|
1.Nedelsky, N.B., P.K. Todd, and J.P. Taylor, Autophagy and the ubiquitin-proteasome system: Collaborators in neuroprotection. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 2008. 1782(12): p. 691-699. 2.Tanida, I., Autophagosome Formation and Molecular Mechanism of Autophagy. Antioxidants & Redox Signaling, 2011. 14(11): p. 2201-2214. 3.Eskelinen, E.L. and P. Saftig, Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochimica Et Biophysica Acta-Molecular Cell Research, 2009. 1793(4): p. 664-673. 4.Feng, Y.C., et al., Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation. Autophagy, 2016. 12(4): p. 648-658. 5.Xie, Z.P., U. Nair, and D.J. Klionsky, Atg8 controls phagophore expansion during autophagosome formation. Molecular Biology of the Cell, 2008. 19(8): p. 3290-3298. 6.Hikita, H., S. Sakane, and T. Takehara. Mechanisms of the autophagosome-lysosome fusion step and its relation to non-alcoholic fatty liver disease. Liver Research 2018 [cited 2 3]; 120-124]. 7.Itakura, E., C. Kishi-Itakura, and N. Mizushima, The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes. Cell, 2012. 151(6): p. 1256-1269. 8.Tai, H.C. and E.M. Schuman, Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nature Reviews Neuroscience, 2008. 9(11): p. 826-838. 9.Zoncu, R., et al., mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase. Science, 2011. 334(6056): p. 678-683. 10.Yu, L., et al., Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature, 2010. 465(7300): p. 942-U11. 11.Zhou, J., et al., Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Research, 2013. 23(4): p. 508-523. 12.I, M., Organelles observed: lysosomes. Science, 1989: p. 853-854. 13.Xu, H.X. and D.J. Ren, Lysosomal Physiology, in Annual Review of Physiology, Vol 77, D. Julius, Editor. 2015. p. 57-80. 14.Kambe, T., et al., THE PHYSIOLOGICAL, BIOCHEMICAL, AND MOLECULAR ROLES OF ZINC TRANSPORTERS IN ZINC HOMEOSTASIS AND METABOLISM. Physiological Reviews, 2015. 95(3): p. 749-784. 15.J., R., Etudes clinique sur la vegetation. Annales des Scienceas Naturelle: Botanique, 1869. 11: p. 93–299. 16.Prasad, A.S., CLINICAL MANIFESTATIONS OF ZINC-DEFICIENCY. Annual Review of Nutrition, 1985. 5: p. 341-365. 17.Hambidge, M., Human zinc deficiency. Journal of Nutrition, 2000. 130(5): p. 1344S-1349S. 18.Maret, W. and H.H. Sandstead, Zinc requirements and the risks and benefits of zinc supplementation. Journal of Trace Elements in Medicine and Biology, 2006. 20(1): p. 3-18. 19.Takeda, A. and H. Tamano, Insight into zinc signaling from dietary zinc deficiency. Brain Research Reviews, 2009. 62(1): p. 33-44. 20.Sandstead, H.H., Human Zinc Deficiency: Discovery to Initial Translation. Advances in Nutrition, 2013. 4(1): p. 76-81. 21.McCord, M.C. and E. Aizenman, The role of intracellular zinc release in aging, oxidative stress, and Alzheimer''s disease. Frontiers in Aging Neuroscience, 2014. 6. 22.Bonilha, V.L., Age and disease-related structural changes in the retinal pigment epithelium. Clinical Ophthalmology, 2008. 2: p. 413-424. 23.Julien, S., et al., Zinc Deficiency Leads to Lipofuscin Accumulation in the Retinal Pigment Epithelium of Pigmented Rats. Plos One, 2011. 6(12). 24.Erie, J.C., et al., Reduced Zinc and Copper in the Retinal Pigment Epithelium and Choroid in Age-related Macular Degeneration. American Journal of Ophthalmology, 2009. 147(2): p. 276-282. 25.Smailhodzic, D., et al., Zinc Supplementation Inhibits Complement Activation in Age-Related Macular Degeneration. Plos One, 2014. 9(11). 26.Broun, E.R., et al., EXCESSIVE ZINC INGESTION - A REVERSIBLE CAUSE OF SIDEROBLASTIC ANEMIA AND BONE-MARROW DEPRESSION. Jama-Journal of the American Medical Association, 1990. 264(11): p. 1441-1443. 27.DA, S. and F. AM, The insulin and the zinc content of normal and diabetic pancreas. J Clin Invest, 1938. 17: p. 725-728. 28.Miller, J., A.D. McLachlan, and A. Klug, Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes (Reprinted from EMBO Journal, vol 4, pg 1609-1614, 1985). Journal of Trace Elements in Experimental Medicine, 2001. 14(2): p. 157-169. 29.Maret, W., Zinc and sulfur: A critical biological partnership. Biochemistry, 2004. 43(12): p. 3301-3309. 30.Keilin, D. and T. Mann, Carbonic anhydrase. Nature, 1939. 144: p. 442-443. 31.Kochanczyk, T., A. Drozd, and A. Krezel, Relationship between the architecture of zinc coordination and zinc binding affinity in proteins - insights into zinc regulation. Metallomics, 2015. 7(2): p. 244-257. 32.Sensi, S.L., et al., Zinc in the physiology and pathology of the CNS. Nature Reviews Neuroscience, 2009. 10(11): p. 780-U38. 33.Frederickson, C.J., J.Y. Koh, and A.I. Bush, The neurobiology of zinc in health and disease. Nature Reviews Neuroscience, 2005. 6(6): p. 449-462. 34.Tamaki, M., et al., The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. Journal of Clinical Investigation, 2013. 123(10): p. 4513-4524. 35.Ghafghazi, T., M.L. McDaniel, and P.E. Lacy, ZINC-INDUCED INHIBITION OF INSULIN-SECRETION FROM ISOLATED RAT ISLETS OF LANGERHANS. Diabetes, 1981. 30(4): p. 341-345. 36.Hirano, T., et al., Roles of zinc and zinc signaling in immunity: Zinc as an intracellular signaling molecule, in Advances in Immunology, Vol 97, F.W. Alt, et al., Editors. 2008. p. 149-176. 37.Taylor, K.M., et al., Protein Kinase CK2 Triggers Cytosolic Zinc Signaling Pathways by Phosphorylation of Zinc Channel ZIP7. Science Signaling, 2012. 5(210). 38.Aras, M.A. and E. Aizenman, Redox Regulation of Intracellular Zinc: Molecular Signaling in the Life and Death of Neurons. Antioxidants & Redox Signaling, 2011. 15(8): p. 2249-2263. 39.Haase, H., et al., Zinc Signals Are Essential for Lipopolysaccharide-Induced Signal Transduction in Monocytes. Journal of Immunology, 2008. 181(9): p. 6491-6502. 40.Kitamura, H., et al., Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nature Immunology, 2006. 7(9): p. 971-977. 41.Brautigan, D.L., P. Bornstein, and B. Gallis, PHOSPHOTYROSYL-PROTEIN PHOSPHATASE - SPECIFIC-INHIBITION BY ZN-2+. Journal of Biological Chemistry, 1981. 256(13): p. 6519-6522. 42.Hojyo, S., et al., The Zinc Transporter SLC39A14/ZIP14 Controls G-Protein Coupled Receptor-Mediated Signaling Required for Systemic Growth. Plos One, 2011. 6(3). 43.Velazquez-Delgado, E.M. and J.A. Hardy, Zinc-mediated Allosteric Inhibition of Caspase-6. Journal of Biological Chemistry, 2012. 287(43): p. 36000-36011. 44.Csermely, P., et al., ZINC CAN INCREASE THE ACTIVITY OF PROTEIN KINASE-C AND CONTRIBUTES TO ITS BINDING TO PLASMA-MEMBRANES IN LYMPHOCYTES-T. Journal of Biological Chemistry, 1988. 263(14): p. 6487-6490. 45.Haase, H. and W. Maret, Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Experimental Cell Research, 2003. 291(2): p. 289-298. 46.Huber, K.L. and J.A. Hardy, Mechanism of zinc-mediated inhibition of caspase-9. Protein Science, 2012. 21(7): p. 1056-1065. 47.MJ, J., Physiology of Zinc: General Aspects. Zinc in Human Biology, 1989: p. 1-14. 48.Barnett, J.P., et al., Allosteric modulation of zinc speciation by fatty acids. Biochimica Et Biophysica Acta-General Subjects, 2013. 1830(12): p. 5456-5464. 49.Haase, H. and L. Rink, Zinc signals and immune function. Biofactors, 2014. 40(1): p. 27-40. 50.Park, J.G., et al., New Sensors for Quantitative Measurement of Mitochondrial Zn2+. Acs Chemical Biology, 2012. 7(10): p. 1636-1640. 51.Qin, Y., et al., Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(18): p. 7351-7356. 52.Chabosseau, P., et al., Mitochondrial and ER-Targeted eCALWY Probes Reveal High Levels of Free Zn2+. Acs Chemical Biology, 2014. 9(9): p. 2111-2120. 53.Fukada, T. and T. Kambe, Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics, 2011. 3(7): p. 662-674. 54.Huang, B., et al., Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 2008. 319(5864): p. 810-813. 55.Matias, A.C., T.M. Manieri, and G. Cerchiaro, Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. Oxidative Medicine and Cellular Longevity, 2016.
|