|
1.(a) Rothschild, B. M.; Tanke, D. H.; Helbling, M.; Martin, L. D. Epidemiologic study of tumors in dinosaurs. Naturwissenschaften 2003, 90, 495–500. (b) Prates, C.; Sousa, S.; Oliveira, C.; Ikram, S. Prostate metastatic bone cancer in an Egyptian Ptolemaic mummy, a proposed radiological diagnosis. Int. J. Paleopathol. 2011, 1, 98–103. 2.Murray, C.-J.-L. Global, regional, and national comparative risk assessment of 79 behavioral, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet 2016, 388, 1659–1724. 3.Kumar, V.; Abbas, A. K.; Aster, J. C. Robbins and Cotran Pathologic Basis of Disease, 9th Edition. Copyright 2015. 4. (a)Arcamone, F.; Cassinelli, G.; Fantini, G.; Grein, A.; Orezzi, P.; Pol, C.; Spalla. C. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol. Bioeng. 1969, 11, 1101–1110. (b)Lomovskaya, N.; Otten, S. L.; Doi-katayama, Y.; Fonstein, L.; Liu, X.-C.; Takatsu, T.; Inventi-Solari, A.; Fillipini, S.; Torti, F.; Colombo, A. L.; Hutchinson, C. R. Doxorubicin overproduction in streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J. Bacteriold. 1999, 181, 305–318. 5.Yang, F.; Teves, S. S.; Kemp, C. J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta 2014, 1845, 84–89. 6.Wang, J. C. DNA topoisomerases: why so many? J. Biol. Chem. 1991, 266, 6659–6662. 7.Vejpongsa, P.; Yeh, E. T. H. Prevention of anthracycline-induced cardiotoxicity. J. Am. Coll. Cardiol. 2014, 64, 938–945. 8.Olson, R. D.; Boerth, R. C.; Gerber, J. G.; Nies, A. S. Mechanism of adriamycin cardiotoxicity: evidence for oxidative stress. Life Sci. 1981, 29, 1393–1401. 9.Myers, C. The role of iron in doxorubicin-induced cardiomyopathy. Semin. Oncol. 1998, 25, 10–14. 10.Tokarska-Schlattner, M.; Zaugg, M.; Zuppinger, C.; Wallimann, T.; Schlattner, U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J. Mol. Cell. Cardiol. 2006, 41, 389–405. 11.Ji, C.; Yang, B.; Yang, Y.-L.; He, S.-H.; Miao, D.-S.; He, L. ; Bi, Z.-G. Exogenous cell-permeable C6 ceramide sensitizes multiple cancer cell lines to doxorubicin-induced apoptosis by promoting AMPK activation and mTORC1 inhibition. Oncogene 2010, 29, 6557–6568. 12.Uchida, Y.; Itoh, M.; Taguchi, Y.; Yamaoka, S.; Umehara, H.; Ichikawa, S.-I.; Hirabayashi, Y.; Holleran, W.-M.; Okazaki, T. Ceramide reduction and transcriptional up-regulation of glucosylceramide synthase through doxorubicin-activated Sp1 in drug-resistant HL-60/ADR cells. Cancer Res. 2004, 64, 6271–6279. 13.Lepre, C. A.; Strothkamp, K. G.; Lippard, S. J. Synthesis and 1H NMR spectroscopic characterization of trans-[Pt(NH3)2{d(ApGpGpCpCpT)-N7-A(1),N7-G(3)}]. Biochemistry 1987, 26, 5651–5657. 14.Zamble, D. B.; Mu, D.; Reardon, J. T.; Sancar, A.; Lippard, S. J. Repair of cisplatin-DNA adducts by the mammalian excision nuclease. Biochemistry 1996, 35, 10004–10013. 15.Eastman, A. Reevaluation of interaction of cis-dichloro(ethylenediamine)platinum(II) with DNA. Biochemistry 1986, 25, 3912–3915. 16.Johnstone, Y. C.; Suntharalingam, K.; Lippard, S. J. Third row transition metals for the treatment of cancer. Philos. T. Roy. Soc. A. 2014, 373, 0185. 17.Park, K. Controlled drug delivery systems: past forward and future back. J. Control. Release 2014, 190, 3–8. 18.Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D. A.; Torchilin, V. P.; Jain, R. K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995, 55, 3752–3756. 19.Noble, G. T.; Stefanick, J. F.; Ashley, J. D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014, 32, 32–45. 20.Biswas, S.; Torchilin, V. P. Nanopreparations for organelle-specific delivery in cancer. Adv. Drug Deliver. Rev. 2014, 66, 26–41. 21.Monteiro, N.; Martins, A.; Reis, R. L.; Neves, N. M. Liposome in tissue engineering and regenerative medicine. J. R. Soc. Interface 2014, 11, 0459. 22.Lee, R. J.; Low, P. S. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim. Biophys. Acta 1995, 1233, 134-144. 23.Ozawa, M.; Asano, A. The preparation of cell fusion-inducing proteoliposomes from purified glycoproteins of HVJ and chemically defined lipids. J. Biol. Chem. 1981, 256, 5954–5956. 24.Barenholz, Y. C. Doxil® — the first FDA-approved nano-drug: lessons learned. J. Control. Release 2012, 160, 117–134. 25.Haran, G.; Cohen, R.; Bar, L. K.; Barenholz, Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1993, 1151, 201–215. 26.Siegal, T.; Horowitz, A.; Gabizon, A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J. Neurosurg. 1995, 83, 1029–1037. 27.Wu, C.-H.; Kuo, Y.-H.; Hong, R.-L.; Wu. H.-C. α-Enolase–binding peptide enhances drug delivery efficiency and therapeutic efficacy against colorectal cancer. Sci. Transl. Med. 2015, 7, 290ra91. 28.Fantini, M.; Gianni, L.; Santelmo, C.; Drudi, F.; Castellani, C.; Affatato, A.; Nicolini, M.; Ravaioli, A. Lipoplatin treatment in lung and breast cancer. Chemother. Res. Pract. 2011, 2011, 125192. 29.Tippayamontri, T., Kotb, R., Paquette, B., Sanche, L. Efficacy of cisplatin and lipoplatin™ in combined treatment with radiation of a colorectal tumor in nude mouse. Anticancer Res. 2013, 33, 3005−3014. 30.Bartlett, G. R. Colorimetric assay methods for free and phosphorylated glyceric acids. J. Biol. Chem. 1959, 234, 469-471. 31.Barenholz, Y.; Amselem, S.; Goren, D.; Cohen, R.; Gelvan, D.; Samuni, A.; Golden, E. B.; Gabizon, A. Stability of liposomal doxorubicin formulations: problems and prospects. Med. Res. Rev. 1993, 13, 449–491. 32.Stockert, J.C.; Blázquez-Castro, A.; Canete, M.; Horobin, R. H.; Villanueva, A. MTT assay for cell viability: intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796. 33.Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 2016, 116, 3436−3486. 34.Chin, C. F.; Yap, S. Q.; Li, J.; Pastorin, G.; Ang, W. H. Ratiometric delivery of cisplatin and doxorubicin using tumor-targeting carbon-nanotubes entrapping platinum(IV) prodrugs. Chem. Sci. 2014, 5, 2265. 35.Chhikara, B. S.; Mandal, D.; Parang, K. Synthesis, anticancer activities, and cellular uptake studies of lipophilic derivatives of doxorubicin succinate. J. Med. Chem. 2012, 55, 1500−1510. 36.Höck, S.; Marti, R.; Riedl, R.; Simeunovic, M. Thermal cleavage of the fmoc protection group. Chimia 2010, 64, 200−202. 37.Shi, Y.; Liu, S.-A.; Kerwood, D. J.; Goodisman, J.; Dabrowiak, J. C. Pt(IV) complexes as prodrugs for cisplatin. J. Inorg. Biochem. 2012, 107, 6–14. 38.Ghirmai,S.; Mume,E.; Tolmachev, V.; Sjoberg, S. Synthesis and radioiodination of some daunorubicin and doxorubicin derivatives. Carbohyd. Res. 2005, 340, 15–24. 39.Meyer-Losic, F.; Quinonero, J.; Dubois, V.; Alluis, B.; Dechambre, M.; Michel, M.; Cailler, F.; Fernandez, A.-M.; Trouet, A.; Kearsey, J. Improved therapeutic efficacy of doxorubicin through conjugation with a novel peptide drug delivery technology (vectocell). J. Med. Chem. 2006, 49, 6908–6916. 40.Tanaka, H.; Kominato, K.; Yamamoto, R.; Yoshioka, T.; Nishida, H.; Tone, H.; Okamoto, R. Synthesis of doxorubicin-cyclodextrin conjugates. J. Antibiot. 1994, 47, 1025–1029. 41.de Araújo Lopes,S. C.; dos Santos Giuberti, C.; Rocha, T. G. R.; dos Santos Ferreira, D.; Leite, E. A.; Oliveira, M. C. Liposomes as Carriers of Anticancer Drugs, Cancer Treatment. (May 9th 2013). Letícia Rangel, IntechOpen. 42.Marzban, E.; Alavizadeh, S. H.; Ghiadi, M.; Khoshangosht, M.; Khashayarmanesh, Z.; Abbasi, A.; Jaafari, M. R. Optimizing the therapeutic efficacy of cisplatin PEGylated liposomes via incorporation of different DPPG ratios: In vitro and in vivo studies. Colloid Surface. B. 2015, 136, 885–891.
|