959, 2 (7), 285–287. https://doi.org/10.1103/PhysRevLett.2.285. (61) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nuclear Magnetic Resonance Spectra from a Crystal Rotated at High Speed. Nature 1958, 182 (4650), 1659. https://doi.org/10.1038/1821659a0. (62) Facey, G. University of Ottawa NMR Facility Blog: Magic Angle Spinning. University of Ottawa NMR Facility Blog, 2007. (63) Pines, A.; Gibby, M. G.; Waugh, J. S. Proton‐enhanced NMR of Dilute Spins in Solids. J. Chem. Phys. 1973, 59 (2), 569–590. https://doi.org/10.1063/1.1680061. (64) Hartmann, S. R.; Hahn, E. L. Nuclear Double Resonance in the Rotating Frame. Phys. Rev. 1962, 128 (5), 2042–2053. https://doi.org/10.1103/PhysRev.128.2042. (65) Chu, B. Laser Light Scattering. Annu. Rev. Phys. Chem. 1970, 21 (1), 145–174. https://doi.org/10.1146/annurev.pc.21.100170.001045. (66) nsrrcpxrdmailin https://nsrrcpxrd.wixsite.com/nsrrcpxrdmailin (accessed Jul 8, 2019). (67) Wang, C.; Chen, S.; Yu, Q.; Hu, F.; Yuan, H. Taking Advantage of the Disadvantage: Employing the High Aqueous Instability of Amorphous Calcium Carbonate to Realize Burst Drug Release within Cancer Cells. J. Mater. Chem. B 2017, 5 (11), 2068–2073. https://doi.org/10.1039/C6TB02826H. (68) Bots, P.; Benning, L. G.; Rodriguez-Blanco, J.-D.; Roncal-Herrero, T.; Shaw, S. Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC). Cryst. Growth Des. 2012, 12 (7), 3806–3814. https://doi.org/10.1021/cg300676b. (69) Yang, S.-Y.; Chang, H.-H.; Lin, C.-J.; Huang, S.-J.; Chan, J. C. C. Is Mg-Stabilized Amorphous Calcium Carbonate a Homogeneous Mixture of Amorphous Magnesium Carbonate and Amorphous Calcium Carbonate? Chem. Commun. 2016, 52 (77), 11527–11530. https://doi.org/10.1039/C6CC04522G. (70) Chen, S.-F.; Cölfen, H.; Antonietti, M.; Yu, S.-H. Ethanol Assisted Synthesis of Pure and Stable Amorphous Calcium Carbonate Nanoparticles. Chem. Commun. 2013, 49 (83), 9564–9566. https://doi.org/10.1039/C3CC45427D. (71) Blasco, J.; Hampel, M.; Moreno-Garrido, I. Chapter 7 Toxicity of Surfactants. In Comprehensive Analytical Chemistry; Analysis and Fate of Surfactants and the Aquatic Environment; Elsevier, 2003; Vol. 40, pp 827–925. https://doi.org/10.1016/S0166-526X(03)40010-X. (72) Wang, C.; Liu, X.; Chen, S.; Hu, F.; Sun, J.; Yuan, H. Facile Preparation of Phospholipid–Amorphous Calcium Carbonate Hybrid Nanoparticles: Toward Controllable Burst Drug Release and Enhanced Tumor Penetration. Chem. Commun. 2018, 54 (93), 13080–13083. https://doi.org/10.1039/C8CC07694D. (73) Soy PC (95%) https://avantilipids.com/ (accessed Jul 10, 2019). (74) Tamamushi, B.; Watanabe, N. The Formation of Molecular Aggregation Structures in Ternary System: Aerosol OT/Water/Iso-Octane. Colloid Polym. Sci. 1980, 258 (2), 174–178. https://doi.org/10.1007/BF01498277. (75) Angelico, R.; Ceglie, A.; Olsson, U.; Palazzo, G. Phase Diagram and Phase Properties of the System Lecithin−Water−Cyclohexane. Langmuir 2000, 16 (5), 2124–2132. https://doi.org/10.1021/la9909190. (76) Martiel, I.; Sagalowicz, L.; Mezzenga, R. Viscoelasticity and Interface Bending Properties of Lecithin Reverse Wormlike Micelles Studied by Diffusive Wave Spectroscopy in Hydrophobic Environment. Langmuir 2014, 30 (35), 10751–10759. https://doi.org/10.1021/la502748e. (77) Fletcher, P. D. I.; Howe, A. M.; Robinson, B. H. The Kinetics of Solubilisate Exchange between Water Droplets of a Water-in-Oil Microemulsion. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1987, 83 (4), 985–1006. https://doi.org/10.1039/F19878300985. (78) Xu, X.; Han, J. T.; Cho, K. Formation of Amorphous Calcium Carbonate Thin Films and Their Role in Biomineralization. Chem. Mater. 2004, 16 (9), 1740–1746. https://doi.org/10.1021/cm035183d. (79) Phase transition of a poly(acrylic acid) gel induced by polymer complexation: The Journal of Chemical Physics: Vol 97, No 10 https://aip.scitation.org/doi/10.1063/1.463449 (accessed Jul 15, 2019). (80) Charman, W. N.; Christy, D. P.; Geunin, E. P.; Monkhouse, D. C. Interaction between Calcium, a Model Divalent Cation, and a Range of Poly (Acrylic Acid) Resins as a Function of Solution PH. Drug Dev. Ind. Pharm. 1991, 17 (2), 271–280. https://doi.org/10.3109/03639049109043824. (81) Lu, C.; Bhatt, L. R.; Jun, H. Y.; Park, S. H.; Chai, K. Y. Carboxyl–Polyethylene Glycol–Phosphoric Acid: A Ligand for Highly Stabilized Iron Oxide Nanoparticles. J. Mater. Chem. 2012, 22 (37), 19806–19811. https://doi.org/10.1039/C2JM34327D.
|