(3.235.108.188) 您好!臺灣時間:2021/02/28 00:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱成章
研究生(外文):Cheng-Chang Chiu
論文名稱:新穎對稱與非對稱配基之同核鎳金屬串與異核金屬串(Mox/My和Co2Re2/M)錯合物之合成與性質研究
論文名稱(外文):Syntheses and Studies of Homonuclear Nickel String Complexes and Heteronuclear (Mox/My and Co2Re2/M) Metal String Complexes with Symmetrical and Non-symmetrical Ligands
指導教授:彭旭明彭旭明引用關係
指導教授(外文):Shie-Ming Peng
口試委員:林天送陳俊顯金必耀王志傑
口試委員(外文):Tien‐Sung Tom LinChun-hsien ChenBih-Yaw JinChih-Chieh Wang
口試日期:2019-06-04
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:364
中文關鍵詞:分子電線金屬串混價化合物鎳金屬
DOI:10.6342/NTU201600811
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討鎳金屬串錯合物的配基效應以及合成以雙核鉬金屬或錸金屬為主的新型異核金屬串錯合物並探討其鍵結資訊及所具有的特性。
於本研究中主要分為兩個部分,第一部分為合成螺旋型五核鎳金屬串錯合物並採用下列四條不對稱型的有機配基: (1)甲基苯磺醯基吡啶萘啶二胺(N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine, H2Tspnda, L1)和(2)甲基苯磺醯基苯環吡啶萘啶二胺(N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine, H2Tsphpnda, L2)以及經過在吡啶環上meta位置進行苯環修飾的(3)甲基磺醯基吡啶萘啶二胺(N-(methyl-sulfonyl)pyridylnaphthyridyl diamine, H2Mspnda, L3)和(4)甲基苯磺醯基苯環吡啶萘啶二胺(N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine, H2Msphpnda, L4)。為了探討所合成的金屬串錯合物的特性,本論文採用固態X-ray單晶結構解析、磁化率、電子順磁共振、循環伏安法、電子吸收光譜、紅外光譜、核磁共振以及元素分析等技術進行分析鑑定與討論。第二部分則為合成異核金屬串錯合物,主要採用實驗室傳統對稱型的三吡啶二胺(tripyridyldiamine, H2tpda, L5)配基,也使用不對稱配基L1和L2進行異核金屬串的合成並探討其特性和潛在應用性。
在第一部分,藉由高溫熔融萘作為溶劑進行反應可得到一系列五個鎳金屬帶正九價[Ni5]9+的鎳金屬串錯合物,分別為[Ni5(Tspnda)4](PF6) 1、[Ni5(Tsphpnda)4](PF6) 3、[Ni5(Mspnda)4](PF6) 6和[Ni5(Msphpnda)4](PF6) 9,對於這四個金屬串錯合物,其顯示出具有較短的Ni–Ni鍵長: 錯合物1為2.2646(6) Å;錯合物3為2.2943(7) Å;錯合物6為2.2436(11) Å;錯合物9為 2.2322(8) Å,並且由Ni–N的鍵長皆發現大於2.0 Å,這顯示這四個錯合物中具有金屬–金屬作用力於混價單元(mixed-valence unit [Ni2]3+, S = 3/2)上。此外,最特別的結果在於當甲基苯磺醯基置換為甲基磺醯基進行配基微調時,混價單元由原本座落在Ni(1)–Ni(2)遷移到Ni(2)–Ni(3)的位置。為了探尋這個結果,本研究採用磁化率和電子順磁共振分析進而探討這四個還原一個電子的五核鎳金屬串錯合物的磁性和鍵結特性,由電子順磁共振的結果可以發現混價單元Ni(1)–Ni(2)遷移到Ni(2)–Ni(3)會使得金屬串整體電子結構更趨於對稱,導致其在零場分裂參數上會有所不同,而這也藉由EPR的光譜擬合得到證實。藉由循環伏安法,可以發現具有四對可逆的氧化還原對並可藉由[FeCp2](PF6)氧化一個電子進而得到五個鎳金屬帶正十價[Ni5]10+的金屬串錯合物,分別為[Ni5(Tspnda)4(H2O)2](PF6)2 (2)、[Ni5(Tsphpnda)4](PF6)2 (4)、[Ni5(Mspnda)4](CF3SO3)2 (8)和[Ni5(Msphpnda)4](PF6)2 (11)。令人驚訝的是,氧化一個電子後的五核鎳金屬串具有不同的電子結構,錯合物2主要具有來自於兩終端S = 1的自旋中心而呈現反鐵磁的特性,錯合物4、8和11則因為所具有的鎳金屬皆為正二價(S = 0)並呈現逆磁特性。因此,對於本論文討論的五核鎳金屬串錯合物,具有三項重要的發現 : (1)對於還原一個電子[Ni5]9+的金屬串錯合物,其呈現一個少見的以對稱型結構、不對稱型的電子密度分佈構型,並且推測可能的原因來自於晶體堆疊所導致的影響;(2)對於氧化一個電子[Ni5]10+的錯合物,化合物4、8和11呈現文獻中第一個五核鎳金屬串具有鎳金屬以全低自旋組態(S = 0)構成的錯合物;(3)由於本實驗室在過去認為對於配基的微調並不會對金屬串的電子結構有顯著的變化,然而,隨著甲基苯磺醯基置換為甲基磺醯基,其混價單元由原本的Ni(1)–Ni(2)遷移到Ni(2)–Ni(3),並且藉由電子順磁共振的光譜擬合所得到的零場分裂參數(D和E值)來獲得證實,這也突破了過去實驗室對於配基進行取代基微調不會對金屬串有明顯電子結構變化的觀念,而這些發現也顯示出對於配基的微調有助於探討配基效應和其鍵結特性。
在第二部分則報導異核金屬串錯合物,主要藉由以雙核鉬金屬或雙核錸金屬為主並與其他金屬(如 : 鎳、鈷或釕金屬)進行合成,對於鉬系列的金屬錯合物,所得到的皆為非直線構型存在的金屬串錯合物,如: [NiMo2Ni(Tspnda)4] 14、[CoMo2Co(Tspnda)4] 15和[Mo4(Tsphpnda)3(HTsphpnda)(OAc)] 18,由於當反應處於高溫時會使得鉬金屬具有空氣敏感的現象,容易造成鉬金屬氧化並導致低產率和得到非直線構型的錯合物。然而,透過質譜以及紅外線光譜的分析可以證實具有形成五核的鉬/鎳金屬串錯合物[Mo4Ni(Tspnda)4](PF6)2 16以及[Mo4Ni(Tsphpnda)4](PF6)2 17,但並無法得到品質較好的晶體去執行單晶繞射解析。對於錸系列錯合物[Co2Re2(tpda)4Cl](PF6) 19和[Co2Re2(tpda)4(NCS)](PF6) 20,主要呈現直線型的金屬串錯合物,但是於終端位置仍有四片未配位的吡啶環懸掛於金屬串外圍,因此,可以藉由加入釕金屬鹽類來合成[Co2Re2Ru(tpda)4Cl2](PF6)2 21,但由於晶體太小且品質較差,導致無法藉由單晶結構解析來探討其鍵結資訊與相關特性,僅能由質譜證實其有成功合成出來。
因此,由於金屬串本身所具有卓越的物理及化學特性,使得這些直線型的金屬串錯合物可扮演著電線的角色並期望在未來可以製程為分子電線或分子開關等電子設備。
The scope of this thesis consists of two parts: (1) investigation of ligand effects on pentanickel string complexes, and (2) synthesis and characterization of novel heteronuclear metal string complexes containing dimolybdenum or dirhenium unit as the metal precursors.
The first part is about the helically pentanuclear nickel string complexes. We employ the following four ligands to synthesis of (1) N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine (H2Tspnda, L1), (2) N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H2Tsphpnda, L2) and the phenyl-substituted ligands of (3) N-(methyl-sulfonyl)pyridylnaphthyridyl diamine (H2Mspnda, L3) and (4) N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H2Msphpnda, L4). We apply the following techniques to characterize the properties of these complexes: solid state X-ray single crystal diffraction (XRD), magnetic susceptibility (SQUID), electron paramagnetic resonance (EPR), cyclic voltammograms (CV), electron absorption spectra (UV-Vis and Near-IR), infrared spectroscopy, nuclear magnetic resonance (NMR) and element analysis (EA).
The X-ray structure of one-electron-reduced [Ni5]9+ complexes [Ni5(Tspnda)4](PF6) 1, [Ni5(Tsphpnda)4](PF6) 3, [Ni5(Mspnda)4](PF6) 6 and [Ni5(Msphpnda)4](PF6) 9 show remarkably shorter Ni–Ni bond distance (2.2646(6) for 1, 2.2943(7) for 3, 2.2436(11) for 6 and 2.2322(8) Å for 9), indicative of a partial metal-metal bond interaction in the mixed-valence [Ni2]3+ (S = 3/2) unit. The most striking result is that the [Ni2]3+ site migrates from Ni(1)–Ni(2) to Ni(2)–Ni(3) when we replace p-tolyl-sulfonyl group with methyl-sulfonyl group. To investigate this result, we apply the magnetic susceptibility and EPR measurement to examine the magnetic properties of these four [Ni5]9+-core pentanickel strings and study the bonding nature of the mixed-valence [Ni2]3+ unit. The results of EPR measurements reflect the migration of mixed-valence site and the change of symmetry, which is confirmed by the spectral parameters of zero-field splitting (D and E values) in EPR simulation.
Furthermore, cyclic voltammetry measurements show four reversible redox waves and display the lower potentials of the [Ni5]9+ complexes. The unusual lower potentials facilitate one-electron oxidation of these four complexes to [Ni5]10+-core forms: [Ni5(Tspnda)4(H2O)2](PF6)2 (2), [Ni5(Tsphpnda)4](PF6)2 (4), [Ni5(Mspnda)4](CF3SO3)2 (8) and [Ni5(Msphpnda)4](PF6)2 (11). Thus, we perform the oxidation reaction of these [Ni5]9+-core complexes to treat with [FeCp2](PF6). Surprisingly, the oxidized [Ni5]10+ counterparts behave differently: complex 2 exhibits an antiferromagnetic interaction with J = -13.59 cm-1 between the two terminal Ni ions, while the others (complexes 4, 8 and 11) display the diamagnetic property as all of the Ni2+ ions are in low-spin (S = 0) states.
We present the following important findings in first part of the thesis : (1) For [Ni5]9+-core complexes, they present a rare example of the effect of crystal packing on the symmetric molecular structure yielding unsymmetric electronic distribution. (2) The magnetic susceptibility, EPR and Near-IR measurement confirm the spin state is S = 3/2 (a mixed-valence state) for these complexes. (3) For [Ni5]10+-core complexes, complexes 4, 8 and 11 are the first examples of all Ni2+ ions in null spin configuration for pentanickel chains. (3) Migration of mixed-valence sites from Ni(1)–Ni(2) to Ni(2)–Ni(3) when we replace p-tolyl-sulfonyl group with methyl-sulfonyl group. This finding shows roles of ligand played in bonding nature for the novel metal string complexes.
The second part of the thesis is the synthesis and the characterization of the novel heteronuclear metals (molybdenum or rhenium) with other conventional metal ions (nickel, cobalt or ruthenium). We employ symmetrical tripyridyldiamine (H2tpda, L5) ligand and asymmetric ligands (L1 and L2) to explore their properties and potential application. For molybdenum complexes, we obtain the non-linear metal string complexes [NiMo2Ni(Tspnda)4] 14, [CoMo2Co(Tspnda)4] 15 and [Mo4(Tsphpnda)3(HTsphpnda)(OAc)] 18. Since the molybdenum complexes are air-sensitive especially at high temperature, we obtain low yield and non-linear metal complexes. However, we can synthesize the linear molybdenum-based metal string complexes [Mo4Ni(Tspnda)4](PF6)2 16 and [Mo4Ni(Tsphpnda)4](PF6)2 17. Even though the identities are supported by Mass and IR spectroscopy, but we are not able to obtain a good quality crystal form for X-ray diffraction measurement. On the other hand, the rhenium series complexes [Co2Re2(tpda)4Cl](PF6) 19 and [Co2Re2(tpda)4(NCS)](PF6) 20 present a linear metal chain with four pyridine ring hanging out from the metal string complexes. We treat with the ruthenium salt [Ru(COD)Cl2]n to synthesize [Co2Re2Ru(tpda)4Cl2](PF6)2 21, but we could not obtain good quality of crystal for crystal structure determination to explore the bonding nature and their properties.
Overall, these extended metal-atom chain (EMAC) impersonate electric wires and we expect them to serve as molecular wires and switches in the manufacture of electronic devices because of their exotic physical and chemical properties.
中文摘要 i
Abstract iv
目錄 vii
圖目錄 xiii
表目錄 xix
第一章緒論 1
1-1 前言 1
1-2 分子導線 3
1-2-1 無架橋配基之金屬串錯合物 5
1-2-2 經架橋配基之金屬串錯合物 7
1-3 多氮配基及其錯合物 11
1-3-1 多吡啶胺系統 14
1-3-2 多萘啶胺系統 15
1-3-3 多萘啶吡啶胺系統 16
1-3-4 吡啶噻唑胺配基 18
1-4 金屬-金屬鍵結理論 20
1-4-1 雙核金屬錯合物之金屬-金屬鍵結 21
1-4-2 直線型三核過渡金屬錯合物之金屬-金屬鍵結 27
1-4-3 直線型五核過渡金屬錯合物之金屬-金屬鍵結 30
1-5 直線型同核金屬串錯合物 31
1-5-1 直線型異核金屬串錯合物 32
1-5-2 不對稱配基之異構物 37
1-6 研究動機 39
第二章實驗部分 41
2-1 試藥與儀器 41
2-1-1 實驗藥品 41
2-1-2 實驗儀器 43
2-1-3 化合物縮寫及編號名稱 45
2-2 配基合成 47
2-2-1 配基合成流程圖 47
2-2-2前驅物製備 48
Mo2(OAc)4雙核鉬金屬起始物之合成 48
Re2(OAc)4Cl2雙核錸金屬起始物之合成 49
(A) 2-Amino-7-hydroxy-1,8-naphthyridine 50
(B) 2,7-Dihydroxy-1,8-naphthyridine 51
(C) 2,7-Dichloro-1,8-naphthyridine 52
(D) 2-Amino-7-chloro-1,8-naphthyridine 53
(E) 2-Amino-5-phenylpyridine 54
(F) 2-Chloro-7-(pyridylamino)-1,8-naphthyridine (P1) 55
(G) 2-Chloro-7-(5-phenylpyridylamino)-1,8-naphthyridine (P2) 56
2-2-3配基合成 57
(H) N-(p-tolyl-sulfonyl)pyridylnaphthyridyl diamine (H2Tspnda, L1) 57
(I) N-(p-tolyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H2Tsphpnda, L2) 58
(J) N-(methyl-sulfonyl)pyridylnaphthyridyl diamine (H2Mspnda, L3) 59
(K) N-(methyl-sulfonyl)phenylpyridylnaphthyridyl diamine (H2Msphpnda, L4) 60
(L) Tripyridyldiamine (H2tpda, L5) 61
2-3 金屬錯合物之合成 62
2-3-1 同核金屬串錯合物之合成 62
(1) [Ni5(Tspnda)4](PF6) 62
(2) [Ni5(Tspnda)4(H2O)2](PF6)2 63
(3) [Ni5(Tsphpnda)4](PF6) 64
(4) [Ni5(Tsphpnda)4](PF6)2 65
(5) [Ni5(Tspnda)4](BF4) 66
(6) [Ni5(Mspnda)4](PF6) 67
(7) [Ni4(Mspnda)4(H2O)2] 68
(8) [Ni5(Mspnda)4](CF3SO3)2 69
(9) [Ni5(Msphpnda)4](PF6) 70
(10) [Ni4(Msphpnda)4F2](Ni2Cl6O) 71
(11) [Ni5(Msphpnda)4](PF6)2 72
(12) [Co5(Tspnda)4](PF6)2 73
(13) [Cr4(Tspnda)4] 74
2-3-2異核金屬串錯合物之合成 75
(14) [NiMo2Ni(Tspnda)4] 75
(15) [CoMo2Co(Tspnda)4] 76
(16) [Mo4Ni(Tspnda)4](PF6)2 77
(17) [Mo4Ni(Tsphpnda)4](PF6)2 78
(18) [Mo4(Tsphpnda)3(HTsphpnda)(OAc)] 79
(19) [Co2Re2(tpda)4Cl](PF6) 80
(20) [Co2Re2(tpda)4(NCS)](PF6) 81
(21) [Co2Re2Ru(tpda)4Cl2](PF6)2 82
2-4 單晶數據之收集與整理 83
2-4-1 [Ni5(Tspnda)4](PF6) (complex 1) 83
2-4-2 [Ni5(Tspnda)4(H2O)2](PF6)2 (complex 2) 84
2-4-3 [Ni5(Tsphpnda)4](PF6) (complex 3) 84
2-4-4 [Ni5(Tsphpnda)4](PF6)2 (complex 4) 85
2-4-5 [Ni5(Tspnda)4](BF4) (complex5) 85
2-4-6 [Ni5(Mspnda)4](PF6) (complex 6) 86
2-4-7 [Ni4(Mspnda)4(H2O)2] (complex 7) 86
2-4-8 [Ni5(Mspnda)4](CF3SO3)2 (complex 8) 87
2-4-9 [Ni5(Msphpnda)4](PF6) (complex 9) 87
2-4-10 [Ni4(Msphpnda)4F2](Ni2Cl6O) (complex 10) 88
2-4-11 [Ni5(Msphpnda)4](PF6)2 (complex 11) 88
2-4-12 [NiMo2Ni(Tspnda)4] (complex 14) 89
2-4-13 [CoMo2Co(Tspnda)4] (complex 15) 89
2-4-14 [Mo4(Tsphpnda)3(HTsphpnda)(OAc)] (complex 18) 90
2-4-15 [Co2Re2(tpda)4Cl](PF6) (complex 19) 90
2-4-16 [Co2Re2(tpda)4(NCS)](PF6) (complex 20) 91
第三章結果與討論 92
3-1 同核-異核金屬串之晶體結構解析 92
3-1-1 [Ni5(Tspnda)4](PF6) (1)晶體結構解析 92
3-1-2 [Ni5(Tspnda)4(H2O)2](PF6)2 (2)晶體結構解析 94
3-1-3 [Ni5(Tsphpnda)4](PF6) (3)晶體結構解析 96
3-1-4 [Ni5(Tsphpnda)4](PF6)2 (4)晶體結構解析 98
3-1-5 [Ni5(Tspnda)4](BF4) (5)晶體結構解析 101
3-1-6 [Ni5(Mspnda)4](PF6) (6)晶體結構解析 103
3-1-7 [Ni4(Mspnda)4(H2O)2] (7)晶體結構解析 105
3-1-8 [Ni5(Mspnda)4](CF3SO3)2 (8)晶體結構解析 107
3-1-9 [Ni5(Msphpnda)4](PF6) (9)晶體結構解析 109
3-1-10 [Ni4(Msphpnda)4F2](Ni2Cl6O) (10)晶體結構解析 111
3-1-11 [Ni5(Msphpnda)4](PF6)2 (11)晶體結構解析 114
3-1-12 [NiMo2Ni(Tspnda)4] (14)晶體結構解析 116
3-1-13 [CoMo2Co(Tspnda)4] (15)晶體結構解析 117
3-1-14 [Mo4(Tsphpnda)3(HTsphpnda)(OAc)] (18)晶體結構解析 119
3-1-15 [Co2Re2(tpda)4Cl](PF6) (19)晶體結構解析 121
3-1-16 [Co2Re2(tpda)4(NCS)](PF6) (20)晶體結構解析 123
3-2 鈷金屬(Co)與鉻金屬(Cr)及異核金屬串之合成與探討 126
3-2-1 [Co5(Tspnda)4](PF6)2 (12)之合成 126
3-2-2 [Cr4(Tspnda)4] (13)之合成 127
3-2-3 [Mo4Ni(Tspnda)4](PF6)2 (16)之合成 128
3-3 具混價單元鎳金屬串之結構綜合討論與比較 130
3-4 磁化率(Magnetic Susceptibility)分析 135
3-4-1 [Ni5(Tspnda)4](PF6) (1)之磁性分析 140
3-4-2 [Ni5(Tspnda)4(H2O)2](PF6)2 (2)之磁性分析 141
3-4-3 [Ni5(Tsphpnda)4](PF6) (3)之磁性分析 143
3-4-4 [Ni5(Tspnda)4](BF4) (5)之磁性分析 144
3-4-5 [Ni5(Mspnda)4](PF6) (6)之磁性分析 145
3-4-6 [Ni4(Mspnda)4(H2O)2] (7) 之磁性分析 146
3-4-7 [Ni5(Msphpnda)4](PF6) (9)之磁性分析 148
3-4-8 [NiMo2Ni(Tspnda)4] (14)之磁性分析 149
3-4-9 [CoMo2Co(Tspnda)4] (15)之磁性分析 150
3-5 電子順磁共振(Electron Paramagnetic Resonance, EPR)分析 151
3-5-1 [Ni5(Tspnda)4](PF6) (1)、[Ni5(Tsphpnda)4](PF6) (3)、[Ni5(Mspnda)4](PF6) (6)和[Ni5(Msphpnda)4](PF6) (9)之電子自旋共振分析 154
3-5-2 [Ni5(Tspnda)4(H2O)2](PF6)2 (2)之電子自旋共振分析 157
3-6 具混價單元鎳金屬串之結構、磁化率與EPR之綜合討論與比較 158
3-7 電化學分析 161
3-7-1 [Ni5(Tspnda)4](PF6) (1)和[Ni5(Tspnda)4(H2O)2](PF6)2 (2)之電化學分析與討論 162
3-7-2 [Ni5(Tsphpnda)4](PF6) (3)和[Ni5(Tsphpnda)4](PF6)2 (4)之電化學分析與討論 164
3-7-3 [Ni5(Mspnda)4](PF6) (6)和[Ni5(Msphpnda)4](PF6) (9)之電化學分析與討論 166
3-7-4 [NiMo2Ni(Tspnda)4] (14)和[CoMo2Co(Tspnda)4] (15)之電化學分析與討論 168
3-7-5 [Mo4(Tsphpnda)3(HTsphpnda)(OAc)] (18)之電化學分析與討論 169
3-7-6 [Co2Re2(tpda)4Cl](PF6) (19)和[Co2Re2(tpda)4(NCS)](PF6) (20)之電化學分析與討論 170
3-8 電子吸收光譜分析 171
3-8-1 [Ni5(Tspnda)4](PF6) (1)、[Ni5(Tspnda)4(H2O)2](PF6)2 (2)和H2Tspnda配基之電子吸收光譜分析 172
3-8-2 [Ni5(Tsphpnda)4](PF6) (3)、[Ni5(Tsphpnda)4](PF6)2 (4)和H2Tsphpnda配基之電子吸收光譜分析 174
3-8-3 [Ni5(Mspnda)4](PF6) (6)和H2Mspnda配基之電子吸收光譜分析 176
3-8-4 [Ni4(Mspnda)4(H2O)2] (7)和H2Mspnda配基之電子吸收光譜分析 178
3-8-5 [Ni5(Msphpnda)4](PF6) (9)、[Ni5(Msphpnda)4](PF6)2 (11)和H2Msphpnda配基之電子吸收光譜分析 180
3-8-6 [NiMo2Ni(Tspnda)4] (14)、[CoMo2Co(Tspnda)4] (15)和H2Tspnda配基之電子吸收光譜分析 182
3-8-7 [Co2Re2(tpda)4Cl](PF6) (19)、[Co2Re2(tpda)4(NCS)](PF6) (20)和H2tpda配基之電子吸收光譜分析 184
3-8-8 具混價單元金屬串化合物之近紅外光電子吸收光譜分析 186
第四章結論與未來工作 187
參考文獻 190
附錄光譜和晶體數據 196
1.Bernard, M., "Why Everyone Must Get Ready For The 4th Industrial Revolution". Forbes, Retrieved, 2018.
2.Drexler, K. E., "Engines of Creation: The Coming Era of Nanotechnology". Doubleday, 1986.
3.Aviram, A.; Ratner, M. A., Chem. Phys. Lett. 1974, 29, 277-283.
4.Tour, J. M., Acc. Chem. Res. 2000, 33, 791.
5.Reed, M. A.; Tour, J. M., Sci. Am. 2000, 282, 86.
6.(a) Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S., Science, 1964, 145, 1305. (b) Tsai T.-W.; Huang Q.-R.; Peng S.-M.; Jin B.-Y., J. Phys. Chem. C, 2010, 114, 3641–3644. (c) Hua S.-A.; Cheng M.-C.; Chen C.-h.; Peng S.-M., Eur. J. Inorg. Chem. 2015, 2510–2523.
7.Sigal, I. S.; Mann, K. R.; Gray, H. B., J. Am. Chem. Soc. 1980, 102, 7252.
8.Barton, J. K.; Best, S. A.; Lippard, S. J.; Walton, R. A., J. Am. Chem. Soc. 1978, 100, 3785.
9.(a) Tejel, C.; Ciriano, M. A.; López, J. A.; Lahoz, F. J.; Oro, L. A. Angew. Chem. Int. Ed., 1998, 37, 1542. (b) Tejel, C.; Sommovigo, M.; Ciriano, M. A.; López, J. A.;Lahoz, F. J.; Oro, L. A. Angew. Chem. Int. Ed., 2000, 39, 2336. (c) Tejel, C.; Ciriano, M. A.; Villarroya, B. E.; Gelpi, R., López, J. A.; Lahoz, F. J.; Oro, L. A., Angew. Chem. Int. Ed. 2001, 40, 4084.
10.Prater, M. E.; Pence, L. E.; Clerac, R.; Finniss, G. M.; Campana, C.; Jerome, D.; Auban-Senzier, P.; Canadell, E.; Dunbar, K. R., J. Am. Chem. Soc. 1999, 121, 8005.
11.Hofmann, K. A.; Bugge, G., Ber. Dtsch. Chem. Ges., 1908, 41, 312.
12.Krogmann, K., Angew. Chem. Int. Ed., 1969, 8, 35-42.
13.Barton, J. K.; Best, S. A.; Lippard, S. J.; Walton, R. A., J. Am. Chem. Soc. 1978, 100, 3785.
14.Prater, M. E.; Pence, L. E.; Clerac, R.; Finniss, G. M.; Campana, C.; Jerome, D.; Auban-Senzier, P.; Canadell, E.; Dunbar, K. R., J. Am. Chem. Soc. 1999, 121, 8005.
15.(a) Murahashi, T.; Mochizuki, E.; Kai, Y.; Kurosawa, H., J. Am. Chem. Soc., 1999, 121, 10660. (b) Murahashi, T.; Higuchi, Y.; Katoh, T.; Kurosawa, H., J. Am. Chem. Soc., 2002, 124, 14288. (c) Ishikawa, Y.; Kimura, S.; Takase, K.; Yamamoto, K.; Kurashige, Y.; Yanai, T.; Murahashi, T., Angew. Chem. Int. Ed., 2015, 54, 2482-2486.
16.Horiuchi, S.; Tachibana, Y.; Yamashita, M.; Yamamoto, K.; Masai, K.; Takase, K.; Matsutani, T.; Kawamata, S.; Kurashige, Y.; Yanai, T.; Murahashi, T., Nature Commun. 2016, 6, 6742.
17.Mashima, K.; Nakano, H.; Nakamura, A., J. Am. Chem. Soc. 1993, 115, 11632-11633.
18.Nakamae, K.; Takemura, Y.; Kure, B.; Nakajima, T.; Kitagawa, Y.; Tanase, T., Angew. Chem. Int. Ed. 2015, 54, 1016-1021.
19.Dolinar, B. S.; Berry, J. F., Inorg. Chem. 2013, 52, 4658−4667.
20.(a) Yan, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S.-M., Chem Commun. 1994, 2377. (b) Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S.-M., Chem. Commun. 1996, 315. (c) Kuo, C. K.; Liu, P. C.; Yeh, C. Y.; Chou, C. H.; Taso, T. B.; Lee, G. H.; Peng, S. M. Chem. Eur. J. 2007, 13, 1442. (d) Clerac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X., Inorg. Chem. 1999, 38, 2655. (e) 李忠州,國立台灣大學化學系博士論文,2005。
21.(a) Shieh, S. Y.; Chou, C. C.; Lee, G. H.; Wang, C. C.; Peng, S. M., Angew. Chem. Int. Ed., 1997, 36, 56. (b) Wang, C. C.; Lo, W. C.; Chou, C. C.; Lee, G. H.; Chen, J. M.; Peng, S. M., Inorg. Chem. 1998, 37, 4059. (c) Chang, H. C.; Li, J. T.; Wang, C. C.; Lin, T. W.; Lee, H. C.; Lee, G. H.; Peng, S. M., Eur. J. Inorg. Chem. 1999, 1243.
22.(a) Lai, S. Y.; Lin, T. W.; Chen, Y. H.; Wang, C. C.; Lee, G. H.; Yang, M. H.; Leung, M. K.; Peng, S. M., J. Am. Chem. Soc. 1999, 121, 250. (b) Lai, S. Y.; Wang, C. C.; Chen, Y. H.; Lee, C. C.; Liu, Y. H.; Peng, S. M., J. Chin. Chem. Soc. 1999, 46, 477. (c) Chen, Y. H.; Lee, C. C.; Wang, C. C.; Lee, G. H.; Lai, S. Y.; Li, F. Y.; Mou, C. Y.; Peng, S. M., Chem. Commun. 1999, 1667. (d) Wang, W. Z.; Ismayilov, R. H.; Lee, G. S.; Liu, I. B. C.; Yeh, C. Y.; Peng, S. M., Dalton Trans. 2007, 830.
23.(a) Peng, S. M.; Wang, C. C.; Chiang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K., J. Mag. Mag. Mater. 2000, 209, 80. (b) Ismayilov, R. H.; Wang, W. Z.; Wang, R. R.; Yeh, C. Y.; Lee, G. S.; Peng, S. M., Chem. Commun. 2007, 1121.
24.Wibaut, J. P.; Dingemasse, E., Rec. Trav. Chim. Pays-Bas, 1923, 42, 240-250.
25.Freeman, H. C.; Snow, M. R., Acta Crystallogr., 1965, 18, 843.
26.Hurley, T. J.; Robinson, M. A., Inorg. Chem. 1968, 7, 33-38.
27.Aduldecha, S.; Hathaway, B., J. Chem. Soc. Dalton Trans., 1991, 993.
28.Wagan, S.; Buchwald, S. L., J. Org. Chem., 1996, 61, 7240-7241.
29.Peng, S. M.; Wang, C. C.; Jang Y. L.; Chen Y. H.; Li F. Y.; Mou C. Y.; Leung M. K. J. Magn. Magn. Mater., 2000, 209, 80-83.
30.Ismayilov, R. H.; Wang, W. Z.; Wang, R. R.; Yeh C. Y.; Lee, G. H.; Peng S. M., Chem. Commun. 2007, 1121-1123.
31.Sacconi, L.; Mealli, C.; Gatteschi, D., Inorg. Chem., 1974, 13, 1985-1991.
32.Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S. A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M., Angew. Chem. Int. Ed., 2011, 50, 2045-2048.
33.(a) Chien, C. H.; Chang, J. C.; Yeh, C. Y.; Lee, G. H.; Fang, J. M.; Song, Y.; Peng, S. M., Dalton Trans. 2006, 35, 3249–3256. (b) Chien, C. H.; Chang, J. C.; Yeh, C. Y.; Lee, G. H.; Fang, J. M.; Peng, S. M., Dalton Trans. 2006, 35, 2106–2113.
34.Hua, S. A.; Liu, I. P. C.; Hasanov, H.; Huang, G. C.; Ismayilov, R. H.; Chiu, C. L.; Yeh, C. Y.; Lee, G. H.; Peng, S. M., Dalton Trans. 2010, 39, 3890–3896.
35.王瑞仁,國立台灣大學化學系博士論文,2007。
36.邱梅君,國立台灣大學化學系碩士論文,2006。
37.Yang C. C.; Liu, I. P. C.; Hsu, Y. J.; Lee G. H.; Chen, C. h.; Peng S. M., Eur. J. Inorg. Chem. 2013, 263–268.
38.Cotton, F. A.; Walton, R. A. Multiple Bonds between Metal Atoms, 3rd ed., Springer, Berlin, 2005.
39.Cotton, F. A., and C. B. Harris., Inorg. Chem. 1965, 4, 330-333.
40.Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S., Science, 1964, 145, 1305.
41.Cotton, F. A.; Curtis, N. F.; Johnson, B. G.; Robinson, W. R., Inorg. Chem. 1965, 4, 326.
42.Berry J. F.; Cotton F. A.; Daniels L. M.; Murillo C. A. and Wang X. Inorg. Chem. 2003, 42, 2418-2427.
43.Yan, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M. J. Chem. Soc., Chem Commun. 1994, 2377.
44.Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M., Chem. Commun. 1996, 315.
45.Clerac,R.,Cotton, F. A.,Daniels, L. M., Dunbar, K. R., Murillo, C. A., PascualI., Inorg. Chem. 2000, 39, 752–756.
46.Rohmer, M. M.; Liu, I. P.-C.; Lin, J. C.; Chiu, M. J.; Lee, C. H.; Lee, G. H.; Bénard, M.; Lopez, X.; Peng, S. M., Angew. Chem. Int. Ed. 2007, 46, 3533.
47.(a) Rohmer, M. M.; I. Liu P. C.; Lin, J. C.; Chiu, M. J.; Lee G. S.; Bénard, M. López, X.; Peng, S. M., Angew. Chem. Int. Ed. 2007, 119, 3603. (b) Liu, I. P. C.; Lee, G. H.; Peng, S. M.; Bénard, M.; Rohmer, M. M., Inorg. Chem. 2007, 46, 9602.
48.Nippe, M.; Timmer, G. H.; Berry, J. F., Chem. Commun. 2009, 4357–4359.
49.Yu, L. C.; Lee, G. H.; Sigrist, M.; Lin, T. S.; Peng, S. M., Eur. J. Inorg. Chem. 2016, 4250–4256.
50.Huang, G. C.; Bénard, M.; Rohmer M. M.; Li, L. A.; Chiu, M. J.; Yeh, C. Y.; Lee, G. H.; Peng, S. M., Eur. J. Inorg. Chem. 2008, 1767.
51.Cheng, M. C.; Mai, C. L.; Yeh, C. Y.; Lee, G. H.; Peng, S. M., Chem. Commun. 2013, 49, 7938.
52.Huang, M. J.; Hua, S. A.; Fu, M. D.; Huang, G. C.; Yin, C.; Ko, C. H.; Kuo, C. K.; Hsu, C. H.; Lee, G. H.; Ho, K. Y.; Wang, C. H.; Yang, Y. W.; Chen, I-C.; Peng, S. M.; Chen, C. H., Chem. Eur. J. 2014, 20, 4526.
53.華紹安,國立台灣大學化學系博士論文,2012。
54.何柏賢,國立台灣大學化學系博士論文,2013。
55.Hung, W. C.; Sigrist, M.; Hua, S. A.; Wu, L. C.; Liu, T. J.; Jin B. Y.; Lee, G. H.; Peng, S. M., Chem. Commun. 2016, 12380-12382.
56.張惟程,國立台灣大學化學系博士論文,2017。
57.尤崇翰,國立台灣大學化學系博士論文,2017。
58.Cotton, F. A.; Curtis, N. F.; Johnson, B. F. G.; Robinson, W. R., Inorg. Chem. 1965, 4, 326.
59.Yeh, C.-W.; Liu, I. P.-C.; Wang, R.-R.; Yeh, C.-Y.; Lee, G.-H.; Peng, S.-M., Eur. J. Inorg. Chem., 2010, 3153–3159.
60.(a) Ross, F. K.; Stucky, G. D., J. Am. Chem. Soc., 1970, 92, 4538–4544; (b) Berry, J. F., Cotton, F. A., Daniels, L. M., Murillo, C. A., Wang, X., Inorg. Chem., 2003, 42, 2418-2427; (c) Morelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Dodge, J., J. Am. Chem. Soc., 1979, 101, 4858-4866; (d) Su, S.-G., Guo, Z.-Y., Li, G.-G., Deng, R.-P., Song, S.-Y., Qin, C., Pan, C.-L., Guo, H.-D., Cao, F., Wang, S., Zhang, H.-J., Dalton. Trans., 2010, 39, 9123-9130.
61.Yu, C.-H., Kuo, M.-S., Chuang, C.-Y., Lee, G.-H., Hua, S.-A., Jin, B.-Y., Peng, S.-M., Chem. Asian J. 2014, 9, 3111-3115.
62.(a) Fox, S., Stibrany, R. T., Potenza, J. A., & Schugar, H. J., Inorg. Chim. Acta, 2001, 1, 122-126; (b) Brown, D. B. (Ed.). Mixed-Valence Compounds: Theory and Applications in Chemistry, Physics, Geology, and Biology, Springer Science & Business Media, 2012.
63.(a) Kiehl, P., Rohmer, M. M., Bénard, M., Inorg. Chem. 2004, 43, 3151-3158; (b) Berry, J. F., Cotton, F. A., Lu, T. B., Murillo, C. A., Wang, X. P., Inorg. Chem. 2003, 42, 3595-3601; (c) J. H. van Vleck, Theory of Electric and Magnetic Susceptibilities, Oxford University Press, London, 1932; (d) Heisenberg W., Z. Phys. 1926, 38, 411.
64.(a) Alan, C., and McLachlan, A. D., Introduction to Magnetic Resonance: with Applications to Chemistry and Chemical Physics, 1967; (b) Ayscough, P. B., Electron Spin Resonance in Chemistry, Barnes and Noble, New York, 1967; (c) Griffith, J. S., On the General Theory of Magnetic Susceptibilities of Polynuclear Transition-metal Compounds. In: Structure and Bonding. Springer, Berlin, Heidelberg, 1972, p.87-126.
65.(a) Hagen, W. R., Dalton Trans., 2006, 4415-4434; (b) Hagen, W. R., Biomolecular EPR spectroscopy, 2009; (c) Badarau, I. M., Wickman, H. H., Inorg. Chem. 1985, 24, 1889-1892; (d) Palmer, G., Physical Methods in Bioinorganic Chemistry, L. Que ed. 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔