|
1.Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424. 2.Rahib, L., et al., Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res, 2014. 74(11): p. 2913-21. 3.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2018. CA Cancer J Clin, 2018. 68(1): p. 7-30. 4.Administration, H.P. Cancer Registry Annual Report. . December 9, 2016. 5.Andrew E Becker, Y.G.H., Harold Frucht, and Aimee L Lucas, Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection. World J Gastroenterol., 2014 Aug 28. 20(32): p. 11182–11198. 6.Iovanna, J., et al., Current knowledge on pancreatic cancer. Front Oncol, 2012. 2: p. 6. 7.Burgos, L. and M.E. Burgos, Pancreatic neuroendocrine tumors. Rev Med Chil, 2004. 132(5): p. 627-34. 8.Ilic, M. and I. Ilic, Epidemiology of pancreatic cancer. World J Gastroenterol, 2016. 22(44): p. 9694-9705. 9.Ryan, D.P., T.S. Hong, and N. Bardeesy, Pancreatic adenocarcinoma. N Engl J Med, 2014. 371(11): p. 1039-49. 10.Bosetti, C., et al., Pancreatic cancer: overview of descriptive epidemiology. Mol Carcinog, 2012. 51(1): p. 3-13. 11.Prashanth Rawla, a., d Tagore Sunkara,b and Vinaya Gaduputic, Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol, 2019 Feb. 10(1): p. 10–27. 12.McGuigan, A., et al., Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol, 2018. 24(43): p. 4846-4861. 13.Wahi, M.M., et al., Reproductive factors and risk of pancreatic cancer in women: a review of the literature. Ann Epidemiol, 2009. 19(2): p. 103-11. 14.Fesinmeyer, M.D., et al., Differences in survival by histologic type of pancreatic cancer. Cancer Epidemiol Biomarkers Prev, 2005. 14(7): p. 1766-73. 15.Longnecker, D.S., et al., Racial differences in pancreatic cancer: comparison of survival and histologic types of pancreatic carcinoma in Asians, blacks, and whites in the United States. Pancreas, 2000. 21(4): p. 338-43. 16.Dong, M., et al., Ki-ras point mutation and p53 expression in human pancreatic cancer: a comparative study among Chinese, Japanese, and Western patients. Cancer Epidemiol Biomarkers Prev, 2000. 9(3): p. 279-84. 17.Ezzati, M., et al., Role of smoking in global and regional cancer epidemiology: current patterns and data needs. Int J Cancer, 2005. 116(6): p. 963-71. 18.Fuchs, C.S., et al., A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med, 1996. 156(19): p. 2255-60. 19.Silverman, D.T., et al., Cigarette smoking and pancreas cancer: a case-control study based on direct interviews. J Natl Cancer Inst, 1994. 86(20): p. 1510-6. 20.Stephen J. Pandol, M.V.A., Jeremy S. Wilson, Anna S. Gukovskaya, and Mouad Edderkaoui, The Burning Question: Why is Smoking a Risk Factor for Pancreatic Cancer? Pancreatology, 2014 Mar 17. 21.Michaud, D.S., et al., Physical activity, obesity, height, and the risk of pancreatic cancer. Jama, 2001. 286(8): p. 921-9. 22.Cascetta, P., et al., Pancreatic Cancer and Obesity: Molecular Mechanisms of Cell Transformation and Chemoresistance. Int J Mol Sci, 2018. 19(11). 23.Shadhu, K. and C. Xi, Inflammation and pancreatic cancer: An updated review. Saudi J Gastroenterol, 2019. 25(1): p. 3-13. 24.Petersen, G.M., Familial pancreatic cancer. Semin Oncol, 2016. 43(5): p. 548-553. 25.Kamisawa, T., et al., Pancreatic cancer. Lancet, 2016. 388(10039): p. 73-85. 26.Klein, A.P., et al., Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res, 2004. 64(7): p. 2634-8. 27.Etemad, B. and D.C. Whitcomb, Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology, 2001. 120(3): p. 682-707. 28.Duell, E.J., et al., Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol, 2012. 23(11): p. 2964-70. 29.Maisonneuve, P. and A.B. Lowenfels, Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol, 2015. 44(1): p. 186-98. 30.Everhart, J. and D. Wright, Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. Jama, 1995. 273(20): p. 1605-9. 31.Liao, W.C., et al., Blood glucose concentration and risk of pancreatic cancer: systematic review and dose-response meta-analysis. Bmj, 2015. 350: p. g7371. 32.Wu, D., et al., Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature, 2018. 559(7715): p. 637-641. 33.Xu Zhang, S.S., Bo Zhang, Quanxing Ni, Xianjun Yu, and Jin Xu, Circulating biomarkers for early diagnosis of pancreatic cancer: facts and hopes. Am J Cancer Res, 2018 Mar 1. 8(3): p. 332-353. 34.Pan, S., et al., Protein alterations associated with pancreatic cancer and chronic pancreatitis found in human plasma using global quantitative proteomics profiling. J Proteome Res, 2011. 10(5): p. 2359-76. 35.Kim, J.E., et al., Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol, 2004. 19(2): p. 182-6. 36.Lulu Zhang, S.S., and Alina Stoita, Challenges in diagnosis of pancreatic cancer. World J Gastroenterol., 2018 May 21. 24 (19): p. 2047–2060. 37.Stathis, A. and M.J. Moore, Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol, 2010. 7(3): p. 163-72. 38.Snehal Gajiwala, A.T., Ignacio Garrido-Laguna, Conan Kinsey, and Shane Lloyd, Combination immunotherapy and radiation therapy strategies for pancreatic cancer—targeting multiple steps in the cancer immunity cycle. J Gastrointest Oncol., 2018 Dec. 9(6): p. 1014–1026. 39.Leva Hajatdoost, K.S., Erin J. Walker, Jackson Thomas, and Sam Kosari, Chemotherapy in Pancreatic Cancer: A Systematic Review. Medicina (Kaunas), 2018. 54(3). 40.Shravanti Macherla, S.L., 2 Abdul Rafeh Naqash,1 Anushi Bulumulle,1 Emmanuel Zervos,2 and Mahvish Muzaffar1,*, Emerging Role of Immune Checkpoint Blockade in Pancreatic Cancer. Int J Mol Sci, 2018 Nov 7. 41.Salvatore, T., et al., Pancreatic cancer and diabetes: A two-way relationship in the perspective of diabetologist. Int J Surg, 2015. 21 Suppl 1: p. S72-7. 42.Gullo, L., R. Pezzilli, and A.M. Morselli-Labate, Diabetes and the risk of pancreatic cancer. N Engl J Med, 1994. 331(2): p. 81-4. 43.Rahul Pannala, J.B.L., William R. Bamlet, Ananda Basu, Gloria M. Petersen, and Suresh T. Chari, Prevalence and Clinical Profile of Pancreatic Cancer-associated Diabetes mellitus. Gastroenterology, 2008 Jan 18. . 134(4): p. 981–987. 44.Pelaez-Luna M1, T.N., Fletcher JG, Chari ST., Resectability of presymptomatic pancreatic cancer and its relationship to onset of diabetes: a retrospective review of CT scans and fasting glucose values prior to diagnosis. Am J Gastroenterol, 2007 Oct. 102(10): p. 2157-63. 45.Permert, J., et al., Improved glucose metabolism after subtotal pancreatectomy for pancreatic cancer. Br J Surg, 1993. 80(8): p. 1047-50. 46.Phil A. Hart, a.S.T.C., Diabetes mellitus and pancreatic cancer: why the association matters? Pancreas., 2014 Nov 42(8). 47.Gaurav Aggarwal, a.K.G.R., b Gloria M. Petersen,b and Suresh T. Charia,, New-onset diabetes in pancreatic cancer: A study in the primary care setting. Pancreatology, 2015. 12(2): p. 156–161. 48.Phil A. Hart, P.K., Kari G. Rabe, Sunil Srinivasan, Ananda Basu, MD, Gaurav Aggarwal, and Suresh T. Chari,, Weight Loss Precedes Cancer Specific Symptoms in Pancreatic Cancer Associated Diabetes Mellitus. Pancreas., 2012. 40(5): p. 768–772. 49.Valerio, A., et al., Glucose metabolic alterations in isolated and perfused rat hepatocytes induced by pancreatic cancer conditioned medium: a low molecular weight factor possibly involved. Biochem Biophys Res Commun, 1999. 257(2): p. 622-8. 50.Basso, D., et al., Altered glucose metabolism and proteolysis in pancreatic cancer cell conditioned myoblasts: searching for a gene expression pattern with a microarray analysis of 5000 skeletal muscle genes. Gut, 2004. 53(8): p. 1159-66. 51.Basso, D., et al., The pancreatic cancer cell line MIA PaCa2 produces one or more factors able to induce hyperglycemia in SCID mice. Anticancer Res, 1995. 15(6b): p. 2585-8. 52.Basso, D., et al., Putative pancreatic cancer-associated diabetogenic factor: 2030 MW peptide. Pancreas, 2002. 24(1): p. 8-14. 53.Wang, F., et al., In vitro influences between pancreatic adenocarcinoma cells and pancreatic islets. J Surg Res, 1998. 79(1): p. 13-9. 54.Tan, L., et al., Macrophage migration inhibitory factor is overexpressed in pancreatic cancer tissues and impairs insulin secretion function of beta-cell. J Transl Med, 2014. 12: p. 92. 55.Jérémie Boucher, A.K., and C. Ronald Kahn, Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harb Perspect Biol., 2014 Jan. 6(1). 56.Stanley, M., S.L. Macauley, and D.M. Holtzman, Changes in insulin and insulin signaling in Alzheimer''s disease: cause or consequence? J Exp Med, 2016. 213(8): p. 1375-85. 57.Lebovitz, H.E., Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes, 2001. 109 Suppl 2: p. 135-48. 58.Gual, P., Y. Le Marchand-Brustel, and J.F. Tanti, Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 2005. 87(1): p. 99-109. 59.Aguirre, V., et al., Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem, 2002. 277(2): p. 1531-7. 60.Jin Zhang, Z.G., Jun Yin, Michael J. Quon, and Jianping Ye, S6K Directly Phosphorylates IRS-1 on Ser-270 to Promote Insulin Resistance in Response to TNF-α Signaling through IKK2. J Biol Chem, 2008 Dec 19. 183(51): p. 35375-82. 61.Copps, K.D. and M.F. White, Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012. 55(10): p. 2565-2582. 62.Boucher, J., A. Kleinridders, and C.R. Kahn, Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol, 2014. 6(1). 63.De Leon, D.D. and C.A. Stanley, Mechanisms of Disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin Pract Endocrinol Metab, 2007. 3(1): p. 57-68. 64.Bataille, D., [Molecular mechanisms of insulin secretion]. Diabetes Metab, 2002. 28(6 Suppl): p. 4s7-13. 65.Stoffers, S.A.S.a.D.A., The pancreatic β cell and type 1 diabetes: innocent bystander or active participant? Trends Endocrinol Metab, 2014 Jul 1. 24(7): p. 324–331. 66.Cerf, M.E., Beta Cell Dysfunction and Insulin Resistance. Front Endocrinol (Lausanne), 2013 Mar 27. 4(37). 67.Group.., B.D.W., Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther, 2001. 69(3): p. 89-95. 68.José Marrugo-Ramírez, 2 Mònica Mir,1,2,3,* and Josep Samitier, Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. Int J Mol Sci, 2018 Oct. 19(10): p. 2877. 69.Ludwig, J.A. and J.N. Weinstein, Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer, 2005 Nov. 5(11): p. 845-56. 70.Poruk, K.E., et al., The clinical utility of CA 19-9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr Mol Med, 2013. 13(3): p. 340-51. 71.Pavai, S. and S.F. Yap, The clinical significance of elevated levels of serum CA 19-9. Med J Malaysia, 2003. 58(5): p. 667-72. 72.Steinberg, W., The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol, 1990. 85(4): p. 350-5. 73.Pannala, R., et al., New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol, 2009. 10(1): p. 88-95. 74.Sah, R.P., et al., New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol, 2013. 10(7): p. 423-33. 75.Goldstein, I.J. and C.E. Hayes, The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem, 1978. 35: p. 127-340. 76.Mayer, S., M.K. Raulf, and B. Lepenies, C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol, 2017. 147(2): p. 223-237. 77.Vandenborre, G., G. Smagghe, and E.J. Van Damme, Plant lectins as defense proteins against phytophagous insects. Phytochemistry, 2011. 72(13): p. 1538-50. 78.Barondes, S.H., et al., Galectins. Structure and function of a large family of animal lectins. J Biol Chem, 1994. 269(33): p. 20807-10. 79.Connie M. Arthur, M.D.B., Richard D. Cummings, and Sean R. Stowell, Evolving Mechanistic Insights into Galectin Functions. Methods Mol Biol, 2018 Jan 5. 1207:: p. 1-35. 80.Kamili, N.A., et al., Key regulators of galectin-glycan interactions. Proteomics, 2016. 16(24): p. 3111-3125. 81.Hadari, Y.R., et al., Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. J Cell Sci, 2000. 113 ( Pt 13): p. 2385-97. 82.Varki, A., et al., Essentials of Glycobiology. 2015. 83.Popa, S.J., S.E. Stewart, and K. Moreau, Unconventional secretion of annexins and galectins. Semin Cell Dev Biol, 2018. 83: p. 42-50. 84.Liu, F.T., R.J. Patterson, and J.L. Wang, Intracellular functions of galectins. Biochim Biophys Acta, 2002. 1572(2-3): p. 263-73. 85.Yu, F., et al., Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem, 2002. 277(18): p. 15819-27. 86.Dumic, J., S. Dabelic, and M. Flogel, Galectin-3: an open-ended story. Biochim Biophys Acta, 2006. 1760(4): p. 616-35. 87.Liu, F.T., Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol, 2005. 136(4): p. 385-400. 88.Suzuki, Y., et al., Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochim Biophys Acta, 2008. 1783(5): p. 924-34. 89.Burguillos, M.A., et al., Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation. Cell Rep, 2015. 10(9): p. 1626-1638. 90.Burguillos, T.D.a.M.A., A new “sweet” ligand for Toll-like receptor 4. Oncotarge., 2015 Aug 21. 6(24): p. 19928–19929. 91.Rahimian, R., L.C. Beland, and J. Kriz, Galectin-3: mediator of microglia responses in injured brain. Drug Discov Today, 2018. 23(2): p. 375-381. 92.Tang, Z., et al., GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res, 2017. 45(W1): p. W98-w102. 93.Sharma, A., et al., Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes. Gastroenterology, 2018. 155(3): p. 730-739. 94.Huiting Xue, L.L., Zihan Zhao, Zhongyu Zhang, Yuan Guan, Hairong Cheng, Yifa Zhou, and Guihua Tai, The N-terminal tail coordinates with carbohydrate recognition domain to mediate galectin-3 induced apoptosis in T cells. Oncotarget, 2017 Jul 25. 8(30): p. 49824-49838. 95.Szasz, T., et al., Toll-Like Receptor 4 Activation Contributes to Diabetic Bladder Dysfunction in a Murine Model of Type 1 Diabetes. Diabetes, 2016. 65(12): p. 3754-3764. 96.Farhad, M., A.S. Rolig, and W.L. Redmond, The role of Galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment. Oncoimmunology, 2018. 7(6). 97.Warfield, P.R., et al., Adhesion of human breast carcinoma to extracellular matrix proteins is modulated by galectin-3. Invasion Metastasis, 1997. 17(2): p. 101-12. 98.O''Driscoll, L., et al., Galectin-3 expression alters adhesion, motility and invasion in a lung cell line (DLKP), in vitro. Anticancer Res, 2002. 22(6a): p. 3117-25. 99.Kim, S.J., et al., Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1). PLoS One, 2011. 6(9): p. e25103. 100.Dos Santos, S.N., et al., Galectin-3 acts as an angiogenic switch to induce tumor angiogenesis via Jagged-1/Notch activation. Oncotarget, 2017. 8(30): p. 49484-49501. 101.Fukumori, T., et al., CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res, 2003. 63(23): p. 8302-11. 102.Vuong, L., et al., An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade. Cancer Res, 2019. 79(7): p. 1480-1492. 103.Shumei Song , B.J., Vijaya Ramachandran, Huamin Wang, Margarete Hafley, Craig Logsdon, and Robert S. Bresalier Overexpressed Galectin-3 in Pancreatic Cancer Induces Cell Proliferation and Invasion by Binding Ras and Activating Ras Signaling. PLoS One, 2012. 7(8). 104.Yao, Y., et al., HH1-1, a novel Galectin-3 inhibitor, exerts anti-pancreatic cancer activity by blocking Galectin-3/EGFR/AKT/FOXO3 signaling pathway. Carbohydr Polym, 2019. 204: p. 111-123. 105.Li, P., et al., Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell, 2016. 167(4): p. 973-984.e12. 106.Weigert, J., et al., Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. J Clin Endocrinol Metab, 2010. 95(3): p. 1404-11. 107.Canto, M.I., et al., Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol, 2004. 2(7): p. 606-21. 108.Brentnall, T.A., et al., Early diagnosis and treatment of pancreatic dysplasia in patients with a family history of pancreatic cancer. Ann Intern Med, 1999. 131(4): p. 247-55. 109.Permert, J., et al., Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N Engl J Med, 1994. 330(5): p. 313-8. 110.Akter, R., et al., Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. J Diabetes Res, 2016. 2016: p. 2798269. 111.Chari, S.T., et al., Islet amyloid polypeptide is not a satisfactory marker for detecting pancreatic cancer. Gastroenterology, 2001. 121(3): p. 640-5. 112.Aggarwal, G., et al., Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in beta cells and mice. Gastroenterology, 2012. 143(6): p. 1510-1517. 113.Javeed, N., et al., Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic beta-cell Dysfunction. Clin Cancer Res, 2015. 21(7): p. 1722-33. 114.Ballehaninna, U.K. and R.S. Chamberlain, The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J Gastrointest Oncol, 2012. 3(2): p. 105-19. 115.Zhang, X., et al., Circulating biomarkers for early diagnosis of pancreatic cancer: facts and hopes. Am J Cancer Res, 2018. 8(3): p. 332-353. 116.Brand, R.E., et al., Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res, 2011. 17(4): p. 805-16. 117.Gao, Z., et al., Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol, 2004. 18(8): p. 2024-34. 118.Taha, I.M., A.M. Abdu Allah, and E.M. Abd El Gayed, Expression of toll-like receptor 4 and its connection with type 2 diabetes mellitus. Cell Mol Biol (Noisy-le-grand), 2018. 64(13): p. 15-20. 119.Diaz-Alvarez, L. and E. Ortega, The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediators Inflamm, 2017. 2017(8): p. 1-10. 120.Pricci, F., et al., Role of galectin-3 as a receptor for advanced glycosylation end products. Kidney Int Suppl, 2000. 77: p. S31-9. 121.Bhattacharyya, S., et al., Exposure to the common food additive carrageenan leads to glucose intolerance, insulin resistance and inhibition of insulin signalling in HepG2 cells and C57BL/6J mice. Diabetologia, 2012. 55(1): p. 194-203. 122.Bhattacharyya, S., et al., Toll-like receptor 4 mediates induction of the Bcl10-NFkappaB-interleukin-8 inflammatory pathway by carrageenan in human intestinal epithelial cells. J Biol Chem, 2008. 283(16): p. 10550-8. 123.Borthakur, A., et al., Prolongation of carrageenan-induced inflammation in human colonic epithelial cells by activation of an NFkappaB-BCL10 loop. Biochim Biophys Acta, 2012. 1822(8): p. 1300-7. 124.Stillman, B.N., Hsu, D. K.,Pang, M.,Brewer, C. F.,Johnson, P.,Liu, F. T.,Baum, L. G., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol, 2006. 176(2): p. 778-89. 125.Nguyen, M.N., et al., Mechanisms responsible for increased circulating levels of galectin-3 in cardiomyopathy and heart failure. Sci Rep, 2018. 8(1): p. 8213. 126.Wu, C.K., et al., Galectin-3 level and the severity of cardiac diastolic dysfunction using cellular and animal models and clinical indices. Sci Rep, 2015. 5: p. 17007. 127.Li, X., et al., Therapeutic inhibition of galectin3 improves cardiomyocyte apoptosis and survival during heart failure. Mol Med Rep, 2018. 17(3): p. 4106-4112. 128.Jin, H., et al., IL-6 Promotes Islet beta-Cell Dysfunction in Rat Collagen-Induced Arthritis. J Diabetes Res, 2016. 2016: p. 75929-31. 129.Hoorens, A., et al., Distinction between interleukin-1-induced necrosis and apoptosis of islet cells. Diabetes, 2001. 50(3): p. 551-7. 130.Li, M., et al., Toll-like receptor 4 on islet beta cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes. Exp Mol Med, 2012. 44(4): p. 260-7. 131.Li, J., et al., TLR4 is required for the obesity-induced pancreatic beta cell dysfunction. Acta Biochim Biophys Sin (Shanghai), 2013. 45(12): p. 1030-8. 132.Cucak, H., et al., Macrophage contact dependent and independent TLR4 mechanisms induce beta-cell dysfunction and apoptosis in a mouse model of type 2 diabetes. PLoS One, 2014. 9(3): p. e90685. 133.Garay-Malpartida, H.M., et al., Toll-like receptor 4 (TLR4) expression in human and murine pancreatic beta-cells affects cell viability and insulin homeostasis. BMC Immunol, 2011. 12: p. 18.
|