(3.239.159.107) 您好!臺灣時間:2021/03/08 20:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林子筠
研究生(外文):Tzu-Yun Lin
論文名稱:以磷脂逆向微胞製備乙型類澱粉樣蛋白寡聚物及其衍生之纖維
論文名稱(外文):Preparation of beta-amyloid oligomers and their derived fibrils in phospholipid reverse micelles
指導教授:陳振中陳振中引用關係
指導教授(外文):Jerry Chun Chung Chan
口試委員:戴桓青黃人則
口試日期:2019-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:128
中文關鍵詞:阿茲海默症乙型類澱粉樣蛋白寡聚物大豆磷脂醯膽鹼逆向微胞引晶實驗細胞毒性蛋白纖維
DOI:10.6342/NTU201903441
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乙型類澱粉樣蛋白(Aβ)的沉積物為阿茲海默症的病理特徵之一,因此被認為是造成阿茲海默症的關鍵原因。為了進行後續藥物與治療方式的開發,我們欲對Aβ蛋白的結構進行研究。然而在過往文獻中,in vitro培養之Aβ蛋白纖維的分子結構呈現多態性(polymorphism)。我們假設纖維的結構多樣性是源於具異質性的Aβ蛋白在依循晶場成核理論聚集時,以多種成核路徑(初成核與各種次成核路徑)聚集所造成的。為了得到Aβ蛋白的單一結構,我們利用逆向微胞作為一個奈米尺度的物理限制空間調控Aβ蛋白的成長,強制使其停留在亞穩態中間體(metastable intermediate)的寡聚物(oligomer)狀態,並以逆向微胞均一分布的特性將寡聚物保持在環境與大小皆相似的狀態下,希望因此能取得結構具高同質性的寡聚物。藉由打破逆向微胞後,以引晶實驗將寡聚物作為核種,將成核方式限制為單一的初成核步驟,以期得到單一構型的Aβ蛋白纖維。而在實驗室前人以Aerosol-OT (AOT)作為逆向微胞製備的Aβ寡聚物中有大量AOT殘留,並會影響Aβ單體的聚合速率,故為了能克服AOT殘留物對後續引晶實驗的干擾,並模擬腦內細胞膜對Aβ蛋白的影響和方便進行細胞毒性的實驗,本研究選擇從大豆中提取的磷脂醯膽鹼作為逆向微胞的材料,成功架設新的逆向微胞系統並進行上述實驗。然而以新制備的寡聚物作為核種引晶時,發現在逆向微胞中培養不同天數的寡聚物樣品具有不同的引晶能力,於生物毒性的實驗上也看到樣品性質差別:在逆向微胞中培養越久的寡聚物樣品引晶能力較弱但生物毒性較強。我們推斷原因可能是在逆向微胞中培養越久的寡聚物會與殘留的磷酯醯膽鹼結合越緊密,造成引晶能力較弱而且細胞毒性較強。
Aggregates of β-amyloid peptide (Aβ) are an important pathological signature of Alzheimer''s disease (AD). Currently, various Aβ aggregates such as oligomers, protofibrils, and fibrils are widely considered as the key factors controlling the progression of AD. For therapeutic treatments, we need to determine the molecular structure of Aβ aggregates. However, Aβ aggregates prepared in vitro are highly polymorphic. We hypothesize that the structure polymorphism is a direct consequence of the coexistence of various nucleation pathways, viz., the primary nucleation, fibril fragmentation, and the fibril-assisted secondary nucleation. In order to get a monomorphic structure of Aβ fibrils, we attempt to use nano-sized reverse micelle as a physically confined space to incubate Aβ peptides so that the peptides are trapped into their oligomeric state. After the backward extraction of the peptides from the reverse micelles, oligomers could be used to seed the fibrillization of Aβ monomers. In this way, Aβ monomers could aggregate mainly through the primary nucleation pathway, from which we should be able to get monomorphically structured Aβ fibrils. In our earlier studies, the surfactant, Aerosol-OT (AOT) was used to prepare reverse micelles to encapsulate Aβ peptides. Unfortunately, the residual AOT after backward extraction would interfere the aggregation kinetics of Aβ monomers. In this study, we therefore chose the phosphatidylcholine extracted from soybean, which is a bio-compatible amphiphilic molecule, to prepare our reverse micelles. We aim to verify our hypothesis on the structural polymorphism of Aβ aggregates by this newly developed reverse micelles. In the subsequent seeding experiments, the oligomers of different incubation time in PC-RM show different properities. Compared to the oligomers of shorter incubation time, oligomers with longer incubation time in PC-RM tend to have a minor seeding ability but stronger toxicity in cell vability test. We suggest that the results are cause by stronger interactions between the lipid molecules and the Aβ oligomers for longer incubation time in PC-RM.
口試委員審定書 II
中文摘要 i
Abstract ii
縮寫表 iv
目錄 vi
圖目錄 ix
表目錄 xiv
1. 第一章 緒論 1
1.1. 阿茲海默症 1
1.2. 類澱粉樣蛋白纖維 2
1.3. 阿茲海默症與類澱粉樣蛋白關聯性 3
1.4. 類澱粉樣蛋白成核路徑 6
1.5. 類澱粉樣蛋白纖維分子結構多樣性 7
1.6. 類澱粉樣蛋白寡聚物 12
1.6.1. 寡聚物培養與種類 12
1.7. 逆向微胞簡介 17
1.8. 研究動機 22
2. 第二章 合成與鑑定 23
2.1. 化學試劑與使用儀器 23
2.1.1. 化學試劑 23
2.1.2. 使用儀器 25
2.2. 胜肽製備 26
2.2.1. 蛋白表達 26
2.2.2. 蛋白純化 29
2.2.3. 蛋白鑑定 31
2.3. 逆向微胞製備 35
2.3.1. Aβ40單體製備 35
2.3.2. 包覆Aβ40逆向微胞製備 35
2.3.3. Aβ40反相萃取 37
2.4. 鑑定方法 38
2.4.1. 動態光散射粒徑分析儀 38
2.4.2. 斑點印跡法 39
2.4.3. 硫磺素螢光偵測 40
2.4.4. 圓偏光二色光譜 41
2.4.5. 穿透式電子顯微鏡 43
3. 第三章 實驗結果與討論 45
3.1. 胜肽之鑑定 45
3.2. 包覆Aβ40之磷脂逆向微胞系統 47
3.2.1. 磷脂逆向微胞系統穩定度 47
3.2.2. 磷脂逆向微胞內Aβ40聚合情形 47
3.3. PC-RM Aβ40寡聚物鑑定 49
3.3.1. 反向萃取之寡聚物TEM鑑定 49
3.4. Aβ40寡聚物引晶實驗控制組 52
3.4.1. Aβ40單體自聚集確認 52
3.4.2. 反向萃取效率確認 53
3.4.3. 磷脂質與界面活性劑控制組 55
3.4.4. PC-RMAβ40寡聚物控制組 56
3.5. Aβ40寡聚物引晶實驗 58
3.5.1. PC-RMAβ40寡聚物對Aβ40單體1:10引晶實驗 58
3.5.2. PC-RMAβ40寡聚物對Aβ40單體1:1引晶實驗 61
3.6. PC-RMAβ40-xd寡聚物細胞實驗 63
3.7. PC-RMAβ40-xd寡聚物結果討論 65
4. 第四章 結論與未來展望 66
4.1. 論文總結 66
4.2. 未來展望 67
5. 參考文獻 69
6. 附錄 77
附錄A 77
附錄B 93
附錄C 108
附錄D 110
附錄E 111
附錄F 118
附錄G 120
附錄H 128
(1) What Is Alzheimer’s? https://alz.org/alzheimers-dementia/what-is-alzheimers (accessed Mar 24, 2019).
(2) Hippius, H.; Neundörfer, G. The Discovery of Alzheimer’s Disease. Dialogues Clin. Neurosci. 2003, 5 (1), 101–108.
(3) Alzheimer’s Disease Fact Sheet https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet (accessed Jul 19, 2019).
(4) Selkoe, D. J. The Molecular Pathology of Alzheimer’s Disease. Neuron 1991, 6 (4), 487–498. https://doi.org/10.1016/0896-6273(91)90052-2.
(5) Titford, M. Rudolf Virchow: Cellular Pathologist. Lab. Med. 2010, 41 (5), 311–312. https://doi.org/10.1309/LM3GYQTY79CPYLBI.
(6) Kyle, R. A. Amyloidosis: A Convoluted Story. Br. J. Haematol. 2001, 114 (3), 529–538. https://doi.org/10.1046/j.1365-2141.2001.02999.x.
(7) Khurana, R.; Uversky, V. N.; Nielsen, L.; Fink, A. L. Is Congo Red an Amyloid-Specific Dye? J. Biol. Chem. 2001, 276 (25), 22715–22721. https://doi.org/10.1074/jbc.M011499200.
(8) Liao, R.; Ward, J. E. Amyloid Cardiomyopathy – Disease on the Rise. Circ. Res. 2017, 120 (12), 1865–1867. https://doi.org/10.1161/CIRCRESAHA.117.310643.
(9) Cohen, A. S.; Calkins, E. THE ISOLATION OF AMYLOID FIBRILS AND A STUDY OF THE EFFECT OF COLLAGENASE AND HYALURONIDASE. J. Cell Biol. 1964, 21 (3), 481–486.
(10) The Structural Determinants of the Immunoglobulin Light Chain Amyloid Aggregation | SpringerLink https://link.springer.com/chapter/10.1007/978-3-319-21687-4_1 (accessed Jul 25, 2019).
(11) Cohen, L. S.; Skinner, M. Characterization of the Amyloid Fibril as a Cross-p Protein" (34110). 3.
(12) Kang, J.; Lemaire, H.-G.; Unterbeck, A.; Salbaum, J. M.; Masters, C. L.; Grzeschikt, K.-H.; Multhaup, G.; Beyreuther, K.; Miiller-Hill, B. The Precursor of Alzheimer’s Disease Amyloid A4 Protein Resembles a Cell-Surface Receptor. 4.
(13) Glenner, G. G.; Wong, C. W. Alzheimer’s Disease: Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein. Biochem. Biophys. Res. Commun. 1984, 120 (3), 885–890. https://doi.org/10.1016/S0006-291X(84)80190-4.
(14) O’Brien, R. J.; Wong, P. C. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu. Rev. Neurosci. 2011, 34 (1), 185–204. https://doi.org/10.1146/annurev-neuro-061010-113613.
(15) Yankner, B. A.; Dawes, L. R.; Fisher, S.; Villa-Komaroff, L.; Oster-Granite, M. L.; Neve, R. L. Neurotoxicity of a Fragment of the Amyloid Precursor Associated with Alzheimer’s Disease. Science 1989, 245 (4916), 417–420. https://doi.org/10.1126/science.2474201.
(16) Hardy, J. A.; Higgins, G. A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256 (5054), 184–185. https://doi.org/10.1126/science.1566067.
(17) Erten-Lyons, D.; Woltjer, R. L.; Dodge, H.; Nixon, R.; Vorobik, R.; Calvert, J. F.; Leahy, M.; Montine, T.; Kaye, J. Factors Associated with Resistance to Dementia despite High Alzheimer Disease Pathology. Neurology 2009, 72 (4), 354–360. https://doi.org/10.1212/01.wnl.0000341273.18141.64.
(18) Sloane, J. A.; Pietropaolo, M. F.; Rosene, D. L.; Moss, M. B.; Peters, A.; Kemper, T.; Abraham, C. R. Lack of Correlation between Plaque Burden and Cognition in the Aged Monkey. Acta Neuropathol. (Berl.) 1997, 94 (5), 471–478. https://doi.org/10.1007/s004010050735.
(19) Gillam, J. E.; MacPhee, C. E. Modelling Amyloid Fibril Formation Kinetics: Mechanisms of Nucleation and Growth. J. Phys. Condens. Matter 2013, 25 (37), 373101. https://doi.org/10.1088/0953-8984/25/37/373101.
(20) Mankar, S.; Anoop, A.; Sen, S.; Maji, S. K. Nanomaterials: Amyloids Reflect Their Brighter Side. Nano Rev. 2011, 2. https://doi.org/10.3402/nano.v2i0.6032.
(21) Cohen, S. I. A.; Vendruscolo, M.; Dobson, C. M.; Knowles, T. P. J. Nucleated Polymerisation in the Presence of Pre-Formed Seed Filaments. Int. J. Mol. Sci. 2011, 12 (9), 5844–5852. https://doi.org/10.3390/ijms12095844.
(22) Meisl, G.; Yang, X.; Hellstrand, E.; Frohm, B.; Kirkegaard, J. B.; Cohen, S. I. A.; Dobson, C. M.; Linse, S.; Knowles, T. P. J. Differences in Nucleation Behavior Underlie the Contrasting Aggregation Kinetics of the Aβ40 and Aβ42 Peptides. Proc. Natl. Acad. Sci. 2014, 111 (26), 9384–9389. https://doi.org/10.1073/pnas.1401564111.
(23) Meinhardt, J.; Sachse, C.; Hortschansky, P.; Grigorieff, N.; Fändrich, M. Aβ(1-40) Fibril Polymorphism Implies Diverse Interaction Patterns in Amyloid Fibrils. J. Mol. Biol. 2009, 386 (3), 869–877. https://doi.org/10.1016/j.jmb.2008.11.005.
(24) Petkova, A. T.; Leapman, R. D.; Guo, Z.; Yau, W.-M.; Mattson, M. P.; Tycko, R. Self-Propagating, Molecular-Level Polymorphism in Alzheimer’s ß-Amyloid Fibrils. Science 2005, 307 (5707), 262–265. https://doi.org/10.1126/science.1105850.
(25) Petkova, A. T.; Yau, W.-M.; Tycko, R. Experimental Constraints on Quaternary Structure in Alzheimer’s β-Amyloid Fibrils. Biochemistry 2006, 45 (2), 498–512. https://doi.org/10.1021/bi051952q.
(26) Paravastu, A. K.; Leapman, R. D.; Yau, W.-M.; Tycko, R. Molecular Structural Basis for Polymorphism in Alzheimer’s β-Amyloid Fibrils. Proc. Natl. Acad. Sci. 2008, 105 (47), 18349–18354. https://doi.org/10.1073/pnas.0806270105.
(27) Lu, J.-X.; Qiang, W.; Yau, W.-M.; Schwieters, C. D.; Meredith, S. C.; Tycko, R. Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue. Cell 2013, 154 (6), 1257–1268. https://doi.org/10.1016/j.cell.2013.08.035.
(28) Chiti, F.; Dobson, C. M. Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev. Biochem. 2006, 75 (1), 333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901.
(29) Tipping, K. W.; van Oosten-Hawle, P.; Hewitt, E. W.; Radford, S. E. Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease? Trends Biochem. Sci. 2015, 40 (12), 719–727. https://doi.org/10.1016/j.tibs.2015.10.002.
(30) Gandy, S.; Simon, A. J.; Steele, J. W.; Lublin, A. L.; Lah, J. J.; Walker, L. C.; Levey, A. I.; Krafft, G. A.; Levy, E.; Checler, F.; et al. Days to Criterion as an Indicator of Toxicity Associated with Human Alzheimer Amyloid-β Oligomers. Ann. Neurol. 2010, 68 (2), 220–230. https://doi.org/10.1002/ana.22052.
(31) Sengupta, U.; Nilson, A. N.; Kayed, R. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine 2016, 6, 42–49. https://doi.org/10.1016/j.ebiom.2016.03.035.
(32) Harper, J. D.; Wong, S. S.; Lieber, C. M.; Lansbury, P. T. Observation of Metastable Aβ Amyloid Protofibrils by Atomic Force Microscopy. Chem. Biol. 1997, 4 (2), 119–125. https://doi.org/10.1016/S1074-5521(97)90255-6.
(33) Hartley, D. M.; Walsh, D. M.; Ye, C. P.; Diehl, T.; Vasquez, S.; Vassilev, P. M.; Teplow, D. B.; Selkoe, D. J. Protofibrillar Intermediates of Amyloid β-Protein Induce Acute Electrophysiological Changes and Progressive Neurotoxicity in Cortical Neurons. J. Neurosci. 1999, 19 (20), 8876–8884. https://doi.org/10.1523/JNEUROSCI.19-20-08876.1999.
(34) Walsh, D. M.; Hartley, D. M.; Kusumoto, Y.; Fezoui, Y.; Condron, M. M.; Lomakin, A.; Benedek, G. B.; Selkoe, D. J.; Teplow, D. B. Amyloid β-Protein Fibrillogenesis STRUCTURE AND BIOLOGICAL ACTIVITY OF PROTOFIBRILLAR INTERMEDIATES. J. Biol. Chem. 1999, 274 (36), 25945–25952. https://doi.org/10.1074/jbc.274.36.25945.
(35) Walsh, D. M.; Lomakin, A.; Benedek, G. B.; Condron, M. M.; Teplow, D. B. Amyloid β-Protein Fibrillogenesis DETECTION OF A PROTOFIBRILLAR INTERMEDIATE. J. Biol. Chem. 1997, 272 (35), 22364–22372. https://doi.org/10.1074/jbc.272.35.22364.
(36) Bitan, G.; Kirkitadze, M. D.; Lomakin, A.; Vollers, S. S.; Benedek, G. B.; Teplow, D. B. Amyloid β-Protein (Aβ) Assembly: Aβ40 and Aβ42 Oligomerize through Distinct Pathways. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (1), 330–335. https://doi.org/10.1073/pnas.222681699.
(37) Lashuel, H. A.; Hartley, D.; Petre, B. M.; Walz, T.; Lansbury, P. T. Amyloid Pores from Pathogenic Mutations. Nature 2002, 418 (6895), 291. https://doi.org/10.1038/418291a.
(38) Lambert, M. P.; Barlow, A. K.; Chromy, B. A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T. E.; Rozovsky, I.; Trommer, B.; Viola, K. L.; et al. Diffusible, Nonfibrillar Ligands Derived from Aβ1–42 Are Potent Central Nervous System Neurotoxins. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (11), 6448–6453.
(39) Gong, Y.; Chang, L.; Viola, K. L.; Lacor, P. N.; Lambert, M. P.; Finch, C. E.; Krafft, G. A.; Klein, W. L. Alzheimer’s Disease-Affected Brain: Presence of Oligomeric Aβ Ligands (ADDLs) Suggests a Molecular Basis for Reversible Memory Loss. Proc. Natl. Acad. Sci. 2003, 100 (18), 10417–10422. https://doi.org/10.1073/pnas.1834302100.
(40) Lesné, S.; Koh, M. T.; Kotilinek, L.; Kayed, R.; Glabe, C. G.; Yang, A.; Gallagher, M.; Ashe, K. H. A Specific Amyloid-β Protein Assembly in the Brain Impairs Memory. Nature 2006, 440 (7082), 352. https://doi.org/10.1038/nature04533.
(41) Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science 2003, 300 (5618), 486–489. https://doi.org/10.1126/science.1079469.
(42) Demuro, A.; Mina, E.; Kayed, R.; Milton, S. C.; Parker, I.; Glabe, C. G. Calcium Dysregulation and Membrane Disruption as a Ubiquitous Neurotoxic Mechanism of Soluble Amyloid Oligomers. J. Biol. Chem. 2005, 280 (17), 17294–17300. https://doi.org/10.1074/jbc.M500997200.
(43) Deshpande, A.; Mina, E.; Glabe, C.; Busciglio, J. Different Conformations of Amyloid β Induce Neurotoxicity by Distinct Mechanisms in Human Cortical Neurons. J. Neurosci. 2006, 26 (22), 6011–6018. https://doi.org/10.1523/JNEUROSCI.1189-06.2006.
(44) Chimon, S.; Shaibat, M. A.; Jones, C. R.; Calero, D. C.; Aizezi, B.; Ishii, Y. Evidence of Fibril-like β-Sheet Structures in a Neurotoxic Amyloid Intermediate of Alzheimer’s β-Amyloid. Nat. Struct. Mol. Biol. 2007, 14 (12), 1157–1164. https://doi.org/10.1038/nsmb1345.
(45) Chimon, S.; Ishii, Y. Capturing Intermediate Structures of Alzheimer’s β-Amyloid, Aβ(1−40), by Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2005, 127 (39), 13472–13473. https://doi.org/10.1021/ja054039l.
(46) Barghorn, S.; Nimmrich, V.; Striebinger, A.; Krantz, C.; Keller, P.; Janson, B.; Bahr, M.; Schmidt, M.; Bitner, R. S.; Harlan, J.; et al. Globular Amyloid β-Peptide1−42 Oligomer − a Homogenous and Stable Neuropathological Protein in Alzheimer’s Disease. J. Neurochem. 2005, 95 (3), 834–847. https://doi.org/10.1111/j.1471-4159.2005.03407.x.
(47) Nimmrich, V.; Grimm, C.; Draguhn, A.; Barghorn, S.; Lehmann, A.; Schoemaker, H.; Hillen, H.; Gross, G.; Ebert, U.; Bruehl, C. Amyloid β Oligomers (Aβ1–42 Globulomer) Suppress Spontaneous Synaptic Activity by Inhibition of P/Q-Type Calcium Currents. J. Neurosci. 2008, 28 (4), 788–797. https://doi.org/10.1523/JNEUROSCI.4771-07.2008.
(48) Lee, M.-C.; Yu, W.-C.; Shih, Y.-H.; Chen, C.-Y.; Guo, Z.-H.; Huang, S.-J.; Chan, J. C. C.; Chen, Y.-R. Zinc Ion Rapidly Induces Toxic, off-Pathway Amyloid-β Oligomers Distinct from Amyloid-β Derived Diffusible Ligands in Alzheimer’s Disease. Sci. Rep. 2018, 8 (1), 4772. https://doi.org/10.1038/s41598-018-23122-x.
(49) Guo, Z.-H.; Yang, C.-I.; Ho, C.-I.; Huang, S.-J.; Chen, Y.-C.; Tai, H.-C.; Chan, J. C. C. Fibrillization of β-Amyloid Peptides via Chemically Modulated Pathway. Chem. – Eur. J. 2018, 24 (19), 4939–4943. https://doi.org/10.1002/chem.201706001.
(50) Lin, Y.-L.; Cheng, Y.-S.; Ho, C.-I.; Guo, Z.-H.; Huang, S.-J.; Org, M.-L.; Oss, A.; Samoson, A.; Chan, J. C. C. Preparation of Fibril Nuclei of Beta-Amyloid Peptides in Reverse Micelles. Chem. Commun. 2018, 54 (74), 10459–10462. https://doi.org/10.1039/C8CC05882B.
(51) Fundamentals of Pharmaceutical Nanoscience; Uchegbu, I. F., Schätzlein, A. G., Chen, W. P., Lalatsa, A., Eds.; Springer: New York, 2013.
(52) Pileni, M.-P. The Role of Soft Colloidal Templates in Controlling the Size and Shape of Inorganic Nanocrystals. Nat. Mater. 2003, 2 (3), 145. https://doi.org/10.1038/nmat817.
(53) Miyake, Y. Enzymatic Reaction in Water-in-Oil Microemulsions. Colloids Surf. Physicochem. Eng. Asp. 1996, 109, 255–262. https://doi.org/10.1016/0927-7757(95)03487-0.
(54) Müller-Goymann, C. C. Physicochemical Characterization of Colloidal Drug Delivery Systems Such as Reverse Micelles, Vesicles, Liquid Crystals and Nanoparticles for Topical Administration. Eur. J. Pharm. Biopharm. 2004, 58 (2), 343–356. https://doi.org/10.1016/j.ejpb.2004.03.028.
(55) Pires, M. J.; Cabral, J. M. S. Liquid-Liquid Extraction of a Recombinant Protein with a Reverse Micelle Phase. Biotechnol. Prog. 1993, 9 (6), 647–650. https://doi.org/10.1021/bp00024a012.
(56) Van Horn, W. D.; Ogilvie, M. E.; Flynn, P. F. Reverse Micelle Encapsulation as a Model for Intracellular Crowding. J. Am. Chem. Soc. 2009, 131 (23), 8030–8039. https://doi.org/10.1021/ja901871n.
(57) Matzke, S. F.; Creagh, A. L.; Haynes, C. A.; Prausnitz, J. M.; Blanch, H. W. Mechanisms of Protein Solubilization in Reverse Micelles. Biotechnol. Bioeng. 1992, 40 (1), 91–102. https://doi.org/10.1002/bit.260400114.
(58) Tonova, K.; Lazarova, Z. Reversed Micelle Solvents as Tools of Enzyme Purification and Enzyme-Catalyzed Conversion. Biotechnol. Adv. 2008, 26 (6), 516–532. https://doi.org/10.1016/j.biotechadv.2008.06.002.
(59) Leser, M. E.; Luisi, P. L. Application of Reverse Micelles for the Extraction of Amino Acids and Proteins. 13.
(60) Angelico, R.; Ceglie, A.; Olsson, U.; Palazzo, G. Phase Diagram and Phase Properties of the System Lecithin−Water−Cyclohexane. Langmuir 2000, 16 (5), 2124–2132. https://doi.org/10.1021/la9909190.
(61) Fletcher, P. D. I.; Howe, A. M.; Robinson, B. H. The Kinetics of Solubilisate Exchange between Water Droplets of a Water-in-Oil Microemulsion. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1987, 83 (4), 985–1006. https://doi.org/10.1039/F19878300985.
(62) Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic Reactions in Confined Environments. Nat. Nanotechnol. 2016, 11 (5), 409–420. https://doi.org/10.1038/nnano.2016.54.
(63) Yeung, P. S.-W.; Axelsen, P. H. The Crowded Environment of a Reverse Micelle Induces the Formation of β-Strand Seed Structures for Nucleating Amyloid Fibril Formation. J. Am. Chem. Soc. 2012, 134 (14), 6061–6063. https://doi.org/10.1021/ja3004478.
(64) Eskici, G.; Axelsen, P. Amyloid Fibril Nucleation in Reverse Micelles. Biophys. J. 2015, 108 (2), 65a. https://doi.org/10.1016/j.bpj.2014.11.389.
(65) Eskici, G.; Axelsen, P. H. Amyloid Beta Peptide Folding in Reverse Micelles. J. Am. Chem. Soc. 2017, 139 (28), 9566–9575. https://doi.org/10.1021/jacs.7b03333.
(66) Lee, S.-S.; Hwang, K.-S.; Lee, B.-K.; Hong, D.-P.; Kuboi, R. Interaction between Reverse Micelles as a Key Factor Governing Back-Extraction of Proteins and Its Control Systems. Korean J. Chem. Eng. 2005, 22 (4), 611–616. https://doi.org/10.1007/BF02706652.
(67) Finder, V. H.; Vodopivec, I.; Nitsch, R. M.; Glockshuber, R. The Recombinant Amyloid-β Peptide Aβ1–42 Aggregates Faster and Is More Neurotoxic than Synthetic Aβ1–42. J. Mol. Biol. 2010, 396 (1), 9–18. https://doi.org/10.1016/j.jmb.2009.12.016.
(68) Lee, E. K.; Hwang, J. H.; Shin, D. Y.; Kim, D. I.; Yoo, Y. J. Production of Recombinant Amyloid-β Peptide 42 as an Ubiquitin Extension. Protein Expr. Purif. 2005, 40 (1), 183–189. https://doi.org/10.1016/j.pep.2004.12.014.
(69) Schägger, H. Tricine–SDS-PAGE. Nat. Protoc. 2006, 1 (1), 16–22. https://doi.org/10.1038/nprot.2006.4.
(70) SDS-PAGE Service - Pronalyse https://www.creative-proteomics.com/pronalyse/sds-page-service.html (accessed May 19, 2019).
(71) Patel, R. MALDI-TOF MS for the Diagnosis of Infectious Diseases. Clin. Chem. 2015, 61 (1), 100–111. https://doi.org/10.1373/clinchem.2014.221770.
(72) Martiel, I.; Sagalowicz, L.; Mezzenga, R. Viscoelasticity and Interface Bending Properties of Lecithin Reverse Wormlike Micelles Studied by Diffusive Wave Spectroscopy in Hydrophobic Environment. Langmuir 2014, 30 (35), 10751–10759. https://doi.org/10.1021/la502748e.
(73) Nishiki, T.; Muto, A.; Kataoka, T.; Kato, D. Back Extraction of Proteins from Reversed Micellar to Aqueous Phase: Partitioning Behaviour and Enrichment. Chem. Eng. J. Biochem. Eng. J. 1995, 59 (3), 297–301. https://doi.org/10.1016/0923-0467(95)02995-8.
(74) Marcozzi, G.; Correa, N.; Luisi, P. L.; Caselli, M. Protein Extraction by Reverse Micelles: A Study of the Factors Affecting the Forward and Backward Transfer of α-Chymotrypsin and Its Activity. Biotechnol. Bioeng. 1991, 38 (10), 1239–1246. https://doi.org/10.1002/bit.260381017.
(75) Mathew, D. S.; Juang, R.-S. Improved Back Extraction of Papain from AOT Reverse Micelles Using Alcohols and a Counter-Ionic Surfactant. Biochem. Eng. J. 2005, 25 (3), 219–225. https://doi.org/10.1016/j.bej.2005.05.007.
(76) Khurana, R.; Coleman, C.; Ionescu-Zanetti, C.; Carter, S. A.; Krishna, V.; Grover, R. K.; Roy, R.; Singh, S. Mechanism of Thioflavin T Binding to Amyloid Fibrils. J. Struct. Biol. 2005, 151 (3), 229–238. https://doi.org/10.1016/j.jsb.2005.06.006.
(77) Wolfe, L. S.; Calabrese, M. F.; Nath, A.; Blaho, D. V.; Miranker, A. D.; Xiong, Y. Protein-Induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T. Proc. Natl. Acad. Sci. 2010, 107 (39), 16863–16868. https://doi.org/10.1073/pnas.1002867107.
(78) LeVine, H. Thioflavine T Interaction with Synthetic Alzheimer’s Disease Beta-Amyloid Peptides: Detection of Amyloid Aggregation in Solution. Protein Sci. Publ. Protein Soc. 1993, 2 (3), 404–410.
(79) LeVine, 3rd H. Quantification of Beta-Sheet Amyloid Fibril Structures with Thioflavin T. Methods Enzymol. 1999, 309, 274–284. https://doi.org/10.1016/S0076-6879(99)09020-5.
(80) Johnson, W. C. Secondary Structure of Proteins Through Circular Dichroism Spectroscopy. Annu. Rev. Biophys. Biophys. Chem. 1988, 17 (1), 145–166. https://doi.org/10.1146/annurev.bb.17.060188.001045.
(81) Greenfield, N. J. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure. Nat. Protoc. 2006, 1 (6), 2876–2890. https://doi.org/10.1038/nprot.2006.202.
(82) Brenner, S.; Horne, R. W. A Negative Staining Method for High Resolution Electron Microscopy of Viruses. Biochim. Biophys. Acta 1959, 34, 103–110. https://doi.org/10.1016/0006-3002(59)90237-9.
(83) De Carlo, S.; Harris, J. R. Negative Staining and Cryo-Negative Staining of Macromolecules and Viruses for TEM. Micron 2011, 42 (2), 117–131. https://doi.org/10.1016/j.micron.2010.06.003.
(84) HIV Databases Review Article 1997 https://www.hiv.lanl.gov/content/sequence/HIV/REVIEWS/Gelderblom.html (accessed May 28, 2019).
(85) Isabell, T. C.; Fischione, P. E.; O’Keefe, C.; Guruz, M. U.; Dravid, V. P. Plasma Cleaning and Its Applications for Electron Microscopy. Microsc. Microanal. 1999, 5 (2), 126–135. https://doi.org/10.1017/S1431927699000094.
(86) Lindhagen-Persson, M.; Brännström, K.; Vestling, M.; Steinitz, M.; Olofsson, A. Amyloid-β Oligomer Specificity Mediated by the IgM Isotype – Implications for a Specific Protective Mechanism Exerted by Endogenous Auto-Antibodies. PLOS ONE 2010, 5 (11), e13928. https://doi.org/10.1371/journal.pone.0013928.
(87) Pirttilä, T.; Kim, K. S.; Mehta, P. D.; Frey, H.; Wisniewski, H. M. Soluble Amyloid β-Protein in the Cerebrospinal Fluid from Patients with Alzheimer’s Disease, Vascular Dementia and Controls. J. Neurol. Sci. 1994, 127 (1), 90–95. https://doi.org/10.1016/0022-510X(94)90140-6.
(88) Vaidya, S.; Ganguli, A. K. Microemulsion Methods for Synthesis of Nanostructured Materials. In Comprehensive Nanoscience and Nanotechnology; Elsevier, 2019; pp 1–12. https://doi.org/10.1016/B978-0-12-803581-8.11321-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔