|
1Wasser, S. P. et al. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives. International Journal of medicinal mushrooms 1, 31-62 (1999). 2Kalač, P. A review of chemical composition and nutritional value of wild‐growing and cultivated mushrooms. Journal of the Science of Food and Agriculture 93, 209-218 (2013). 3Zhang, Y. et al. Recent developments on umami ingredients of edible mushrooms–A review. Trends in Food Science and Technology 33, 78-92 (2013). 4Kalač, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry 113, 9-16 (2009). 5Beulah, G. H. et al. Marvelous medicinal mushrooms. International Journal of Pharmacy and Biological Sciences 3, 611-615 (2013). 6Sun, Y. et al. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: a review. Trends in Food Science & Technology (2019). 7Rong, H. et al. Main species and medicinal value of wild edible (medicinal) fungi in Yunnan province. Medicinal Plant 9, 1-4 (2018). 8Wang, X. et al. Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China. Journal of Environmental Science and Health, Part B 52, 178-183 (2017). 9中国食用菌协会关于印发全国食用菌2017年度产量、产值统计调查结果的函, <http://www.cefa.org.cn/2019/03/18/10498.html> (2019). 10Thatoi, H. et al. Diversity, nutritional composition and medicinal potential of Indian mushrooms: a review. African Journal of Biotechnology 13, 523-545 (2014). 11Ruthes, A. C. et al. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects. Carbohydrate Polymers 136, 358-375 (2016). 12Cheung, P. C. Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Science and Human Wellness 2, 162-166 (2013). 13El Enshasy, H. A. et al. Mushroom immunomodulators: unique molecules with unlimited applications. Trends in Biotechnology 31, 668-677 (2013). 14Kumar, K. Role of edible mushrooms as functional foods—a review. South Asian Journal of Food Technology and Environment 1, 211-218 (2015). 15Tel-Cayan, G. et al. Fatty acid profiles in wild mushroom species from Anatolia. Chemistry of Natural Compounds 53, 351-353 (2017). 16Heleno, S. A. et al. Bioactivity of phenolic acids: Metabolites versus parent compounds: a review. Food Chemistry 173, 501-513 (2015). 17Khatua, S. et al. Mushroom as the potential source of new generation of antioxidant: a review. Research Journal of Pharmacy and Technology 6, 496-505 (2013). 18Barreira, J. C. et al. Development of a novel methodology for the analysis of ergosterol in mushrooms. Food Analytical Methods 7, 217-223 (2014). 19Singh, S. et al. Lectins from edible mushrooms. Molecules 20, 446-469 (2015). 20Mori, K. et al. Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein E–deficient mice. Nutrition Research 28, 335-342 (2008). 21Yahaya, N. F. M. et al. Therapeutic potential of mushrooms in preventing and ameliorating hypertension. Trends in Food Science and Technology 39, 104-115 (2014). 22Moradali, M.-F. et al. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology 7, 701-724 (2007). 23Wang, H. et al. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides 25, 1-5 (2004). 24Teplyakova, T. V. et al. Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). International Journal of Medicinal Mushrooms 14 (2012). 25Zhu, H. et al. Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. International Journal of Biological Macromolecules 50, 840-843 (2012). 26Wasser, S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology 60, 258-274 (2002). 27Soares, A. et al. Hepatoprotective effects of mushrooms. Molecules 18, 7609-7630 (2013). 28Sayeed, M. A. et al. Effect of edible mushroom (Pleurotus ostreatus) on type-2 diabetics. Ibrahim Medical College Journal 8, 6-11 (2014). 29Choi, J.-H. et al. Purification and antithrombotic potential of a fibrinolytic enzyme from shiitake culinary-medicinal mushroom, Lentinus edodes GNA01 (Agaricomycetes). International Journal of Medicinal Mushrooms 20, 47-59 (2018). 30Rathore, H. et al. Mushroom nutraceuticals for improved nutrition and better human health: a review. PharmaNutrition 5, 35-46 (2017). 31Xie, J.-H. et al. Advances on bioactive polysaccharides from medicinal plants. Critical Reviews in Food Science and Nutrition 56, S60-S84 (2016). 32Zeng, D. et al. Purification, characterization, antioxidant and anticancer activities of novel polysaccharides extracted from Bachu mushroom. International Journal of Biological Macromolecules 107, 1086-1092 (2018). 33Liu, M. et al. Characterization, anti-oxidation and anti-inflammation of polysaccharides by Hypsizygus marmoreus against LPS-induced toxicity on lung. International Journal of Biological Macromolecules 111, 121-128 (2018). 34Wang, J. et al. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomedicine and Pharmacotherapy 95, 1669-1677 (2017). 35Liu, Y. et al. Purification, characterization and anti-tumor activities of polysaccharides extracted from wild Russula griseocarnosa. International Journal of Biological Macromolecules 109, 1054-1060 (2018). 36He, X. et al. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s Mane) mushroom: A review. International Journal of Biological Macromolecules 97, 228-237 (2017). 37Ma, H.-T. et al. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry 114, 109-113 (2015). 38Cör, D. et al. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules 23, 649 (2018). 39Ruthes, A. C. et al. Agaricus bisporus fucogalactan: structural characterization and pharmacological approaches. Carbohydrate Polymers 92, 184-191 (2013). 40Ruthes, A. C. et al. Structural characterization and protective effect against murine sepsis of fucogalactans from Agaricus bisporus and Lactarius rufus. Carbohydrate Polymers 87, 1620-1627 (2012). 41Jeff, I. B. et al. Purification, structural elucidation and antitumor activity of a novel mannogalactoglucan from the fruiting bodies of Lentinus edodes. Fitoterapia 84, 338-346 (2013). 42Wang, J. et al. A polysaccharide from Lentinus edodes inhibits human colon cancer cell proliferation and suppresses tumor growth in athymic nude mice. Oncotarget 8, 610-623 (2017). 43Lu, A. et al. Preparation of the Auricularia auricular polysaccharides simulated hydrolysates and their hypoglycaemic effect. International Journal of Biological Macromolecules 106, 1139-1145 (2018). 44Yoon, S.-J. et al. The nontoxic mushroom Auricularia auricula contains a polysaccharide with anticoagulant activity mediated by antithrombin. Thrombosis Research 112, 151-158 (2003). 45Khaskheli, S. G. et al. Characterization of Auricularia auricula polysaccharides and its antioxidant properties in fresh and pickled product. International Journal of Biological Macromolecules 81, 387-395 (2015). 46Lee, J. S. et al. Hericium erinaceus enhances doxorubicin-induced apoptosis in human hepatocellular carcinoma cells. Cancer Letters 297, 144-154 (2010). 47Thongbai, B. et al. Hericium erinaceus, an amazing medicinal mushroom. Mycological Progress 14, 91 (2015). 48Perera, N. et al. Galactomannan from Antrodia cinnamomea enhances the phagocytic activity of macrophages. Organic Letters 19, 3486-3489 (2017). 49Liu, J.-J. et al. Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicology and Applied Pharmacology 201, 186-193 (2004). 50Györfi, J. et al. Mineral composition of different strains of edible medicinal mushroom Agaricus subrufescens Peck. Journal of Medicinal Food 13, 1510-1514 (2010). 51Kerrigan, R. W. Inclusive and exclusive concepts of Agaricus blazei Murrill Peck: a reply to Wasser et al. International Journal of Medicinal Mushrooms 9, 79-84 (2007). 52Wasser, S. P. et al. Is a widely cultivated culinary-medicinal Royal Sun Agaricus (Champignon do Brazil, or the Himematsutake mushroom) Agaricus brasiliensis S. Wasser et al. indeed a synonym of A. subrufescens Peck? International Journal of Medicinal Mushrooms 7, 507-511 (2005). 53Largeteau, M. L. et al. The medicinal Agaricus mushroom cultivated in Brazil: biology, cultivation and non-medicinal valorisation. Applied Microbiology and Biotechnology 92, 897-907 (2011). 54Stamets, P. Growing gourmet and medicinal mushrooms. (Ten Speed Press, 2000). 55Kerrigan, R. W. J. M. Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 97, 12-24 (2005). 56Hirotani, M. et al. Blazeispirols B, C, E and F, des-A-ergostane-type compounds, from the cultured mycelia of the fungus Agaricus blazei. Phytochemistry 59, 571-577 (2002). 57Wisitrassameewong, K. et al. Agaricus subrufescens: a review. Saudi Journal of Biological Sciences 19, 131-146 (2012). 58Wasser, S. P. et al. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Critical Reviews™ in Immunology 19, 65-96 (1999). 59Firenzuoli, F. et al. The medicinal mushroom Agaricus blazei Murrill: review of literature and pharmaco-toxicological problems. Evidence-Based Complementary and Alternative Medicine 5, 3-15 (2008). 60Hetland, G. et al. Effects of the medicinal mushroom Agaricus blazei Murill on immunity, infection and cancer. Scandinavian Journal of Immunology 68, 363-370 (2008). 61Yoshimura, K. et al. Use of complementary and alternative medicine by patients with urologic cancer: a prospective study at a single Japanese institution. Supportive Care in Cancer 13, 685-690 (2005). 62Gonzaga, M. L. C. et al. In vivo growth-inhibition of Sarcoma 180 by an α-(1→ 4)-glucan–β-(1→ 6)-glucan-protein complex polysaccharide obtained from Agaricus blazei Murill. Journal of Natural Medicines 63, 32-40 (2009). 63Chen, J. et al. Medicinal importance of fungal β-(1→ 3),(1→ 6)-glucans. Mycological Research 111, 635-652 (2007). 64Ma, Z. et al. Evaluation of water soluble β-D-glucan from Auricularia auricular-judae as potential anti-tumor agent. Carbohydrate Polymers 80, 977-983 (2010). 65Niu, Y.-C. et al. Immunostimulatory activities of a low molecular weight antitumoral polysaccharide isolated from Agaricus blazei Murill (LMPAB) in Sarcoma 180 ascitic tumor-bearing mice. Die Pharmazi 64, 472-476 (2009). 66Itoh, H. et al. Inhibitory action of a (1->6)-beta-D-glucan-protein complex (F III-2-b) isolated from Agaricus blazei Murill ("himematsutake") on Meth A fibrosarcoma-bearing mice and its antitumor mechanism. The Japanese Journal of Pharmacology 66, 265-271 (1994). 67Niu, Y.-C. et al. A low molecular weight polysaccharide isolated from Agaricus blazei Murill (LMPAB) exhibits its anti-metastatic effect by down-regulating metalloproteinase-9 and up-regulating Nm23-H1. The American journal of Chinese medicine 37, 909-921 (2009). 68Niu, Y. et al. A low molecular weight polysaccharide isolated from Agaricus blazei suppresses tumor growth and angiogenesis in vivo. Oncology Reports 21, 145-152 (2009). 69Jiang, L. et al. Low-molecular-weight polysaccharides from Agaricus blazei Murrill modulate the Th1 response in cancer immunity. Oncology Letters 15, 3429-3436 (2018). 70Liu, J. et al. Structural analysis of an alkali-extractable and water-soluble polysaccharide (ABP-AW1) from the fruiting bodies of Agaricus blazei Murill. Carbohydrate Polymers 86, 429-432 (2011). 71Johnson, E. et al. Effect of an extract based on the medicinal mushroom Agaricus blazei Murill on release of cytokines, chemokines and leukocyte growth factors in human blood ex vivo and in vivo. Scandinavian Journal of Immunology 69, 242-250 (2009). 72Cui, S. W. Food carbohydrates: chemistry, physical properties, and applications. (CRC press, 2005). 73Bubb, W. A. NMR spectroscopy in the study of carbohydrates: Characterizing the structural complexity. Concepts in Magnetic Resonance Part A: An Educational Journal 19, 1-19 (2003). 74Lundqvist, L. Structural and interaction studies of polysaccharides by NMR spectroscopy. (Institutionen för kemi och bioteknologi, Sveriges lantbruksuniversite, 2015). 75Duus, J. Ø. et al. Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chemical Reviews 100, 4589-4614 (2000). 76Dubois, M. et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350-356 (1956). 77Masuko, T. et al. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Analytical Biochemistry 339, 69-72 (2005). 78Shinde, J. et al. α-Glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto–Kakizaki (GK) rats. Carbohydrate Research 343, 1278-1281 (2008). 79Wang, Y. et al. Sugar compositions, α-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods. International Journal of Biological Macromolecules 47, 534-539 (2010). 80Liu, J.-Y. et al. Polysaccharides from Dioscorea batatas induce tumor necrosis factor-α secretion via Toll-like receptor 4-mediated protein kinase signaling pathways. Journal of Agricultural and Food Chemistry 56, 9892-9898 (2008). 81Hakomori, S.-i. A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. The Journal of Biochemistry 55, 205-208 (1964). 82Babij, N. R. et al. NMR chemical shifts of trace impurities: industrially preferred solvents used in process and green chemistry. Organic Process Research & Development 20, 661-667 (2016). 83Schepetkin, I. A. et al. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. International Immunopharmacology 6, 317-333 (2006). 84Baugh, J. A. et al. Mechanisms for modulating TNF alpha in immune and inflammatory disease. Current Opinion in Drug Discovery and Development 4, 635-650 (2001). 85Morrison, F. et al. Encounter frequency and serum glucose level, blood pressure, and cholesterol level control in patients with diabetes mellitus. Archives of Internal Medicine 171, 1542-1550 (2011). 86Gray, R. S. et al. Effect of a glucosidase inhibitor on the metabolic response of diabetic rats to a high carbohydrate diet, consisting of starch and sucrose, or glucose. Metabolism 31, 88-92 (1982). 87Delmanto, R. D. et al. Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 496, 15-21 (2001). 88Kawagishi, H. et al. Fractionation and antitumor activity of the water-in-soluble residue of Agaricus blazei fruiting bodies. Carbohydrate Research 186, 267-273 (1989). 89Hetland, G. et al. Protective effect of β-glucan against Mycobacterium bovis, BCG infection in BALB/c mice. Scandinavian Journal of Immunology 47, 548-553 (1998). 90Wang, H.-T. et al. Characteristics of fucose-containing polysaccharides from submerged fermentation of Agaricus blazei Murill. Journal of Food and Drug Analysis 26, 678-687 (2018). 91Liu, J. et al. Structural elucidation of a heteroglycan from the fruiting bodies of Agaricus blazei Murill. International Journal of Biological Macromolecules 49, 716-720 (2011). 92Sui, Z. et al. Chemical analysis of Agaricus blazei polysaccharides and effect of the polysaccharides on IL-1β mRNA expression in skin of burn wound-treated rats. International Journal of Biological Macromolecules 47, 155-157 (2010). 93Dong, Q. et al. Structural characterization of a water-soluble β-D-glucan from fruiting bodies of Agaricus blazei Murr. Carbohydrate Research 337, 1417-1421 (2002). 94Agardh, E. et al. Type 2 diabetes incidence and socio-economic position: a systematic review and meta-analysis. International Journal of Epidemiology 40, 804-818 (2011). 95Baron, A. D. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Research and Clinical Practice 40, S51-S55 (1998). 96Johnston, P. S. et al. Advantages of α-glucosidase inhibition as monotherapy in elderly type 2 diabetic patients. The Journal of Clinical Endocrinology & Metabolism 83, 1515-1522 (1998). 97Zhang, S. et al. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel. Carbohydrate Polymers 115, 38-43 (2015). 98Dey, L. et al. Alternative therapies for type 2 diabetes. Alternative Medicine Review 7, 45-58 (2002). 99Yang, J. P. et al. Potential antidiabetic activity of extracellular polysaccharides in submerged fermentation culture of Coriolus versicolor LH1. Carbohydrate Polymers 90, 174-180 (2012). 100Song, Y. et al. A preliminary study of monosaccharide composition and α‐glucosidase inhibitory effect of polysaccharides from pumpkin (Cucurbita moschata) fruit. International Journal of Food Science & Technology 47, 357-361 (2012). 101Xiao, C. et al. Inhibitory effects on α-glucosidase and hypoglycemic effects of the crude polysaccharides isolated from 11 edible fungi. Journal of Medicinal Plants Research 5, 6963-6967 (2011).
|