|
1Tiwari, G. N. & Mishra, R. K. Advanced renewable energy sources. (Royal Society of Chemistry, 2012). 2Hoffert, M. I. et al. Advanced technology paths to global climate stability: energy for a greenhouse planet. Science. 298, 981-987 (2002). 3Stöcker, M. J. A. C. I. E. Biofuels and biomass‐to‐liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte chemie international edition. 47, 9200-9211 (2008). 4Kim, S., Dale, B. E. J. B. & bioenergy. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy. 26, 361-375 (2004). 5Yang, S.-T. in Bioprocessing for Value-Added Products from Renewable Resources 1-24 (Elsevier, 2007). 6Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic acids research 37, D233-238, doi:10.1093/nar/gkn663 (2009). 7Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure (London, England : 1993) 3, 853-859, doi:10.1016/s0969-2126(01)00220-9 (1995). 8Datta, P. K., Hanson, K. R. & Whitaker, D. R. Improved procedures for preparation and characterization of Myrothecium cellulase. 3. Molecular weight, amino acid composition, terminal residues, and other properties. Canadian journal of biochemistry and physiology 41, 697-705 (1963). 9Collins, T., Gerday, C. & Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS microbiology reviews 29, 3-23, doi:10.1016/j.femsre.2004.06.005 (2005). 10Bastawde, K. B. Xylan structure, microbial xylanases, and their mode of action. World journal of microbiology & biotechnology 8, 353-368, doi:10.1007/bf01198746 (1992). 11Srivastava, P. K. & Kapoor, M. Production, properties, and applications of endo-beta-mannanases. Biotechnology advances 35, 1-19, doi:10.1016/j.biotechadv.2016.11.001 (2017). 12Bartholomew, B. A. & Perry, A. L. The properties of synovial fluid beta-mannosidase activity. Biochimica et biophysica acta 315, 123-127 (1973). 13Wang, S., Sun, X. & Yuan, Q. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review. Bioresource technology 258, 302-309, doi:10.1016/j.biortech.2018.03.064 (2018). 14Sanchez Nogue, V. & Karhumaa, K. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology letters 37, 761-772, doi:10.1007/s10529-014-1756-2 (2015). 15Taha, M. et al. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Current opinion in biotechnology 38, 190-197, doi:10.1016/j.copbio.2016.02.012 (2016). 16Yuan, S.-F. et al. Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. Journal of biological chemistry. 290, 5739-5748 (2015). 17Wu, T.-H. et al. Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochimica et Biophysica Acta (BBA). 1814, 1832-1840 (2011). 18Pereira, J. H. et al. Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. Journal of Structural Biology. 172, 372-379 (2010). 19Liang, P.-H. et al. A flexible loop for mannan recognition and activity enhancement in a bifunctional glycoside hydrolase family 5. Biochimica et Biophysica Acta (BBA). 1862, 513-521 (2018). 20Cruys-Bagger, N. et al. Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. Journal of biological chemistry. 287, 18451-18458 (2012). 21Cruys-Bagger, N., Tatsumi, H., Ren, G. R., Borch, K. & Westh, P. J. B. Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain. Biochemistry. 52, 8938-8948 (2013). 22Knott, B. C. et al. The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. Journal of the American Chemical Society. 136, 321-329 (2013). 23Dana, C. M. et al. Biased clique shuffling reveals stabilizing mutations in cellulase Cel7A. Biotechnology and Bioengineering. 109, 2710-2719 (2012). 24Komor, R. S., Romero, P. A., Xie, C. B., Arnold, F. H. J. P. e., design & selection. Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods. Protein Engineering, Design and Selection. 25, 827-833 (2012). 25Smith, M. A., Bedbrook, C. N., Wu, T. & Arnold, F. H. J. A. s. b. Hypocrea jecorina cellobiohydrolase I stabilizing mutations identified using noncontiguous recombination. Synthetic biology. 2, 690-696 (2013). 26Voutilainen, S. P., Murray, P. G., Tuohy, M. G., Koivula, A. J. P. E., Design & Selection. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Engineering, Design and Selection. 23, 69-79 (2009). 27Zheng, F. et al. Enhancing the catalytic activity of a novel GH5 cellulase Gt Cel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Biotechnology for Biofuels. 11, 76 (2018). 28Moraïs, S. et al. Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability. Biotechnology for Biofuels. 9, 164 (2016). 29Kont, R., Kari, J., Borch, K., Westh, P. & Väljamäe, P. J. J. o. B. C. Inter-domain synergism is required for efficient feeding of cellulose chain into active site of cellobiohydrolase Cel7A. Journal of biological chemistry. 291, 26013-26023 (2016). 30Kurašin, M. & Väljamäe, P. J. J. o. B. C. Processivity of cellobiohydrolases is limited by the substrate. Journal of biological chemistry. 286, 169-177 (2011). 31Horn, S. J., Sørlie, M., Vårum, K. M., Väljamäe, P. & Eijsink, V. G. in Methods in enzymology Vol. 510 69-95 (Elsevier, 2012). 32Von Ossowski, I. et al. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. Journal of Molecular Biology. 333, 817-829 (2003). 33Taylor, L. E. et al. Engineering enhanced cellobiohydrolase activity. Nature Communications. 9, 1186 (2018).
|