跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/03 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃政捷
研究生(外文):Cheng-Chieh Huang
論文名稱:探討致糖尿病因子Galectin-3於胰臟癌誘導之新生糖尿病的機制與臨床應用
論文名稱(外文):Investigating the Mechanism of Diabetogenic Factor Galectin-3 in Pancreatic Cancer-associated New-Onset Diabetes and its Clinical Application
指導教授:周綠蘋周綠蘋引用關係
口試委員:廖偉智龔秀妮
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:74
中文關鍵詞:胰臟癌胰臟癌誘發之糖尿病胰島素阻抗生物標記乳糖凝集素新糖尿病胰島β細胞細胞凋亡第四型類鐸受體
DOI:10.6342/NTU201903673
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
胰臟癌是目前在全球癌症致死率中排名第七名的癌症,且相較於其他的常見癌症,胰臟癌有著最低的五年存活率。這主要的原因來自於難以早期診斷來及時治療癌症,約有85%的胰臟癌病人在確診時已進展到無法手術切除的癌症末期。因此,發展出早期診斷胰臟癌是很重要的事情。雖然胰臟癌的症狀在初期往往不明顯的,確診通常已經是晚期。然而許多研究指出糖尿病是胰臟癌的危險因子,並且根據統計,其中約有40%胰臟癌病人在診斷前三年便患有糖尿病的病癥,而那我們將這種新生糖尿病稱之為胰臟癌誘發之糖尿病。藉由鑑定新穎的胰臟癌誘發糖尿病的生物標記並釐清其中的機制可能提供早期診斷胰臟癌的線索。
胰臟癌誘發之糖尿病被認為是胰臟癌會分泌出一些未知的致糖尿病因子進而促進全身的胰島素阻抗。藉由蛋白質體學和生物資訊學的分析,我們從胰臟癌細胞株的條件培養基中鑑定出galectin-3這個候選蛋白。我們進一步證明重組galectin-3能顯著抑制C2C12骨骼肌肉細胞的葡萄糖攝取能力。根據上述的結果與分析,我們假設galectin-3在胰臟癌誘發之糖尿病可能扮演著致糖尿病因子的角色。首先為了評估galectin-3作為其生物標記的能力,我們收集並檢測了不同病人族群血清中galectin-3的濃度,結果顯示胰臟癌誘發之糖尿病相對於其他癌症有著最高的galectin-3表現量,透過ROC曲線分析可以得到galectin-3能有效區分胰臟癌誘發之糖尿病和第二型糖尿病或其他病人族群。我們進一步將galectin-3和其他參數指標合併,可以得到更好的鑑別力。
除此之外,我們深入探討是否重組蛋白galectin-3能透過抑制肌肉細胞的胰島素訊息傳遞路徑來促進胰島素阻抗。我們結果發現galectin-3會促進抑制性IRS-1的絲氨酸307號位點的磷酸化,並抑制下游AKT的活化來阻抗胰島素的訊息傳遞。接著,我們發現重組蛋白能直接與細胞的TLR4產生交互作用。同時galectin-3也能活化TLR4典型的下游訊息途徑 ─ IKK-β/NF-κB的訊息傳遞,而IKK-β已被報導會促進IRS-1絲氨酸307號位點的磷酸化。除此之外,TLR4抑制劑能部份地回復galectin-3誘導之胰島素阻抗,顯示galectin-3藉由結合TLR4來抑制胰島素訊息傳遞。
另一方面,實驗室前人研究指出galectin-3會抑制胰島β細胞的胰島素釋放。這暗示著galectin-3可能也透過抑制胰島素釋放來造成代謝性失調。我們的結果顯示胰臟癌細胞株的條件培養基與galectin-3能抑制胰島細胞的存活率,而caspase 3活性與TUNEL試驗進一步證明galectin-3能促進胰島細胞的細胞凋亡。同樣地,TLR4抑制劑能部份地回復galectin-3誘導之細胞凋亡,暗示galectin-3藉由結合TLR4來誘導胰島細胞的細胞凋亡。
綜上所述,此篇研究試圖了解glaectin-3如何透過細胞層次的訊息傳遞來造成系統的胰島素阻抗和胰島細胞死亡,進而支持galectin-3在胰臟癌誘發之糖尿病扮演著致糖尿病因子的角色。到目前為止,我們的結果也證實galectin-3是一個有潛力作為胰臟癌誘發之糖尿病的診斷型生物標記,在未來可透過研究出此疾病有效的複合型生物標記來做為早期診斷出胰臟癌的策略。
Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths in the world with the lowest 5-year survival rate among other common cancers. Due to the lack of methods for early detection, 85% pancreatic cancer are diagnosed at unresectable/advanced stage. Therefore, it is the urgent need for detecting PC at early stage. Although PC patients are usually physically asymptotic until tumors deteriorated, numerous evidences indicated diabetes mellitus (DM) is a risk factor for PC, and 40% PC patients had developed DM in the 36 months preceding the diagnosis of PC, called pancreatic cancer-associated diabetes mellitus (PCDM). Identification of PCDM by novel biomarkers and elucidating the underlying mechanism may provide the potential clue to achieve the early detection of PC.
The model of PCDM induction is proposed that PC secretes some unknown diabetogenic factors to promote systemic insulin resistance. By combining proteomic analysis and bio-informatics screening, our previous studies identified galectin-3 as a candidate in the conditioned medium of PC cell lines. Moreover, recombinant galectin-3 decrease glucose uptake of C2C12 myotubes in vitro. Based on the results above, we assumed galectin-3 may be a diabetogenic factor in PCDM. To evaluate the efficacy of galectin-3 as a PCDM biomarker, we detected the serum of different groups’ patients, and PCDM serum showed the highest galectin-3 expression among other patients’ serum. ROC curve indicated galectin-3 expression is able to distinguish PCDM from T2DM or other diseases. Moreover, combinations of galectin-3 and different parameters could elevate the ability of discriminating PCDM from T2DM.
Besides, we further investigated whether extracellular galectin-3 affected insulin signaling of C2C12 myotubes. Our data found extracellular galectin-3 attenuated insulin signaling by increasing the inhibitory serine phosphorylation of IRS-1 and decreasing the activated phosphorylation of AKT. Next, we showed recombinant galectin-3 can interact with TLR4 directly by immunoprecipitation. Notably, galectin-3 activated the IKK-β/NF-κB pathway as the canonical downstream pathway of TLR4, and IKK-β was reported to promote IRS-1 inhibitory phosphorylation. In addition, galectin-3-mediated insulin resistance was partially rescued by TLR4 inhibitor treatment, suggesting galectin-3 inhibited insulin signaling through TLR4.
On the other hand, we found galectin-3 decreased insulin secretion in β cells. It suggested galectin-3 may have alternative functions to cause metabolic dysfunction by inhibiting β cells’ insulin secretion. In our results, we found conditioned medium of PC cell line and recombinant galectin-3 decreased the cell viability. Furthermore, caspase 3 activity and TUNEL assay were confirmed that galectin-3 can promote β cells’ apoptosis. Similarly, TLR4 inhibitor treatment was assessed and galectin-3-mediated apoptosis was partially rescued, suggesting TLR4 was involved in galectin-3-mediated apoptosis of β cells.
Taken together, this study sought to understand how galectin-3 promotes systemic insulin resistance and destruction of β cells in cellular signaling level, further to support galectin-3 plays a diabetogenic role in PCDM. So far, our results also verify galectin-3 is a potential diagnostic biomarker for PCDM, and in the future, to find reliable diagnostic biomarker panels for PCDM is a feasible strategy to achieve early detection of pancreatic cancer.
Contents
中文摘要 i
Abstract iii
Abbreviation v
Contents viii
List of figures xiii
List of supplements xiv
Chapter I ─ Overview and Introduction 1
1.1. Introduction to Pancreatic Cancer (PC) 1
1.1.1 Epidemiology of pancreatic cancer 1
1.1.2 The types of pancreatic cancer 2
1.1.3 The symptoms of pancreatic cancer 2
1.1.4 Risk Factors of Pancreatic cancer 3
1.1.5 Diagnosis and Treatment 4
1.2. Overview of Pancreatic Cancer-Associated Diabetes Mellitus (PCDM) 5
1.2.1 Definition of PCDM 5
1.2.2 Mechanism of PCDM 6
1.3 Overview of Insulin resistance and insulin secretion 7
1.3.1 Insulin signaling 7
1.3.2 Insulin resistance 7
1.3.3 insulin secretion of β cells 9
1.3.4 β cells dysfunction and Type 2 diabetes mellitus 10
1.4 Overview of Biomarker 10
1.4.1 Definition of biomarker 10
1.4.2 Tumor biomarkers 10
1.4.3 Pancreatic cancer biomarker 11
1.4.4 The Challenges and Opportunities of Pancreatic Cancer 11
1.5 The Characteristics and Functions of Galectin-3 12
1.5.1 Characteristics of Galectin 12
1.5.2 Galectin ─ Glycan interaction and extra/intracellular signaling of galectins 13
1.5.3 The characteristic of galectin-3 13
1.5.4 Extracellular functions of galectin-3 14
1.6 Specific aims 15
Chapter II Experiment Materials 17
2.1 Cell line 17
2.2 Serum Sample 17
2.3 Primary Antibody 17
2.4 Secondary Antibody 18
2.5 Reagents 18
2.6 Kits 20
2.7 Instruments 21
Chapter III Experiment Methods 22
3.1 Cell culture 22
3.1.1 Cell Subculturing 22
3.1.2 Medium for culturing: 22
3.1.3 Differentiation of C2C12 myotube formation 22
3.2 Candidate preparation, selection and identification 23
3.2.1 Expressions of recombinant candidate proteins 23
3.2.2 Purification of recombinant candidate proteins 23
3.2.3 Harvest of conditioned medium (CM) from MIA PaCa-2 cell 23
3.2.4 The Cancer Genome Atlas (TCGA) analysis 24
3.2.5 Patients and measurement of factor serum levels 24
3.3 Protein Analysis 25
3.3.1 Quantification of concentration of proteins 25
3.3.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 25
3.3.3 Coomassie Brilliant Blue (CBB) staining 26
3.3.4 Immunoblotting analysis 27
3.4 Functional assay 27
3.4.1 Measurement of glucose uptake 27
3.4.2 Immunohistochemistry 28
3.4.3 Immunoprecipitation assay 28
3.4.4 MTT assays for Cell viability. 28
3.4.5 Insulin secretion 29
3.4.6 Sandwich Enzyme-linked immunosorbent assay (ELISA) 29
3.4.7 Ca2+ Measurements 30
3.4.8 Flow cytometry for Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. 30
3.5 Statistical analysis 30
Chapter IV Results 32
4.1 Identification and validation of potential diabetogenic (PCDM) factors in MIAPaCa-2 conditioned medium. 32
4.2 Effects of galectin-1, TIMP-1, galectin-3 on insulin-stimulated glucose uptake in C2C12 myotubes. 32
4.3 Elucidating serum galectin-3’s concentration and Discrimination ability for PCDM patients. 33
4.4 Receiver operating characteristic (ROC) curves for discriminating between PCDM and T2DM in combination of different parameters 34
4.5. Investigating the mechanism of galectin-3-mediated insulin resistance in insulin signaling pathway of C2C12 myotubes. 35
4.5.1 Understanding the insulin signaling pathway involved in galectin-3-mediated insulin resistance. 35
4.5.2 Galectin-3 inhibited insulin signaling pathway through TLR4 partially. 36
4.6 Exploring the effects and mechanism of galectin-3-induced apoptosis in INS-1 β islet cells. 36
Chapter V Discussions 38
5.1 Biological functions and clinical relevance of galectins 38
5.1.1 The role of extracellular galectin-3 in cancer progression 38
5.1.2 The role of extracellular galectin-3 inT2DM 38
5.2 Discovering potential PCDM biomarkers for early detection of PC 39
5.2.1 The strategies for screening PC 39
5.2.2 Perspective of multiple biomarker panels for PCDM 41
5.3 Exploring the role of galectin-3 in insulin resistance of PCDM 43
5.3.1 Understanding the mechanism of galectin-3-mediated insulin resistance in PCDM. 43
5.3.2 The regulators of insulin resistance in PCDM 44
5.4 Exploring the roles of galectin-3 in insulin secretion of β islet cells 45
5.4.1 The roles of galectin-3 in pro-apoptosis 45
5.4.2 PC-derived diabetogenic factors cause Beta cell’s apoptosis 46
5.4.3 Galectin-3 promotes apoptosis in INS-1 through TLR4 partially. 46
Chapter VI References 48
Figures 57
Supplements 69
1.Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
2.Rahib, L., et al., Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res, 2014. 74(11): p. 2913-21.
3.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2018. CA Cancer J Clin, 2018. 68(1): p. 7-30.
4.Administration, H.P. Cancer Registry Annual Report. . December 9, 2016.
5.Andrew E Becker, Y.G.H., Harold Frucht, and Aimee L Lucas, Pancreatic ductal adenocarcinoma: Risk factors, screening, and early detection. World J Gastroenterol., 2014 Aug 28. 20(32): p. 11182–11198.
6.Iovanna, J., et al., Current knowledge on pancreatic cancer. Front Oncol, 2012. 2: p. 6.
7.Burgos, L. and M.E. Burgos, Pancreatic neuroendocrine tumors. Rev Med Chil, 2004. 132(5): p. 627-34.
8.Ilic, M. and I. Ilic, Epidemiology of pancreatic cancer. World J Gastroenterol, 2016. 22(44): p. 9694-9705.
9.Ryan, D.P., T.S. Hong, and N. Bardeesy, Pancreatic adenocarcinoma. N Engl J Med, 2014. 371(11): p. 1039-49.
10.Bosetti, C., et al., Pancreatic cancer: overview of descriptive epidemiology. Mol Carcinog, 2012. 51(1): p. 3-13.
11.Prashanth Rawla, a., d Tagore Sunkara,b and Vinaya Gaduputic, Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol, 2019 Feb. 10(1): p. 10–27.
12.McGuigan, A., et al., Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol, 2018. 24(43): p. 4846-4861.
13.Wahi, M.M., et al., Reproductive factors and risk of pancreatic cancer in women: a review of the literature. Ann Epidemiol, 2009. 19(2): p. 103-11.
14.Fesinmeyer, M.D., et al., Differences in survival by histologic type of pancreatic cancer. Cancer Epidemiol Biomarkers Prev, 2005. 14(7): p. 1766-73.
15.Longnecker, D.S., et al., Racial differences in pancreatic cancer: comparison of survival and histologic types of pancreatic carcinoma in Asians, blacks, and whites in the United States. Pancreas, 2000. 21(4): p. 338-43.
16.Dong, M., et al., Ki-ras point mutation and p53 expression in human pancreatic cancer: a comparative study among Chinese, Japanese, and Western patients. Cancer Epidemiol Biomarkers Prev, 2000. 9(3): p. 279-84.
17.Ezzati, M., et al., Role of smoking in global and regional cancer epidemiology: current patterns and data needs. Int J Cancer, 2005. 116(6): p. 963-71.
18.Fuchs, C.S., et al., A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med, 1996. 156(19): p. 2255-60.
19.Silverman, D.T., et al., Cigarette smoking and pancreas cancer: a case-control study based on direct interviews. J Natl Cancer Inst, 1994. 86(20): p. 1510-6.
20.Stephen J. Pandol, M.V.A., Jeremy S. Wilson, Anna S. Gukovskaya, and Mouad Edderkaoui, The Burning Question: Why is Smoking a Risk Factor for Pancreatic Cancer? Pancreatology, 2014 Mar 17.
21.Michaud, D.S., et al., Physical activity, obesity, height, and the risk of pancreatic cancer. Jama, 2001. 286(8): p. 921-9.
22.Cascetta, P., et al., Pancreatic Cancer and Obesity: Molecular Mechanisms of Cell Transformation and Chemoresistance. Int J Mol Sci, 2018. 19(11).
23.Shadhu, K. and C. Xi, Inflammation and pancreatic cancer: An updated review. Saudi J Gastroenterol, 2019. 25(1): p. 3-13.
24.Petersen, G.M., Familial pancreatic cancer. Semin Oncol, 2016. 43(5): p. 548-553.
25.Kamisawa, T., et al., Pancreatic cancer. Lancet, 2016. 388(10039): p. 73-85.
26.Klein, A.P., et al., Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res, 2004. 64(7): p. 2634-8.
27.Etemad, B. and D.C. Whitcomb, Chronic pancreatitis: diagnosis, classification, and new genetic developments. Gastroenterology, 2001. 120(3): p. 682-707.
28.Duell, E.J., et al., Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol, 2012. 23(11): p. 2964-70.
29.Maisonneuve, P. and A.B. Lowenfels, Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol, 2015. 44(1): p. 186-98.
30.Everhart, J. and D. Wright, Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. Jama, 1995. 273(20): p. 1605-9.
31.Liao, W.C., et al., Blood glucose concentration and risk of pancreatic cancer: systematic review and dose-response meta-analysis. Bmj, 2015. 350: p. g7371.
32.Wu, D., et al., Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature, 2018. 559(7715): p. 637-641.
33.Xu Zhang, S.S., Bo Zhang, Quanxing Ni, Xianjun Yu, and Jin Xu, Circulating biomarkers for early diagnosis of pancreatic cancer: facts and hopes. Am J Cancer Res, 2018 Mar 1. 8(3): p. 332-353.
34.Pan, S., et al., Protein alterations associated with pancreatic cancer and chronic pancreatitis found in human plasma using global quantitative proteomics profiling. J Proteome Res, 2011. 10(5): p. 2359-76.
35.Kim, J.E., et al., Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol, 2004. 19(2): p. 182-6.
36.Lulu Zhang, S.S., and Alina Stoita, Challenges in diagnosis of pancreatic cancer. World J Gastroenterol., 2018 May 21. 24 (19): p. 2047–2060.
37.Stathis, A. and M.J. Moore, Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol, 2010. 7(3): p. 163-72.
38.Snehal Gajiwala, A.T., Ignacio Garrido-Laguna, Conan Kinsey, and Shane Lloyd, Combination immunotherapy and radiation therapy strategies for pancreatic cancer—targeting multiple steps in the cancer immunity cycle. J Gastrointest Oncol., 2018 Dec. 9(6): p. 1014–1026.
39.Leva Hajatdoost, K.S., Erin J. Walker, Jackson Thomas, and Sam Kosari, Chemotherapy in Pancreatic Cancer: A Systematic Review. Medicina (Kaunas), 2018. 54(3).
40.Shravanti Macherla, S.L., 2 Abdul Rafeh Naqash,1 Anushi Bulumulle,1 Emmanuel Zervos,2 and Mahvish Muzaffar1,*, Emerging Role of Immune Checkpoint Blockade in Pancreatic Cancer. Int J Mol Sci, 2018 Nov 7.
41.Salvatore, T., et al., Pancreatic cancer and diabetes: A two-way relationship in the perspective of diabetologist. Int J Surg, 2015. 21 Suppl 1: p. S72-7.
42.Gullo, L., R. Pezzilli, and A.M. Morselli-Labate, Diabetes and the risk of pancreatic cancer. N Engl J Med, 1994. 331(2): p. 81-4.
43.Rahul Pannala, J.B.L., William R. Bamlet, Ananda Basu, Gloria M. Petersen, and Suresh T. Chari, Prevalence and Clinical Profile of Pancreatic Cancer-associated Diabetes mellitus. Gastroenterology, 2008 Jan 18. . 134(4): p. 981–987.
44.Pelaez-Luna M1, T.N., Fletcher JG, Chari ST., Resectability of presymptomatic pancreatic cancer and its relationship to onset of diabetes: a retrospective review of CT scans and fasting glucose values prior to diagnosis. Am J Gastroenterol, 2007 Oct. 102(10): p. 2157-63.
45.Permert, J., et al., Improved glucose metabolism after subtotal pancreatectomy for pancreatic cancer. Br J Surg, 1993. 80(8): p. 1047-50.
46.Phil A. Hart, a.S.T.C., Diabetes mellitus and pancreatic cancer: why the association matters? Pancreas., 2014 Nov 42(8).
47.Gaurav Aggarwal, a.K.G.R., b Gloria M. Petersen,b and Suresh T. Charia,, New-onset diabetes in pancreatic cancer: A study in the primary care setting. Pancreatology, 2015. 12(2): p. 156–161.
48.Phil A. Hart, P.K., Kari G. Rabe, Sunil Srinivasan, Ananda Basu, MD, Gaurav Aggarwal, and Suresh T. Chari,, Weight Loss Precedes Cancer Specific Symptoms in Pancreatic Cancer Associated Diabetes Mellitus. Pancreas., 2012. 40(5): p. 768–772.
49.Valerio, A., et al., Glucose metabolic alterations in isolated and perfused rat hepatocytes induced by pancreatic cancer conditioned medium: a low molecular weight factor possibly involved. Biochem Biophys Res Commun, 1999. 257(2): p. 622-8.
50.Basso, D., et al., Altered glucose metabolism and proteolysis in pancreatic cancer cell conditioned myoblasts: searching for a gene expression pattern with a microarray analysis of 5000 skeletal muscle genes. Gut, 2004. 53(8): p. 1159-66.
51.Basso, D., et al., The pancreatic cancer cell line MIA PaCa2 produces one or more factors able to induce hyperglycemia in SCID mice. Anticancer Res, 1995. 15(6b): p. 2585-8.
52.Basso, D., et al., Putative pancreatic cancer-associated diabetogenic factor: 2030 MW peptide. Pancreas, 2002. 24(1): p. 8-14.
53.Wang, F., et al., In vitro influences between pancreatic adenocarcinoma cells and pancreatic islets. J Surg Res, 1998. 79(1): p. 13-9.
54.Tan, L., et al., Macrophage migration inhibitory factor is overexpressed in pancreatic cancer tissues and impairs insulin secretion function of beta-cell. J Transl Med, 2014. 12: p. 92.
55.Jérémie Boucher, A.K., and C. Ronald Kahn, Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harb Perspect Biol., 2014 Jan. 6(1).
56.Stanley, M., S.L. Macauley, and D.M. Holtzman, Changes in insulin and insulin signaling in Alzheimer''s disease: cause or consequence? J Exp Med, 2016. 213(8): p. 1375-85.
57.Lebovitz, H.E., Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes, 2001. 109 Suppl 2: p. 135-48.
58.Gual, P., Y. Le Marchand-Brustel, and J.F. Tanti, Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 2005. 87(1): p. 99-109.
59.Aguirre, V., et al., Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem, 2002. 277(2): p. 1531-7.
60.Jin Zhang, Z.G., Jun Yin, Michael J. Quon, and Jianping Ye, S6K Directly Phosphorylates IRS-1 on Ser-270 to Promote Insulin Resistance in Response to TNF-α Signaling through IKK2. J Biol Chem, 2008 Dec 19. 183(51): p. 35375-82.
61.Copps, K.D. and M.F. White, Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012. 55(10): p. 2565-2582.
62.Boucher, J., A. Kleinridders, and C.R. Kahn, Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol, 2014. 6(1).
63.De Leon, D.D. and C.A. Stanley, Mechanisms of Disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin Pract Endocrinol Metab, 2007. 3(1): p. 57-68.
64.Bataille, D., [Molecular mechanisms of insulin secretion]. Diabetes Metab, 2002. 28(6 Suppl): p. 4s7-13.
65.Stoffers, S.A.S.a.D.A., The pancreatic β cell and type 1 diabetes: innocent bystander or active participant? Trends Endocrinol Metab, 2014 Jul 1. 24(7): p. 324–331.
66.Cerf, M.E., Beta Cell Dysfunction and Insulin Resistance. Front Endocrinol (Lausanne), 2013 Mar 27. 4(37).
67.Group.., B.D.W., Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther, 2001. 69(3): p. 89-95.
68.José Marrugo-Ramírez, 2 Mònica Mir,1,2,3,* and Josep Samitier, Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. Int J Mol Sci, 2018 Oct. 19(10): p. 2877.
69.Ludwig, J.A. and J.N. Weinstein, Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer, 2005 Nov. 5(11): p. 845-56.
70.Poruk, K.E., et al., The clinical utility of CA 19-9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr Mol Med, 2013. 13(3): p. 340-51.
71.Pavai, S. and S.F. Yap, The clinical significance of elevated levels of serum CA 19-9. Med J Malaysia, 2003. 58(5): p. 667-72.
72.Steinberg, W., The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol, 1990. 85(4): p. 350-5.
73.Pannala, R., et al., New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol, 2009. 10(1): p. 88-95.
74.Sah, R.P., et al., New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol, 2013. 10(7): p. 423-33.
75.Goldstein, I.J. and C.E. Hayes, The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem, 1978. 35: p. 127-340.
76.Mayer, S., M.K. Raulf, and B. Lepenies, C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol, 2017. 147(2): p. 223-237.
77.Vandenborre, G., G. Smagghe, and E.J. Van Damme, Plant lectins as defense proteins against phytophagous insects. Phytochemistry, 2011. 72(13): p. 1538-50.
78.Barondes, S.H., et al., Galectins. Structure and function of a large family of animal lectins. J Biol Chem, 1994. 269(33): p. 20807-10.
79.Connie M. Arthur, M.D.B., Richard D. Cummings, and Sean R. Stowell, Evolving Mechanistic Insights into Galectin Functions. Methods Mol Biol, 2018 Jan 5. 1207:: p. 1-35.
80.Kamili, N.A., et al., Key regulators of galectin-glycan interactions. Proteomics, 2016. 16(24): p. 3111-3125.
81.Hadari, Y.R., et al., Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. J Cell Sci, 2000. 113 ( Pt 13): p. 2385-97.
82.Varki, A., et al., Essentials of Glycobiology. 2015.
83.Popa, S.J., S.E. Stewart, and K. Moreau, Unconventional secretion of annexins and galectins. Semin Cell Dev Biol, 2018. 83: p. 42-50.
84.Liu, F.T., R.J. Patterson, and J.L. Wang, Intracellular functions of galectins. Biochim Biophys Acta, 2002. 1572(2-3): p. 263-73.
85.Yu, F., et al., Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J Biol Chem, 2002. 277(18): p. 15819-27.
86.Dumic, J., S. Dabelic, and M. Flogel, Galectin-3: an open-ended story. Biochim Biophys Acta, 2006. 1760(4): p. 616-35.
87.Liu, F.T., Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol, 2005. 136(4): p. 385-400.
88.Suzuki, Y., et al., Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochim Biophys Acta, 2008. 1783(5): p. 924-34.
89.Burguillos, M.A., et al., Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation. Cell Rep, 2015. 10(9): p. 1626-1638.
90.Burguillos, T.D.a.M.A., A new “sweet” ligand for Toll-like receptor 4. Oncotarge., 2015 Aug 21. 6(24): p. 19928–19929.
91.Rahimian, R., L.C. Beland, and J. Kriz, Galectin-3: mediator of microglia responses in injured brain. Drug Discov Today, 2018. 23(2): p. 375-381.
92.Tang, Z., et al., GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res, 2017. 45(W1): p. W98-w102.
93.Sharma, A., et al., Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes. Gastroenterology, 2018. 155(3): p. 730-739.
94.Huiting Xue, L.L., Zihan Zhao, Zhongyu Zhang, Yuan Guan, Hairong Cheng, Yifa Zhou, and Guihua Tai, The N-terminal tail coordinates with carbohydrate recognition domain to mediate galectin-3 induced apoptosis in T cells. Oncotarget, 2017 Jul 25. 8(30): p. 49824-49838.
95.Szasz, T., et al., Toll-Like Receptor 4 Activation Contributes to Diabetic Bladder Dysfunction in a Murine Model of Type 1 Diabetes. Diabetes, 2016. 65(12): p. 3754-3764.
96.Farhad, M., A.S. Rolig, and W.L. Redmond, The role of Galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment. Oncoimmunology, 2018. 7(6).
97.Warfield, P.R., et al., Adhesion of human breast carcinoma to extracellular matrix proteins is modulated by galectin-3. Invasion Metastasis, 1997. 17(2): p. 101-12.
98.O''Driscoll, L., et al., Galectin-3 expression alters adhesion, motility and invasion in a lung cell line (DLKP), in vitro. Anticancer Res, 2002. 22(6a): p. 3117-25.
99.Kim, S.J., et al., Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1). PLoS One, 2011. 6(9): p. e25103.
100.Dos Santos, S.N., et al., Galectin-3 acts as an angiogenic switch to induce tumor angiogenesis via Jagged-1/Notch activation. Oncotarget, 2017. 8(30): p. 49484-49501.
101.Fukumori, T., et al., CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res, 2003. 63(23): p. 8302-11.
102.Vuong, L., et al., An Orally Active Galectin-3 Antagonist Inhibits Lung Adenocarcinoma Growth and Augments Response to PD-L1 Blockade. Cancer Res, 2019. 79(7): p. 1480-1492.
103.Shumei Song , B.J., Vijaya Ramachandran, Huamin Wang, Margarete Hafley, Craig Logsdon, and Robert S. Bresalier Overexpressed Galectin-3 in Pancreatic Cancer Induces Cell Proliferation and Invasion by Binding Ras and Activating Ras Signaling. PLoS One, 2012. 7(8).
104.Yao, Y., et al., HH1-1, a novel Galectin-3 inhibitor, exerts anti-pancreatic cancer activity by blocking Galectin-3/EGFR/AKT/FOXO3 signaling pathway. Carbohydr Polym, 2019. 204: p. 111-123.
105.Li, P., et al., Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell, 2016. 167(4): p. 973-984.e12.
106.Weigert, J., et al., Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. J Clin Endocrinol Metab, 2010. 95(3): p. 1404-11.
107.Canto, M.I., et al., Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol, 2004. 2(7): p. 606-21.
108.Brentnall, T.A., et al., Early diagnosis and treatment of pancreatic dysplasia in patients with a family history of pancreatic cancer. Ann Intern Med, 1999. 131(4): p. 247-55.
109.Permert, J., et al., Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N Engl J Med, 1994. 330(5): p. 313-8.
110.Akter, R., et al., Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. J Diabetes Res, 2016. 2016: p. 2798269.
111.Chari, S.T., et al., Islet amyloid polypeptide is not a satisfactory marker for detecting pancreatic cancer. Gastroenterology, 2001. 121(3): p. 640-5.
112.Aggarwal, G., et al., Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in beta cells and mice. Gastroenterology, 2012. 143(6): p. 1510-1517.
113.Javeed, N., et al., Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic beta-cell Dysfunction. Clin Cancer Res, 2015. 21(7): p. 1722-33.
114.Ballehaninna, U.K. and R.S. Chamberlain, The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J Gastrointest Oncol, 2012. 3(2): p. 105-19.
115.Zhang, X., et al., Circulating biomarkers for early diagnosis of pancreatic cancer: facts and hopes. Am J Cancer Res, 2018. 8(3): p. 332-353.
116.Brand, R.E., et al., Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res, 2011. 17(4): p. 805-16.
117.Gao, Z., et al., Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol, 2004. 18(8): p. 2024-34.
118.Taha, I.M., A.M. Abdu Allah, and E.M. Abd El Gayed, Expression of toll-like receptor 4 and its connection with type 2 diabetes mellitus. Cell Mol Biol (Noisy-le-grand), 2018. 64(13): p. 15-20.
119.Diaz-Alvarez, L. and E. Ortega, The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediators Inflamm, 2017. 2017(8): p. 1-10.
120.Pricci, F., et al., Role of galectin-3 as a receptor for advanced glycosylation end products. Kidney Int Suppl, 2000. 77: p. S31-9.
121.Bhattacharyya, S., et al., Exposure to the common food additive carrageenan leads to glucose intolerance, insulin resistance and inhibition of insulin signalling in HepG2 cells and C57BL/6J mice. Diabetologia, 2012. 55(1): p. 194-203.
122.Bhattacharyya, S., et al., Toll-like receptor 4 mediates induction of the Bcl10-NFkappaB-interleukin-8 inflammatory pathway by carrageenan in human intestinal epithelial cells. J Biol Chem, 2008. 283(16): p. 10550-8.
123.Borthakur, A., et al., Prolongation of carrageenan-induced inflammation in human colonic epithelial cells by activation of an NFkappaB-BCL10 loop. Biochim Biophys Acta, 2012. 1822(8): p. 1300-7.
124.Stillman, B.N., Hsu, D. K.,Pang, M.,Brewer, C. F.,Johnson, P.,Liu, F. T.,Baum, L. G., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol, 2006. 176(2): p. 778-89.
125.Nguyen, M.N., et al., Mechanisms responsible for increased circulating levels of galectin-3 in cardiomyopathy and heart failure. Sci Rep, 2018. 8(1): p. 8213.
126.Wu, C.K., et al., Galectin-3 level and the severity of cardiac diastolic dysfunction using cellular and animal models and clinical indices. Sci Rep, 2015. 5: p. 17007.
127.Li, X., et al., Therapeutic inhibition of galectin3 improves cardiomyocyte apoptosis and survival during heart failure. Mol Med Rep, 2018. 17(3): p. 4106-4112.
128.Jin, H., et al., IL-6 Promotes Islet beta-Cell Dysfunction in Rat Collagen-Induced Arthritis. J Diabetes Res, 2016. 2016: p. 75929-31.
129.Hoorens, A., et al., Distinction between interleukin-1-induced necrosis and apoptosis of islet cells. Diabetes, 2001. 50(3): p. 551-7.
130.Li, M., et al., Toll-like receptor 4 on islet beta cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes. Exp Mol Med, 2012. 44(4): p. 260-7.
131.Li, J., et al., TLR4 is required for the obesity-induced pancreatic beta cell dysfunction. Acta Biochim Biophys Sin (Shanghai), 2013. 45(12): p. 1030-8.
132.Cucak, H., et al., Macrophage contact dependent and independent TLR4 mechanisms induce beta-cell dysfunction and apoptosis in a mouse model of type 2 diabetes. PLoS One, 2014. 9(3): p. e90685.
133.Garay-Malpartida, H.M., et al., Toll-like receptor 4 (TLR4) expression in human and murine pancreatic beta-cells affects cell viability and insulin homeostasis. BMC Immunol, 2011. 12: p. 18.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊