(3.239.33.139) 您好!臺灣時間:2021/03/02 15:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏丞偉
研究生(外文):Cheng-Wei Yan
論文名稱:多吡啶胺配基之五核及七核異金屬錯合物之合成與研究
論文名稱(外文):Syntheses and Studies of Penta- and Heptanuclear Heterometallic String Complexes with Oligo-α-pyridylamine Ligands
指導教授:彭旭明彭旭明引用關係
指導教授(外文):Shie-Ming Peng
口試委員:金必耀林天送陳俊顯王志傑
口試委員(外文):Bih-Yaw JinTien-Sung LinChun-hsien ChenChih-Chieh Wang
口試日期:2019-06-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:98
中文關鍵詞:金屬串奈米導線單分子導電度無機化合物
DOI:10.6342/NTU201900862
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室主要致力於研究不同金屬搭配不同配基合成出具有導電性與金屬-金屬鍵的金屬串錯合物,並藉儀器去量測其導電度,再與其他金屬串分子做比較,希望在未來可以應用在電子元件上,發展為分子導線的奈米材料,對元件微小化是非常有幫助的。
本篇論文主要是利用傳統直線型配基Tripyridyldiamino ligand (H2tpda)與Tetrapyridyltriamindo ligand (H3teptra)混合不同金屬在高溫萘燒下進行反應,成功合成出最長七核異金屬錯合物[Ni2Ru2Ni3(μ7-teptra)4(NCS)2](PF6) (1)及不對稱混金屬錯合物[Os2Ni3(μ5-tpda)4Cl2](PF6) (2)、[Os2Co3(μ5-tpda)4Cl2](PF6) (3)。
由X-ray單晶繞射儀鑑定結構後發現,所有錯合物皆以四片全順向式配基螺旋纏繞在金屬離子外圍。對於1而言,中間失序的金屬為Ru雙核與Ni,雙核釕金屬單元為[Ru2]5+,其餘鎳金屬皆為正二價,磁性量測部分為在300 K時μeff為5.49 B.M.,推測金屬電子自旋依序為S = 1、0、3/2、0、1,接近純自旋理論μeff = 5.56 B.M.,合成此金屬串目的是想了解是否有負微分電阻的性質存在。錯合物1之單分子導電度8.53 × 10-4 G0 (電阻值為15.1 ± 4.8 MΩ),與[Ni7(μ7-teptra)4(NCS)2] +之單分子導電度3.2 × 10-4 G0 (電阻值40.0 ± 7.9 MΩ)相比,導電度提高約兩倍左右; 另外,在I-V曲線圖中發現只有少部分的曲線才有NDR的現象存在。在電化學部分,有兩對可逆的氧化還原對E1/2 = 0.75 V和-0.16 V; 對2而言,金屬的部分沒有失序,Os-Os鍵長為2.3151(2) Å,為2.5個鍵序,於磁性量測部分為在300 K時μeff為4.95 B.M.,推測金屬電子自旋為S = 1、0、0、3/2,與純自旋理論μeff = 4.58 B.M.相近,為反鐵磁性。在3中,結構中的金屬有失序的情況,但鍵長仍落在合理範圍內,而磁性在300 K時μeff為3.05 B.M.,與純自旋理論μeff = 5.48 B.M.有落差,推估其未達飽和值的緣故,若溫度持續上升是有可能達飽和值的。
Over the past few decades, a considerable number of studies have been made on metal string complexes which are believed to have the potential to be used for nano-electronics. Herein, we develop new generation of metal string complexes, which are the first example of the longest heteronuclear Ruthenium-based metal chain and Osmium-based metal string complexes.
The first part is to synthesize a novel heptanuclear heterometallic string complex [Ni2Ru2Ni3(μ7-teptra)4(NCS)2](PF6) (1), and the idea comes from pentanuclear metal string complex [Ni3Ru2(μ5-tpda)4(NCS)2], which showed some negative differential resistance (NDR) behavior. Thus, we try to synthesize and explore whether it still show the NDR behavior when prolonging the metal chain. For 1, the molecular structure reveals that the metal ions (NiII-NiII-NiII-Ru2V-NiII-NiII) are helically wrapped by four deprotonated teptra- ligands which adopted a syn-syn arrangement to coordinate with metal atoms. Furthermore, the central of three metal atoms (diruthenium unit and nickel atom) are disordered in the structure, resulting in the comparison of the bond length is unreliable in the central [Ru2Ni] unit. However, we still confirm that there exists a metal-metal bond (about 2.2498(3) Å) in diruthenium unit. The magnetic susceptibility measurement of 1 exhibits μeff = 5.49 B.M. at 300 K, which is consistent with the theoretical spin-only value μs.o. = 5.56 B.M.. Moreover, 1 also shows an antiferromagnetic interaction since the different electron spin coupling (S = 1、3/2 and 1). The conductance for single molecule of 1 is 8.53 × 10-4 G0, which is almost two-time higher than that of [Ni7(μ7-teptra)4(NCS)2]+ (3.2 × 10-4 G0), but 1 shows rarely NDR behavior around Ebias = 1.25 V in I-V curve diagrams. We consider that the main reason is due to the metal-metal bond in [Ru2] 5+ unit, which cause an increase of in electrical conductively. The results of cyclic voltammetry indicate the presence of two reversible redox couples at E1/2 = 0.75 V and -0.16 V.
In the second part, two asymmetrical pentanuclear heterometallic strings [Os2Ni3(μ5-tpda)4Cl2](PF6) (2) and [Os2Co3(μ5-tpda)4(Cl)2](PF6) (3) supported by H2tpda ligands are synthesized and characterized. By using X-ray single crystal diffraction, complex 2 shows that the structure is non-disordered, and Os–Os bond length is 2.3151(2) Å, but 3 have slightly disordered. The magnetic susceptibility measurements confirm that 2 and 3 exhibit an antiferromagnetic interaction since the different electron spin coupling (S = 1 and 3/2 for both 2 and 3). Furthermore, the effective moment μeff = 4.95 B.M. at 300 K for 2 is similar to the theoretical spin-only value μs.o. = 4.58 B.M. and μeff = 3.05 B.M. at 300 K for 3 is lower than the theoretical spin-only value μs.o. = 5.48 B.M., which is assigned to unsaturation magnetic moment. Cyclic voltammetry measurements of 2 shows two reversible redox couples at E1/2 = 0.37 V and -0.31 V; 3 reveals four reversible redox couples at E1/2 = 1.31 V、0.85 V、0.45 V and -0.30 V.
第1章 緒論 1
1-1 前言 1
1-2 金屬-金屬鍵結理論 1
1-2-1有架橋配基的金屬錯合物 2
1-2-2雙核金屬錯合物之金屬-金屬鍵結 5
1-2-3直線型三核過渡金屬錯合物之鍵結 8
1-3 分子導線概念與應用 10
1-4 多氮配基及其錯合物 12
1-4-1多吡啶胺配基 13
1-4-2同核金屬串錯合物 13
1-4-3異三核金屬串錯合物 15
1-5 研究動機 18
第2章 實驗部分 19
2-1 試藥與儀器 19
試藥與溶劑 19
Ru2(OAc)4Cl雙核釕金屬起始物合成 20
Os2(OAc)4Cl2雙核鋨金屬起始物合成 20
實驗儀器 20
2-2 化合物合成 23
2-2-1 H3dpda (N4)之合成 23
2-2-2 Bromo-Hdpa (N3Br)之合成 24
2-2-3 H3teptra (N7)之合成 25
2-2-4 H2tpda (N5)之合成 26
2-2-5 Preparation of [Ni2Ru2Ni3(μ7-teptra)4(NCS)2](PF6) (1) 27
2-2-6 Preparation of [Os2Ni3(μ5-tpda)4Cl2](PF6) (2) 28
2-2-7 Preparation of [Os2Co3(μ5-tpda)4Cl2](PF6) (3) 29
2-2-8 Preparation of [Re2Ni5(μ7-teptra)4(NCS)2](PF6) (4) 30
2-2-9 Preparation of [Os2Ni5(μ7-teptra)4(NCS)2](PF6) (5) 31
第3章 結果與討論 32
3-1 配基合成 32
3-2 [Ni2Ru2Ni3(μ7-teptra)4(NCS)2](PF6) (1)合成與結構探討 33
3-2-1 錯合物之合成 33
3-2-2 結構分析 34
3-3 [Os2M3(μ5-tpda)4Cl2](PF6)合成與結構探討 35
3-3-1 [Os2Ni3(μ5-tpda)4Cl2](PF6) (2) 35
3-3-2 [Os2Co3(μ5-tpda)4Cl2](PF6) (3) 38
3-4 磁性分析 41
3-4-1 [Ni2Ru2Ni3(μ7-teptra)4(NCS)2](PF6) (1) 44
3-4-2 [Os2Ni3(μ5-tpda)4Cl2](PF6) (2) 46
3-4-3 [Os2Co3(μ5-tpda)4Cl2](PF6) (3) 47
3-5 電化學分析 49
3-5-1 [Ni2Ru2Ni3(μ7-teptra)4(NCS)2](PF6) (1) 49
3-5-2 [Os2Ni3(μ5-tpda)4Cl2](PF6) (2) 50
3-5-3 [Os2Co3(μ5-tpda)4Cl2](PF6) (3) 51
3-6 電子吸收光譜分析 52
3-6-1 [Ni2Ru2Ni3(μ7-teptra)4(NCS)2](PF6) (1)及H3teptra (N7) 53
3-6-2 [Os2M3(μ5-tpda)4Cl2](PF6) (M = Ni (2)、Co (3))及H2tpda (N5) 54
3-7 導電值分析 56
3-7-1 [Ni2Ru2Ni3(μ7-teptra)4(NCS)2](PF6) (1) 56
第4章 總結 59
4-1 結論 59
4-2 未來展望 60
參考文獻 61
附錄 光譜和晶體數據 65
附錄A 光譜相關鑑定(Mass、NMR、IR) 65
附錄B 晶體結構數據 76
[1]Ramström, O. The Royal Swedish Academy of Sciences. 2016.
[2]Cotton, F. A.; Walton, R. A. Multiple Bonds between Metal Atoms; 2nd Ed., 1993.
[3]Werner, A., Neuere Anschauungen auf dem Gebiete der anorganischen Chemie. F. Vieweg und Sohn: Braunschweig, 1905.
[4]Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F.; Lippard, S.J.; Mague, J. T.; Robinson, W. R.; Wood, J. S., Science 1964, 145(3638), 1305.
[5](a) Yuki, I.; Seita, K.; Kohei, T.; Koji, Y.; Yuki, K.; Takeshi, Y.; Tetsuro, M. Angew. Chem. Int. Ed. 2015, 54 (8), 2482-2486; (b) Murahashi, T.; Mochizuki, E.; Kai, Y.; Kurosawa, H. J. Am. Chem. Soc. 1999, 121 (45), 10660-10661; (c) Murahashi, T.; Higuchi, Y.; Katoh, T.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124 (48), 14288-14289.
[6]Horiuchi, S.; Tachibana, Y.; Yamashita, M.; Yamamoto, K.; Masai, K.; Takase, K.; Matsutani, T.; Kawamata, S.; Kurashige, Y.; Yanai, T.; Murahashi, T. Nature Commun. 2015, 6, 6742.
[7](a) Rüffer, T.; Ohashi, M.; Shima, A.; Mizomoto, H.; Kaneda, Y.; Mashima, K. J. Am. Chem. Soc., 2004, 126, 12244. (b) Ohashi, M.; Shima, A.; Rüffer, T.; Mizomoto, H.; Kaneda, Y.; Mashima, K. Inorg. Chem., 2007, 46, 6702. (c) Mashima, K.; Nakano, H.; Nakamura, A. J. Am. Chem. Soc. 1993, 115, 11632-11633.
[8]Kanako, N.; Yukie, T.; Bunsho, K.; Takayuki, N.; Yasutaka, K.; Tomoaki, T. Angew. Chem. Int. Ed. 2015, 54 (3), 1016-1021.
[9](a) Yan, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S.-M. J. Chem. Soc. Chem Commun. 1994, 2377. (b) Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S.-M. Chem. Commun. 1996, 315. (c) Kuo, C. K.; Liu, P. C.; Yeh, C. Y.; Chou, C. H.; Taso, T. B.; Lee, G. H.; Peng, S. M. Chem. Eur. J. 2007, 13, 1442. (d) Clerac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X. Inorg. Chem. 1999, 38, 2655.
[10](a) Shieh, S. Y.; Chou, C. C.; Lee, G. H.; Wang, C. C.; Peng, S. M. Angew. Chem. Int. Ed. 1997, 36, 56. (b) Wang, C. C.; Lo, W. C.; Chou, C. C.; Lee, G. H.; Chen, J. M.; Peng, S. M. Inorg. Chem. 1998, 37, 4059. (c) Chang, H. C.; Li, J. T.; Wang, C. C.; Lin, T. W.; Lee, H. C.; Lee, G. H.; Peng, S. M. Eur. J. Inorg. Chem. 1999, 1243.
[11](a) Lai, S. Y.; Lin, T. W.; Chen, Y. H.; Wang, C. C.; Lee, G. H.; Yang, M. H.; Leung, M. K.; Peng, S. M. J. Am. Chem. Soc. 1999, 121, 250. (b) Lai, S. Y.; Wang, C. C.; Chen, Y. H.; Lee, C. C.; Liu, Y. H.; Peng, S. M. J. Chin. Chem. Soc. 1999, 46, 477. (c) Chen, Y. H.; Lee, C. C.; Wang, C. C.; Lee, G. H.; Lai, S. Y.; Li, F. Y.; Mou, C. Y.; Peng, S. M. Chem. Commun. 1999, 1667. (d) Wang, W. Z.; Ismayilov, R. H.; Lee, G. S.; Liu, I. B. C.; Yeh, C. Y.; Peng, S. M. Dalton Trans., 2007, 830.
[12](a) Hua, S. A.; Cheng, M. C.; Chen, C. h.; Peng S. M. Eur. J. Inorg. Chem., 2015, 2510–2523. (b) Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S. A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M. Angew. Chem. Int. Ed., 2011, 50, 2045-2048. (c) Cheng, M.-C.; Mai, C.-L.; Yeh, C.-Y.; Lee, G.-H.; Peng, S.-M., Chem. Commun. 2013, 49 (72), 7938-7940.
[13]Cotton, F. A.; Walton, R. A. Multiple Bonds between Metal Atoms, 3rd ed., Springer, Berlin, 2005.
[14]Sigal, I. S.; Mann, K. R.; Gray, H. B. J. Am. Chem. Soc. 1980, 102, 7252.
[15]Barton, J. K.; Best, S. A.; Lippard, S. J.; Walton, R. A. J. Am. Chem. Soc. 1978, 100, 3785.
[16](a) Tejel, C.; Ciriano, M. A.; López, J. A.; Lahoz, F. J.; Oro, L. A. Angew. Chem. Int. Ed. 1998, 37, 1542. (b) Tejel, C.; Sommovigo, M.; Ciriano, M. A.; López, J. A.; Lahoz, F. J.; Oro, L. A. Angew. Chem. Int. Ed. 2000, 39, 2336. (c) Tejel, C.; Ciriano, M. A.; Villarroya, B. E.; Gelpi, R., López, J. A.; Lahoz, F. J.; Oro, L. A., Angew. Chem. Int. Ed. 2001, 40, 4084.
[17]Prater, M. E.; Pence, L. E.; Clerac, R.; Finniss, G. M.; Campana, C.; Jerome, D.; Auban-Senzier, P.; Canadell, E.; Dunbar, K. R. J. Am. Chem. Soc. 1999, 121, 8005.
[18]Tsai T.-W.; Huang Q.-R.; Peng S.-M.; Jin B.-Y. J. Phys. Chem. C, 2010, 114, 3641–3644.
[19]Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin, T. P.; Jones II, L.; Allara, L.; Tour, J. M.; Weiss, P. S. Science, 1996, 271, 1705.
[20]Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science. 2001, 294, 571.
[21]Wibaut, J. P.; Dingemasse, E. Rec. Trav. Chim. Pays-Bas, 1923, 42, 240-250.
[22]Aduldecha, S.; Hathaway, B. J. Chem. Soc. Dalton Trans. 1991, 993.
[23]Wagan, S.; Buchwald, S. L. J. Org. Chem., 1996, 61, 7240-7241.
[24]Chen, P. J.; Sigrist, Marc; Horng, E. C.; Lin, G. M.; Lee, G. H.; Chen, C. H.; Peng S. M. Chem. Commun., 2017, 53, 4673-4676.
[25]Rohmer, M.M.; Liu, I. P.-C.; Lin, J. C.; Chiu, M. J.; Lee, C. H.; Lee, G. H.; Bénard, M.; Lopez, X.; Peng, S. M. Angew. Chem. Int. Ed. 2007, 46, 3533.
[26](a) Rohmer, M. M.; I. Liu P. C.; Lin, J. C.; Chiu, M. J.; Lee G. S.; Bénard, M. López, X.; Peng, S. M. Angew. Chem., Int. Ed. 2007, 119, 3603. (b) Liu, I. P. C.; Lee, G. H.; Peng, S. M.; Bénard, M.; Rohmer, M. M. Inorg. Chem. 2007, 46, 9602.
[27]Nippe, M.; Timmer, G. H.; Berry, J. F. Chem. Commun., 2009, 4357–4359.
[28]Huang, G. C.; Bénard, M.; Rohmer M. M.; Li, L. A.; Chiu, M. J.; Yeh, C. Y.; Lee, G. H.; Peng, S. M. Eur. J. Inorg. Chem. 2008, 1767.
[29](a) Nippe, M.; Berry, J. F. J. Am. Chem. Soc. 2007, 129, 12684. (b) Nippe, M.; Victor, E.; Berry, J. F. Eur. J. Inorg. Chem. 2008, 5569. (c) Nippe, M.; Wang, J.; Bill, E.; Hope, E.; Dalal, N. S.; Berry, J. F. J. Am. Chem. Soc. 2010, 132, 14261. (d) Nippe, M.; Bill, E.; Berry, J. F. Inorg. Chem. 2011, 50, 7650. (e) Aydin-Canturk, D.; Nuss, H. Z. Anorg. Allg. Chem. 2011, 637, 543. (f) Brogden, D. W.; Christian, J. H.; Dalal, N. S.; Berry, J. F. Inorg. Chim. Acta. 2015, 424, 241. (g) Nippe, M.; Yevgeniya, T.; Berry, J. F. Inorg. Chem. 2011, 50, 10592. (h) Brogden, D. W.; Berry, J. F. Inorg. Chem. 2014, 53, 11354.
[30]Cheng, M. C.; Mai, C. L.; Yeh, C. Y.; Lee, G. H.; Peng, S. M. Chem. Commun. 2013, 49, 7938.
[31](a)S. M. Peng et al. Chem. Eur. J. 2014, 20, 4526-4531. (b)華紹安,台大化學所博士論文,2012.
[32]Heravi, M. M.; Kheilkordi, Z.; Zadsirjan, V.; Heydari, M.; Malmir, M. Jornal of Organometallic Chemistry, 2018, 861, 17-104.
[33] Cotton, F. A.; Matusz, M. Polyhedron, 1987, 6, 1439-1443.
[34]Chien, C. H.; Chang, J. C.; Yeh, C. Y.; Lee, G. H.; Fang J. M.; Song, Y.; Peng, S. M. Dalton Trans., 2006, 35, 3249.
[35]Shieh, S. J.; Chou, C. C.; Lee, G. H.; Wang, C. C.; Peng, S. M. Angew. Chem. Int. Ed. 2015, 36, 56-59.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔