|
(1) What Is Alzheimer’s? https://alz.org/alzheimers-dementia/what-is-alzheimers (accessed Mar 24, 2019). (2) Hippius, H.; Neundörfer, G. The Discovery of Alzheimer’s Disease. Dialogues Clin. Neurosci. 2003, 5 (1), 101–108. (3) Alzheimer’s Disease Fact Sheet https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet (accessed Jul 19, 2019). (4) Selkoe, D. J. The Molecular Pathology of Alzheimer’s Disease. Neuron 1991, 6 (4), 487–498. https://doi.org/10.1016/0896-6273(91)90052-2. (5) Titford, M. Rudolf Virchow: Cellular Pathologist. Lab. Med. 2010, 41 (5), 311–312. https://doi.org/10.1309/LM3GYQTY79CPYLBI. (6) Kyle, R. A. Amyloidosis: A Convoluted Story. Br. J. Haematol. 2001, 114 (3), 529–538. https://doi.org/10.1046/j.1365-2141.2001.02999.x. (7) Khurana, R.; Uversky, V. N.; Nielsen, L.; Fink, A. L. Is Congo Red an Amyloid-Specific Dye? J. Biol. Chem. 2001, 276 (25), 22715–22721. https://doi.org/10.1074/jbc.M011499200. (8) Liao, R.; Ward, J. E. Amyloid Cardiomyopathy – Disease on the Rise. Circ. Res. 2017, 120 (12), 1865–1867. https://doi.org/10.1161/CIRCRESAHA.117.310643. (9) Cohen, A. S.; Calkins, E. THE ISOLATION OF AMYLOID FIBRILS AND A STUDY OF THE EFFECT OF COLLAGENASE AND HYALURONIDASE. J. Cell Biol. 1964, 21 (3), 481–486. (10) The Structural Determinants of the Immunoglobulin Light Chain Amyloid Aggregation | SpringerLink https://link.springer.com/chapter/10.1007/978-3-319-21687-4_1 (accessed Jul 25, 2019). (11) Cohen, L. S.; Skinner, M. Characterization of the Amyloid Fibril as a Cross-p Protein" (34110). 3. (12) Kang, J.; Lemaire, H.-G.; Unterbeck, A.; Salbaum, J. M.; Masters, C. L.; Grzeschikt, K.-H.; Multhaup, G.; Beyreuther, K.; Miiller-Hill, B. The Precursor of Alzheimer’s Disease Amyloid A4 Protein Resembles a Cell-Surface Receptor. 4. (13) Glenner, G. G.; Wong, C. W. Alzheimer’s Disease: Initial Report of the Purification and Characterization of a Novel Cerebrovascular Amyloid Protein. Biochem. Biophys. Res. Commun. 1984, 120 (3), 885–890. https://doi.org/10.1016/S0006-291X(84)80190-4. (14) O’Brien, R. J.; Wong, P. C. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu. Rev. Neurosci. 2011, 34 (1), 185–204. https://doi.org/10.1146/annurev-neuro-061010-113613. (15) Yankner, B. A.; Dawes, L. R.; Fisher, S.; Villa-Komaroff, L.; Oster-Granite, M. L.; Neve, R. L. Neurotoxicity of a Fragment of the Amyloid Precursor Associated with Alzheimer’s Disease. Science 1989, 245 (4916), 417–420. https://doi.org/10.1126/science.2474201. (16) Hardy, J. A.; Higgins, G. A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256 (5054), 184–185. https://doi.org/10.1126/science.1566067. (17) Erten-Lyons, D.; Woltjer, R. L.; Dodge, H.; Nixon, R.; Vorobik, R.; Calvert, J. F.; Leahy, M.; Montine, T.; Kaye, J. Factors Associated with Resistance to Dementia despite High Alzheimer Disease Pathology. Neurology 2009, 72 (4), 354–360. https://doi.org/10.1212/01.wnl.0000341273.18141.64. (18) Sloane, J. A.; Pietropaolo, M. F.; Rosene, D. L.; Moss, M. B.; Peters, A.; Kemper, T.; Abraham, C. R. Lack of Correlation between Plaque Burden and Cognition in the Aged Monkey. Acta Neuropathol. (Berl.) 1997, 94 (5), 471–478. https://doi.org/10.1007/s004010050735. (19) Gillam, J. E.; MacPhee, C. E. Modelling Amyloid Fibril Formation Kinetics: Mechanisms of Nucleation and Growth. J. Phys. Condens. Matter 2013, 25 (37), 373101. https://doi.org/10.1088/0953-8984/25/37/373101. (20) Mankar, S.; Anoop, A.; Sen, S.; Maji, S. K. Nanomaterials: Amyloids Reflect Their Brighter Side. Nano Rev. 2011, 2. https://doi.org/10.3402/nano.v2i0.6032. (21) Cohen, S. I. A.; Vendruscolo, M.; Dobson, C. M.; Knowles, T. P. J. Nucleated Polymerisation in the Presence of Pre-Formed Seed Filaments. Int. J. Mol. Sci. 2011, 12 (9), 5844–5852. https://doi.org/10.3390/ijms12095844. (22) Meisl, G.; Yang, X.; Hellstrand, E.; Frohm, B.; Kirkegaard, J. B.; Cohen, S. I. A.; Dobson, C. M.; Linse, S.; Knowles, T. P. J. Differences in Nucleation Behavior Underlie the Contrasting Aggregation Kinetics of the Aβ40 and Aβ42 Peptides. Proc. Natl. Acad. Sci. 2014, 111 (26), 9384–9389. https://doi.org/10.1073/pnas.1401564111. (23) Meinhardt, J.; Sachse, C.; Hortschansky, P.; Grigorieff, N.; Fändrich, M. Aβ(1-40) Fibril Polymorphism Implies Diverse Interaction Patterns in Amyloid Fibrils. J. Mol. Biol. 2009, 386 (3), 869–877. https://doi.org/10.1016/j.jmb.2008.11.005. (24) Petkova, A. T.; Leapman, R. D.; Guo, Z.; Yau, W.-M.; Mattson, M. P.; Tycko, R. Self-Propagating, Molecular-Level Polymorphism in Alzheimer’s ß-Amyloid Fibrils. Science 2005, 307 (5707), 262–265. https://doi.org/10.1126/science.1105850. (25) Petkova, A. T.; Yau, W.-M.; Tycko, R. Experimental Constraints on Quaternary Structure in Alzheimer’s β-Amyloid Fibrils. Biochemistry 2006, 45 (2), 498–512. https://doi.org/10.1021/bi051952q. (26) Paravastu, A. K.; Leapman, R. D.; Yau, W.-M.; Tycko, R. Molecular Structural Basis for Polymorphism in Alzheimer’s β-Amyloid Fibrils. Proc. Natl. Acad. Sci. 2008, 105 (47), 18349–18354. https://doi.org/10.1073/pnas.0806270105. (27) Lu, J.-X.; Qiang, W.; Yau, W.-M.; Schwieters, C. D.; Meredith, S. C.; Tycko, R. Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue. Cell 2013, 154 (6), 1257–1268. https://doi.org/10.1016/j.cell.2013.08.035. (28) Chiti, F.; Dobson, C. M. Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev. Biochem. 2006, 75 (1), 333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901. (29) Tipping, K. W.; van Oosten-Hawle, P.; Hewitt, E. W.; Radford, S. E. Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease? Trends Biochem. Sci. 2015, 40 (12), 719–727. https://doi.org/10.1016/j.tibs.2015.10.002. (30) Gandy, S.; Simon, A. J.; Steele, J. W.; Lublin, A. L.; Lah, J. J.; Walker, L. C.; Levey, A. I.; Krafft, G. A.; Levy, E.; Checler, F.; et al. Days to Criterion as an Indicator of Toxicity Associated with Human Alzheimer Amyloid-β Oligomers. Ann. Neurol. 2010, 68 (2), 220–230. https://doi.org/10.1002/ana.22052. (31) Sengupta, U.; Nilson, A. N.; Kayed, R. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine 2016, 6, 42–49. https://doi.org/10.1016/j.ebiom.2016.03.035. (32) Harper, J. D.; Wong, S. S.; Lieber, C. M.; Lansbury, P. T. Observation of Metastable Aβ Amyloid Protofibrils by Atomic Force Microscopy. Chem. Biol. 1997, 4 (2), 119–125. https://doi.org/10.1016/S1074-5521(97)90255-6. (33) Hartley, D. M.; Walsh, D. M.; Ye, C. P.; Diehl, T.; Vasquez, S.; Vassilev, P. M.; Teplow, D. B.; Selkoe, D. J. Protofibrillar Intermediates of Amyloid β-Protein Induce Acute Electrophysiological Changes and Progressive Neurotoxicity in Cortical Neurons. J. Neurosci. 1999, 19 (20), 8876–8884. https://doi.org/10.1523/JNEUROSCI.19-20-08876.1999. (34) Walsh, D. M.; Hartley, D. M.; Kusumoto, Y.; Fezoui, Y.; Condron, M. M.; Lomakin, A.; Benedek, G. B.; Selkoe, D. J.; Teplow, D. B. Amyloid β-Protein Fibrillogenesis STRUCTURE AND BIOLOGICAL ACTIVITY OF PROTOFIBRILLAR INTERMEDIATES. J. Biol. Chem. 1999, 274 (36), 25945–25952. https://doi.org/10.1074/jbc.274.36.25945. (35) Walsh, D. M.; Lomakin, A.; Benedek, G. B.; Condron, M. M.; Teplow, D. B. Amyloid β-Protein Fibrillogenesis DETECTION OF A PROTOFIBRILLAR INTERMEDIATE. J. Biol. Chem. 1997, 272 (35), 22364–22372. https://doi.org/10.1074/jbc.272.35.22364. (36) Bitan, G.; Kirkitadze, M. D.; Lomakin, A.; Vollers, S. S.; Benedek, G. B.; Teplow, D. B. Amyloid β-Protein (Aβ) Assembly: Aβ40 and Aβ42 Oligomerize through Distinct Pathways. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (1), 330–335. https://doi.org/10.1073/pnas.222681699. (37) Lashuel, H. A.; Hartley, D.; Petre, B. M.; Walz, T.; Lansbury, P. T. Amyloid Pores from Pathogenic Mutations. Nature 2002, 418 (6895), 291. https://doi.org/10.1038/418291a. (38) Lambert, M. P.; Barlow, A. K.; Chromy, B. A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T. E.; Rozovsky, I.; Trommer, B.; Viola, K. L.; et al. Diffusible, Nonfibrillar Ligands Derived from Aβ1–42 Are Potent Central Nervous System Neurotoxins. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (11), 6448–6453. (39) Gong, Y.; Chang, L.; Viola, K. L.; Lacor, P. N.; Lambert, M. P.; Finch, C. E.; Krafft, G. A.; Klein, W. L. Alzheimer’s Disease-Affected Brain: Presence of Oligomeric Aβ Ligands (ADDLs) Suggests a Molecular Basis for Reversible Memory Loss. Proc. Natl. Acad. Sci. 2003, 100 (18), 10417–10422. https://doi.org/10.1073/pnas.1834302100. (40) Lesné, S.; Koh, M. T.; Kotilinek, L.; Kayed, R.; Glabe, C. G.; Yang, A.; Gallagher, M.; Ashe, K. H. A Specific Amyloid-β Protein Assembly in the Brain Impairs Memory. Nature 2006, 440 (7082), 352. https://doi.org/10.1038/nature04533. (41) Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science 2003, 300 (5618), 486–489. https://doi.org/10.1126/science.1079469. (42) Demuro, A.; Mina, E.; Kayed, R.; Milton, S. C.; Parker, I.; Glabe, C. G. Calcium Dysregulation and Membrane Disruption as a Ubiquitous Neurotoxic Mechanism of Soluble Amyloid Oligomers. J. Biol. Chem. 2005, 280 (17), 17294–17300. https://doi.org/10.1074/jbc.M500997200. (43) Deshpande, A.; Mina, E.; Glabe, C.; Busciglio, J. Different Conformations of Amyloid β Induce Neurotoxicity by Distinct Mechanisms in Human Cortical Neurons. J. Neurosci. 2006, 26 (22), 6011–6018. https://doi.org/10.1523/JNEUROSCI.1189-06.2006. (44) Chimon, S.; Shaibat, M. A.; Jones, C. R.; Calero, D. C.; Aizezi, B.; Ishii, Y. Evidence of Fibril-like β-Sheet Structures in a Neurotoxic Amyloid Intermediate of Alzheimer’s β-Amyloid. Nat. Struct. Mol. Biol. 2007, 14 (12), 1157–1164. https://doi.org/10.1038/nsmb1345. (45) Chimon, S.; Ishii, Y. Capturing Intermediate Structures of Alzheimer’s β-Amyloid, Aβ(1−40), by Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2005, 127 (39), 13472–13473. https://doi.org/10.1021/ja054039l. (46) Barghorn, S.; Nimmrich, V.; Striebinger, A.; Krantz, C.; Keller, P.; Janson, B.; Bahr, M.; Schmidt, M.; Bitner, R. S.; Harlan, J.; et al. Globular Amyloid β-Peptide1−42 Oligomer − a Homogenous and Stable Neuropathological Protein in Alzheimer’s Disease. J. Neurochem. 2005, 95 (3), 834–847. https://doi.org/10.1111/j.1471-4159.2005.03407.x. (47) Nimmrich, V.; Grimm, C.; Draguhn, A.; Barghorn, S.; Lehmann, A.; Schoemaker, H.; Hillen, H.; Gross, G.; Ebert, U.; Bruehl, C. Amyloid β Oligomers (Aβ1–42 Globulomer) Suppress Spontaneous Synaptic Activity by Inhibition of P/Q-Type Calcium Currents. J. Neurosci. 2008, 28 (4), 788–797. https://doi.org/10.1523/JNEUROSCI.4771-07.2008. (48) Lee, M.-C.; Yu, W.-C.; Shih, Y.-H.; Chen, C.-Y.; Guo, Z.-H.; Huang, S.-J.; Chan, J. C. C.; Chen, Y.-R. Zinc Ion Rapidly Induces Toxic, off-Pathway Amyloid-β Oligomers Distinct from Amyloid-β Derived Diffusible Ligands in Alzheimer’s Disease. Sci. Rep. 2018, 8 (1), 4772. https://doi.org/10.1038/s41598-018-23122-x. (49) Guo, Z.-H.; Yang, C.-I.; Ho, C.-I.; Huang, S.-J.; Chen, Y.-C.; Tai, H.-C.; Chan, J. C. C. Fibrillization of β-Amyloid Peptides via Chemically Modulated Pathway. Chem. – Eur. J. 2018, 24 (19), 4939–4943. https://doi.org/10.1002/chem.201706001. (50) Lin, Y.-L.; Cheng, Y.-S.; Ho, C.-I.; Guo, Z.-H.; Huang, S.-J.; Org, M.-L.; Oss, A.; Samoson, A.; Chan, J. C. C. Preparation of Fibril Nuclei of Beta-Amyloid Peptides in Reverse Micelles. Chem. Commun. 2018, 54 (74), 10459–10462. https://doi.org/10.1039/C8CC05882B. (51) Fundamentals of Pharmaceutical Nanoscience; Uchegbu, I. F., Schätzlein, A. G., Chen, W. P., Lalatsa, A., Eds.; Springer: New York, 2013. (52) Pileni, M.-P. The Role of Soft Colloidal Templates in Controlling the Size and Shape of Inorganic Nanocrystals. Nat. Mater. 2003, 2 (3), 145. https://doi.org/10.1038/nmat817. (53) Miyake, Y. Enzymatic Reaction in Water-in-Oil Microemulsions. Colloids Surf. Physicochem. Eng. Asp. 1996, 109, 255–262. https://doi.org/10.1016/0927-7757(95)03487-0. (54) Müller-Goymann, C. C. Physicochemical Characterization of Colloidal Drug Delivery Systems Such as Reverse Micelles, Vesicles, Liquid Crystals and Nanoparticles for Topical Administration. Eur. J. Pharm. Biopharm. 2004, 58 (2), 343–356. https://doi.org/10.1016/j.ejpb.2004.03.028. (55) Pires, M. J.; Cabral, J. M. S. Liquid-Liquid Extraction of a Recombinant Protein with a Reverse Micelle Phase. Biotechnol. Prog. 1993, 9 (6), 647–650. https://doi.org/10.1021/bp00024a012. (56) Van Horn, W. D.; Ogilvie, M. E.; Flynn, P. F. Reverse Micelle Encapsulation as a Model for Intracellular Crowding. J. Am. Chem. Soc. 2009, 131 (23), 8030–8039. https://doi.org/10.1021/ja901871n. (57) Matzke, S. F.; Creagh, A. L.; Haynes, C. A.; Prausnitz, J. M.; Blanch, H. W. Mechanisms of Protein Solubilization in Reverse Micelles. Biotechnol. Bioeng. 1992, 40 (1), 91–102. https://doi.org/10.1002/bit.260400114. (58) Tonova, K.; Lazarova, Z. Reversed Micelle Solvents as Tools of Enzyme Purification and Enzyme-Catalyzed Conversion. Biotechnol. Adv. 2008, 26 (6), 516–532. https://doi.org/10.1016/j.biotechadv.2008.06.002. (59) Leser, M. E.; Luisi, P. L. Application of Reverse Micelles for the Extraction of Amino Acids and Proteins. 13. (60) Angelico, R.; Ceglie, A.; Olsson, U.; Palazzo, G. Phase Diagram and Phase Properties of the System Lecithin−Water−Cyclohexane. Langmuir 2000, 16 (5), 2124–2132. https://doi.org/10.1021/la9909190. (61) Fletcher, P. D. I.; Howe, A. M.; Robinson, B. H. The Kinetics of Solubilisate Exchange between Water Droplets of a Water-in-Oil Microemulsion. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1987, 83 (4), 985–1006. https://doi.org/10.1039/F19878300985. (62) Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic Reactions in Confined Environments. Nat. Nanotechnol. 2016, 11 (5), 409–420. https://doi.org/10.1038/nnano.2016.54. (63) Yeung, P. S.-W.; Axelsen, P. H. The Crowded Environment of a Reverse Micelle Induces the Formation of β-Strand Seed Structures for Nucleating Amyloid Fibril Formation. J. Am. Chem. Soc. 2012, 134 (14), 6061–6063. https://doi.org/10.1021/ja3004478. (64) Eskici, G.; Axelsen, P. Amyloid Fibril Nucleation in Reverse Micelles. Biophys. J. 2015, 108 (2), 65a. https://doi.org/10.1016/j.bpj.2014.11.389. (65) Eskici, G.; Axelsen, P. H. Amyloid Beta Peptide Folding in Reverse Micelles. J. Am. Chem. Soc. 2017, 139 (28), 9566–9575. https://doi.org/10.1021/jacs.7b03333. (66) Lee, S.-S.; Hwang, K.-S.; Lee, B.-K.; Hong, D.-P.; Kuboi, R. Interaction between Reverse Micelles as a Key Factor Governing Back-Extraction of Proteins and Its Control Systems. Korean J. Chem. Eng. 2005, 22 (4), 611–616. https://doi.org/10.1007/BF02706652. (67) Finder, V. H.; Vodopivec, I.; Nitsch, R. M.; Glockshuber, R. The Recombinant Amyloid-β Peptide Aβ1–42 Aggregates Faster and Is More Neurotoxic than Synthetic Aβ1–42. J. Mol. Biol. 2010, 396 (1), 9–18. https://doi.org/10.1016/j.jmb.2009.12.016. (68) Lee, E. K.; Hwang, J. H.; Shin, D. Y.; Kim, D. I.; Yoo, Y. J. Production of Recombinant Amyloid-β Peptide 42 as an Ubiquitin Extension. Protein Expr. Purif. 2005, 40 (1), 183–189. https://doi.org/10.1016/j.pep.2004.12.014. (69) Schägger, H. Tricine–SDS-PAGE. Nat. Protoc. 2006, 1 (1), 16–22. https://doi.org/10.1038/nprot.2006.4. (70) SDS-PAGE Service - Pronalyse https://www.creative-proteomics.com/pronalyse/sds-page-service.html (accessed May 19, 2019). (71) Patel, R. MALDI-TOF MS for the Diagnosis of Infectious Diseases. Clin. Chem. 2015, 61 (1), 100–111. https://doi.org/10.1373/clinchem.2014.221770. (72) Martiel, I.; Sagalowicz, L.; Mezzenga, R. Viscoelasticity and Interface Bending Properties of Lecithin Reverse Wormlike Micelles Studied by Diffusive Wave Spectroscopy in Hydrophobic Environment. Langmuir 2014, 30 (35), 10751–10759. https://doi.org/10.1021/la502748e. (73) Nishiki, T.; Muto, A.; Kataoka, T.; Kato, D. Back Extraction of Proteins from Reversed Micellar to Aqueous Phase: Partitioning Behaviour and Enrichment. Chem. Eng. J. Biochem. Eng. J. 1995, 59 (3), 297–301. https://doi.org/10.1016/0923-0467(95)02995-8. (74) Marcozzi, G.; Correa, N.; Luisi, P. L.; Caselli, M. Protein Extraction by Reverse Micelles: A Study of the Factors Affecting the Forward and Backward Transfer of α-Chymotrypsin and Its Activity. Biotechnol. Bioeng. 1991, 38 (10), 1239–1246. https://doi.org/10.1002/bit.260381017. (75) Mathew, D. S.; Juang, R.-S. Improved Back Extraction of Papain from AOT Reverse Micelles Using Alcohols and a Counter-Ionic Surfactant. Biochem. Eng. J. 2005, 25 (3), 219–225. https://doi.org/10.1016/j.bej.2005.05.007. (76) Khurana, R.; Coleman, C.; Ionescu-Zanetti, C.; Carter, S. A.; Krishna, V.; Grover, R. K.; Roy, R.; Singh, S. Mechanism of Thioflavin T Binding to Amyloid Fibrils. J. Struct. Biol. 2005, 151 (3), 229–238. https://doi.org/10.1016/j.jsb.2005.06.006. (77) Wolfe, L. S.; Calabrese, M. F.; Nath, A.; Blaho, D. V.; Miranker, A. D.; Xiong, Y. Protein-Induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T. Proc. Natl. Acad. Sci. 2010, 107 (39), 16863–16868. https://doi.org/10.1073/pnas.1002867107. (78) LeVine, H. Thioflavine T Interaction with Synthetic Alzheimer’s Disease Beta-Amyloid Peptides: Detection of Amyloid Aggregation in Solution. Protein Sci. Publ. Protein Soc. 1993, 2 (3), 404–410. (79) LeVine, 3rd H. Quantification of Beta-Sheet Amyloid Fibril Structures with Thioflavin T. Methods Enzymol. 1999, 309, 274–284. https://doi.org/10.1016/S0076-6879(99)09020-5. (80) Johnson, W. C. Secondary Structure of Proteins Through Circular Dichroism Spectroscopy. Annu. Rev. Biophys. Biophys. Chem. 1988, 17 (1), 145–166. https://doi.org/10.1146/annurev.bb.17.060188.001045. (81) Greenfield, N. J. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure. Nat. Protoc. 2006, 1 (6), 2876–2890. https://doi.org/10.1038/nprot.2006.202. (82) Brenner, S.; Horne, R. W. A Negative Staining Method for High Resolution Electron Microscopy of Viruses. Biochim. Biophys. Acta 1959, 34, 103–110. https://doi.org/10.1016/0006-3002(59)90237-9. (83) De Carlo, S.; Harris, J. R. Negative Staining and Cryo-Negative Staining of Macromolecules and Viruses for TEM. Micron 2011, 42 (2), 117–131. https://doi.org/10.1016/j.micron.2010.06.003. (84) HIV Databases Review Article 1997 https://www.hiv.lanl.gov/content/sequence/HIV/REVIEWS/Gelderblom.html (accessed May 28, 2019). (85) Isabell, T. C.; Fischione, P. E.; O’Keefe, C.; Guruz, M. U.; Dravid, V. P. Plasma Cleaning and Its Applications for Electron Microscopy. Microsc. Microanal. 1999, 5 (2), 126–135. https://doi.org/10.1017/S1431927699000094. (86) Lindhagen-Persson, M.; Brännström, K.; Vestling, M.; Steinitz, M.; Olofsson, A. Amyloid-β Oligomer Specificity Mediated by the IgM Isotype – Implications for a Specific Protective Mechanism Exerted by Endogenous Auto-Antibodies. PLOS ONE 2010, 5 (11), e13928. https://doi.org/10.1371/journal.pone.0013928. (87) Pirttilä, T.; Kim, K. S.; Mehta, P. D.; Frey, H.; Wisniewski, H. M. Soluble Amyloid β-Protein in the Cerebrospinal Fluid from Patients with Alzheimer’s Disease, Vascular Dementia and Controls. J. Neurol. Sci. 1994, 127 (1), 90–95. https://doi.org/10.1016/0022-510X(94)90140-6. (88) Vaidya, S.; Ganguli, A. K. Microemulsion Methods for Synthesis of Nanostructured Materials. In Comprehensive Nanoscience and Nanotechnology; Elsevier, 2019; pp 1–12. https://doi.org/10.1016/B978-0-12-803581-8.11321-9.
|