( 您好!臺灣時間:2021/03/04 14:45
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chia-Yun Hsu
論文名稱(外文):Doxorubicin–Cisplatin Conjugated Anticancer Drug forLiposomal Co-Delivery
指導教授(外文):Jim-Min Fang
  • 被引用被引用:0
  • 點閱點閱:56
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  阿黴素是美國食品藥品監督管理局(FDA)核准並用於治療多種癌症的抗癌藥物。其毒殺癌細胞的機制有多種可能,其一是透過抑制拓樸異構酶(TOP II),使得DNA雙股螺旋因為無法接合而斷裂,進而破壞細胞,達到毒殺癌細胞的效果。然而,過量的阿黴素會與氧氣作用大量產生具毒性的活性氧類,造成致命的心肌病,使得給藥量必須限制在一定的範圍。
  外表具PEG的脂質體藥物傳輸系統,因其大小及表面的修飾,能夠累積在腫瘤組織之間(EPR effect)、增加在體內循環的時間,使得副作用與投藥次數減少,表現不同的藥物動力學。
  Cancer is a leading cause of death worldwide and is expected to become even more problematic due to the expanding population and aging. Although several kinds of treatments have been introduced to kill cancer cells, there is still a lot of room for improvement of effectiveness and selectivity in cancer treatments.
  Doxorubicin is one of the most frequently used anticancer drugs. After inserting into DNA double strands, doxorubicin stabilizes the topoisomerase II (TOP II) and inhibits TOP II from ligation, which leads to cell death. However, the reactive oxygen species (ROS), which are generated through redox reaction, have been implicated to cause severe side effects when reacting with normal cells.
  Cisplatin, another frequently used anticancer drug, targets nucleus to inhibit cancer cells from duplicating. Nevertheless, the lack of selectivity between cancer cells and normal cells also causes several side effects. To reduce these side effects, proper drug delivery systems are introduced.
  The previous research has found that using PEGylated nano-liposomes to encapsulate doxorubicin can afford prolonged drug circulation time and allow drug released at specific tumor site. These characters of drug delivery system lead to better selectivity, reduced side effects, desired biodistribution, and different pharmacodynamics.
  As for enhancing the effectiveness of killing cancer cells, one would like to encapsulate two kinds of anticancer drugs in each liposome. Nevertheless, simply mixing two drugs in a solution for encapsulation cannot precisely control the proportion, which is not allowed in drug development. It is desirable to conjugate two anticancer drugs through a bio-cleavable covalent bond, which can be broken in the environment inside cells and then release the two drugs to attain additive or synergistic effect.
  In this work, doxorubicin and oxoplatin, which is the oxidized form of cisplatin, were linked by succinate diester to give doxorubicin–oxoplatin conjugate (20). Compound 20 was then encapsulated in liposome to give liposomal 20, which was then used in the cytotoxicity assay. Liposomal 20 showed better inhibition than liposomal doxorubicin in two ovarian cancer cell lines, ES-2 and SKOV-3. The results suggested that conjugation of two anticancer drugs with liposomal delivery system can attain synergistic effect and increase the chance of killing cancer cells.
謝誌 I
摘要 III
1.1 Overview 1
1.1.1 History of cancer 1
1.1.2 Cause of cancer 1
1.1.3 Features of normal cells and cancer cells 4 Growth 4 Repair and death 5 Metastasis 5 Elusion from immune system 5 Blood supply 6 Appearance 6
1.1.4 Difficulty in cancer treatment 6
1.2 Cancer treatments 7
1.2.1 Surgical treatment 7
1.2.2 Radiation treatment 7
1.2.3 Chemotherapy 8 Doxorubicin 8 Features of doxorubicin 8 Mechanism of doxorubicin 9 Cisplatin 13 Features of cisplatin 13 Mechanism of cisplatin 14
1.3 Liposomal drug delivery 15
1.3.1 Features of liposomal drug delivery 15
1.3.2 Doxil® 20
1.3.3 α-Enolase modified liposome 22
1.3.4 Lipoplatin 24
1.4 Liposome characterization and biological activity 26
1.4.1 Determination of phospholipid content 26
1.4.2 Determination of drug concentration 27
1.4.3 Determination of biological activity 27
2.1 Design and synthesis of doxorubicin–cisplatin anticancer drug 29
2.1.1 Principles of design 29
2.1.2 Original plan 31 Design of compounds 10 & 11 31 Attempted synthesis of compounds 10 and 11 32
2.1.3 Revised plan 40 Design of doxorubicin–oxoplatin conjugate compound 20 40 Synthesis of conjugate compound 20 42 Hydrolysis test of compound 12 48
2.2 Liposomal Encapsulation of compound 20 51
2.3 Evaluation of biological activity 59
2.4 Conclusions and prospect 62
3.1 General part 65
3.2 Synthetic procedures and characterization of compounds 66
3.3 Procedure of liposomal encapsulation 74
3.4 Determination of liposome density – Bartlett’s method 75
3.5 Determination of the concentration of compound 20 in liposome 76
3.6 MTT assay 77
1.(a) Rothschild, B. M.; Tanke, D. H.; Helbling, M.; Martin, L. D. Epidemiologic study of tumors in dinosaurs. Naturwissenschaften 2003, 90, 495–500.
(b) Prates, C.; Sousa, S.; Oliveira, C.; Ikram, S. Prostate metastatic bone cancer in an Egyptian Ptolemaic mummy, a proposed radiological diagnosis. Int. J. Paleopathol. 2011, 1, 98–103.
2.Murray, C.-J.-L. Global, regional, and national comparative risk assessment of 79 behavioral, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet 2016, 388, 1659–1724.
3.Kumar, V.; Abbas, A. K.; Aster, J. C. Robbins and Cotran Pathologic Basis of Disease, 9th Edition. Copyright 2015.
4. (a)Arcamone, F.; Cassinelli, G.; Fantini, G.; Grein, A.; Orezzi, P.; Pol, C.; Spalla. C. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol. Bioeng. 1969, 11, 1101–1110.
(b)Lomovskaya, N.; Otten, S. L.; Doi-katayama, Y.; Fonstein, L.; Liu, X.-C.; Takatsu, T.; Inventi-Solari, A.; Fillipini, S.; Torti, F.; Colombo, A. L.; Hutchinson, C. R. Doxorubicin overproduction in streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J. Bacteriold. 1999, 181, 305–318.
5.Yang, F.; Teves, S. S.; Kemp, C. J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta 2014, 1845, 84–89.
6.Wang, J. C. DNA topoisomerases: why so many? J. Biol. Chem. 1991, 266, 6659–6662.
7.Vejpongsa, P.; Yeh, E. T. H. Prevention of anthracycline-induced cardiotoxicity. J. Am. Coll. Cardiol. 2014, 64, 938–945.
8.Olson, R. D.; Boerth, R. C.; Gerber, J. G.; Nies, A. S. Mechanism of adriamycin cardiotoxicity: evidence for oxidative stress. Life Sci. 1981, 29, 1393–1401.
9.Myers, C. The role of iron in doxorubicin-induced cardiomyopathy. Semin. Oncol. 1998, 25, 10–14.
10.Tokarska-Schlattner, M.; Zaugg, M.; Zuppinger, C.; Wallimann, T.; Schlattner, U. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J. Mol. Cell. Cardiol. 2006, 41, 389–405.
11.Ji, C.; Yang, B.; Yang, Y.-L.; He, S.-H.; Miao, D.-S.; He, L. ; Bi, Z.-G. Exogenous cell-permeable C6 ceramide sensitizes multiple cancer cell lines to doxorubicin-induced apoptosis by promoting AMPK activation and mTORC1 inhibition. Oncogene 2010, 29, 6557–6568.
12.Uchida, Y.; Itoh, M.; Taguchi, Y.; Yamaoka, S.; Umehara, H.; Ichikawa, S.-I.; Hirabayashi, Y.; Holleran, W.-M.; Okazaki, T. Ceramide reduction and transcriptional up-regulation of glucosylceramide synthase through doxorubicin-activated Sp1 in drug-resistant HL-60/ADR cells. Cancer Res. 2004, 64, 6271–6279.
13.Lepre, C. A.; Strothkamp, K. G.; Lippard, S. J. Synthesis and 1H NMR spectroscopic characterization of trans-[Pt(NH3)2{d(ApGpGpCpCpT)-N7-A(1),N7-G(3)}]. Biochemistry 1987, 26, 5651–5657.
14.Zamble, D. B.; Mu, D.; Reardon, J. T.; Sancar, A.; Lippard, S. J. Repair of cisplatin-DNA adducts by the mammalian excision nuclease. Biochemistry 1996, 35, 10004–10013.
15.Eastman, A. Reevaluation of interaction of cis-dichloro(ethylenediamine)platinum(II) with DNA. Biochemistry 1986, 25, 3912–3915.
16.Johnstone, Y. C.; Suntharalingam, K.; Lippard, S. J. Third row transition metals for the treatment of cancer. Philos. T. Roy. Soc. A. 2014, 373, 0185.
17.Park, K. Controlled drug delivery systems: past forward and future back. J. Control. Release 2014, 190, 3–8.
18.Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D. A.; Torchilin, V. P.; Jain, R. K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995, 55, 3752–3756.
19.Noble, G. T.; Stefanick, J. F.; Ashley, J. D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014, 32, 32–45.
20.Biswas, S.; Torchilin, V. P. Nanopreparations for organelle-specific delivery in cancer. Adv. Drug Deliver. Rev. 2014, 66, 26–41.
21.Monteiro, N.; Martins, A.; Reis, R. L.; Neves, N. M. Liposome in tissue engineering and regenerative medicine. J. R. Soc. Interface 2014, 11, 0459.
22.Lee, R. J.; Low, P. S. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim. Biophys. Acta 1995, 1233, 134-144.
23.Ozawa, M.; Asano, A. The preparation of cell fusion-inducing proteoliposomes from purified glycoproteins of HVJ and chemically defined lipids. J. Biol. Chem. 1981, 256, 5954–5956.
24.Barenholz, Y. C. Doxil® — the first FDA-approved nano-drug: lessons learned. J. Control. Release 2012, 160, 117–134.
25.Haran, G.; Cohen, R.; Bar, L. K.; Barenholz, Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1993, 1151, 201–215.
26.Siegal, T.; Horowitz, A.; Gabizon, A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J. Neurosurg. 1995, 83, 1029–1037.
27.Wu, C.-H.; Kuo, Y.-H.; Hong, R.-L.; Wu. H.-C. α-Enolase–binding peptide enhances drug delivery efficiency and therapeutic efficacy against colorectal cancer. Sci. Transl. Med. 2015, 7, 290ra91.
28.Fantini, M.; Gianni, L.; Santelmo, C.; Drudi, F.; Castellani, C.; Affatato, A.; Nicolini, M.; Ravaioli, A. Lipoplatin treatment in lung and breast cancer. Chemother. Res. Pract. 2011, 2011, 125192.
29.Tippayamontri, T., Kotb, R., Paquette, B., Sanche, L. Efficacy of cisplatin and lipoplatin™ in combined treatment with radiation of a colorectal tumor in nude mouse. Anticancer Res. 2013, 33, 3005−3014.
30.Bartlett, G. R. Colorimetric assay methods for free and phosphorylated glyceric acids. J. Biol. Chem. 1959, 234, 469-471.
31.Barenholz, Y.; Amselem, S.; Goren, D.; Cohen, R.; Gelvan, D.; Samuni, A.; Golden, E. B.; Gabizon, A. Stability of liposomal doxorubicin formulations: problems and prospects. Med. Res. Rev. 1993, 13, 449–491.
32.Stockert, J.C.; Blázquez-Castro, A.; Canete, M.; Horobin, R. H.; Villanueva, A. MTT assay for cell viability: intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012, 114, 785–796.
33.Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 2016, 116, 3436−3486.
34.Chin, C. F.; Yap, S. Q.; Li, J.; Pastorin, G.; Ang, W. H. Ratiometric delivery of cisplatin and doxorubicin using tumor-targeting carbon-nanotubes entrapping platinum(IV) prodrugs. Chem. Sci. 2014, 5, 2265.
35.Chhikara, B. S.; Mandal, D.; Parang, K. Synthesis, anticancer activities, and cellular uptake studies of lipophilic derivatives of doxorubicin succinate. J. Med. Chem. 2012, 55, 1500−1510.
36.Höck, S.; Marti, R.; Riedl, R.; Simeunovic, M. Thermal cleavage of the fmoc protection group. Chimia 2010, 64, 200−202.
37.Shi, Y.; Liu, S.-A.; Kerwood, D. J.; Goodisman, J.; Dabrowiak, J. C. Pt(IV) complexes as prodrugs for cisplatin. J. Inorg. Biochem. 2012, 107, 6–14.
38.Ghirmai,S.; Mume,E.; Tolmachev, V.; Sjoberg, S. Synthesis and radioiodination of some daunorubicin and doxorubicin derivatives. Carbohyd. Res. 2005, 340, 15–24.
39.Meyer-Losic, F.; Quinonero, J.; Dubois, V.; Alluis, B.; Dechambre, M.; Michel, M.; Cailler, F.; Fernandez, A.-M.; Trouet, A.; Kearsey, J. Improved therapeutic efficacy of doxorubicin through conjugation with a novel peptide drug delivery technology (vectocell). J. Med. Chem. 2006, 49, 6908–6916.
40.Tanaka, H.; Kominato, K.; Yamamoto, R.; Yoshioka, T.; Nishida, H.; Tone, H.; Okamoto, R. Synthesis of doxorubicin-cyclodextrin conjugates. J. Antibiot. 1994, 47, 1025–1029.
41.de Araújo Lopes,S. C.; dos Santos Giuberti, C.; Rocha, T. G. R.; dos Santos Ferreira, D.; Leite, E. A.; Oliveira, M. C. Liposomes as Carriers of Anticancer Drugs, Cancer Treatment. (May 9th 2013). Letícia Rangel, IntechOpen.
42.Marzban, E.; Alavizadeh, S. H.; Ghiadi, M.; Khoshangosht, M.; Khashayarmanesh, Z.; Abbasi, A.; Jaafari, M. R. Optimizing the therapeutic efficacy of cisplatin PEGylated liposomes via incorporation of different DPPG ratios: In vitro and in vivo studies. Colloid Surface. B. 2015, 136, 885–891.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔