(3.237.178.91) 您好!臺灣時間:2021/03/02 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳沛樺
研究生(外文):Pei-Hua Wu
論文名稱:吲哚胺2,3-雙加氧酶活化多環芳香烴感受器路徑和β-連環蛋白訊息傳遞路徑促進肝細胞癌惡化
論文名稱(外文):Understanding the role of Indoleamine 2,3-dioxygenase-induced Aryl hydrocarbon receptor and β-catenin pathway in Hepatocellular Carcinoma Cells
指導教授:周綠蘋周綠蘋引用關係
口試委員:劉旻禕陳炳宏王錦堂許金川
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:肝細胞癌丙型干擾素吲哚胺23-雙加氧酶犬尿胺酸多環芳香烴感受器β-連環蛋白SrcPTENAkt
DOI:10.6342/NTU201903174
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肝細胞癌(Hepatocellular carcinoma)為原發性肝癌中最常見的一型,也是全球致死率第二名的癌症。肝炎病毒感染所引起的慢性肝臟發炎是造成HCC最主要的危險因子,當促發炎因子:丙型干擾素(Interferon-γ, IFN-γ)刺激肝癌細胞後,細胞內酵素:吲哚胺2,3-雙加氧酶(Indoleamine 2,3-dioxygenase, IDO)的表現量會大量上升並參與在抑制免疫反應的過程,進而改變腫瘤微環境。近年來,IDO對於非免疫細胞的調控開始受到關注,然而IDO對於HCC細胞自身的影響目前還有待探討。
在本篇研究中我們發現利用IFN-γ刺激Huh7 shCtrl細胞後,IDO的表現量與活性都會大量上升,我們也觀察到IDO的活性與癌細胞的增生和轉移能力呈正相關,在給予細胞犬尿胺酸(kynurenine, KYN)後,可以回復Huh7 shIDO cells增生和轉移的能力,因此暗示著IDO和其代謝產物會促進肝癌細胞的惡化。KYN為多環芳香烴感受器 (aryl hydrocarbon receptor, AhR)的內源性配體,在過去研究中AhR的活化被報導會參與在多種癌症中,我們發現在細胞受到IFN-γ刺激後,KYN表現量的提升會活化並促進AhR進入細胞核,活化的AhR會提升snail的轉錄,進而抑制E-cadherin的表現量,當E-cadherin的表現量下降時會釋放β-連環蛋白(β-catenin),因此β-catenin可以進入細胞核中調控與增生相關分子的轉錄。此外,在細胞核中AhR和β-catenin會有物理上的連接並共同調控snail轉錄的提升,進而促進細胞轉移的能力。我們也推測活化的AhR會釋放Src來抑制PTEN的蛋白表現量,使Akt訊息傳遞路徑不斷活化,因此β-catenin將不再受destruction complex抑制,得以進入細胞核。根據本篇論文的實驗結果,我們觀察到IDO促進肝癌細胞發展的機制,其中AhR和β-catenin訊息傳遞路徑的活化扮演重要角色。
Hepatocellular carcinoma (HCC), the major type of primary liver cancer, is the second most common cause of cancer-related death worldwide. Chronic liver inflammation caused by hepatitis virus infection is the main risk factor of HCC. Once pro-inflammatory factor IFN-γ stimulates liver cancer cell, Indoleamine 2,3- dioxygenase (IDO) will be activated to mediate tumor immune escape, which is crucial in the promotion of HCC. Recently, IDO has been the focus of much attention because of its non-immunological role. However, the role of IDO in liver cancer remains to be elucidated.
In our studies, we showed that IFN-γ induced IDO expression and activity in Huh7 cells, and there was a positive correlation between IDO activity and cell proliferation and metastatic abilities. Moreover, the proliferation and metastatic capability could be rescued after kynurenine (KYN) treatment in Huh7 shIDO cells. These results implicated that IDO and its metabolite were involved in HCC progression. KYN was an endogenous ligand of aryl hydrocarbon receptor (AhR), which had been reported to play a role in tumorigenesis. We found that KYN enhanced signaling activation and nuclear translocation of AhR. Activated AhR promoted transcription of snail and reduced E-cadherin expression. Downregulation of E-cadherin led to release of β-catenin, then β-catenin was able to translocate to the nucleus and promoted the expression of proliferation-related molecules. In the nucleus, AhR and β-catenin had physical interaction and corporately promoted transcription of snail, which was responsible for the increased cell migratory and invasive abilities. We also speculated AhR released Src to downregulate PTEN expression and promote Akt signaling, which abolished the destruction complex from β-catenin, and finally led to activation of β-catenin. In conclusion, these results showed the tumor-promoting function of IDO in HCC, and it was mediated by activating both AhR and β-catenin signaling pathway.
謝誌 i
中文摘要 ii
Abstract iii
縮寫 v
目錄 vii
圖表目錄 xi
附錄目錄 xii
第一章 導論 1
一、 肝癌 1
1.1肝癌的流行病學 1
1.2肝癌的臨床病理 1
1.3肝癌的致病原因 2
二、 肝癌演進的機制:慢性發炎引發癌化與免疫抑制 3
三、 IDO參與腫瘤演進 3
3.1 IDO於癌症中大量表現 3
3.2促發炎因子提升IDO表現量並抑制免疫反應 4
3.3 IDO促進癌細胞的發展 4
3.4 IDO調控的訊息傳遞路徑:AhR signaling pathway 5
四、 AhR (Aryl hydrocarbon receptor) signaling pathway 5
4.1 AhR的特性 5
4.2活化AhR的ligand 6
4.3 AhR調控的分子機制 6
4.4 AhR參與癌症的演進 7
五、 AhR和β-catenin交互作用 8
5.1在肝臟細胞中AhR和β-catenin signaling pathway的交互作用 8
5.2 β-catenin的特性 8
5.3異常活化的β-catenin signaling pathway促進癌化 9
六、 Akt signaling調控β-catenin活化 9
6.1 Akt的特性 9
6.2 PI3K/Akt 抑制GSK-3β使得β-catenin signaling持續活化 10
6.3 Akt signaling受PTEN抑制 10
七、 研究動機 11
第二章 實驗材料 12
一、 細胞株 12
二、 儀器 12
三、 藥品 13
四、 試劑組 15
五、 抗體 15
六、 分析軟體 16
第三章 實驗方法 17
一、 肝癌細胞之培養 17
1.1培養基(medium)的配置 17
1.2細胞培養 17
二、 小髮夾RNA(shRNA)抑制目標蛋白 17
2.1菌株培養 17
2.2純化含有shRNA之質體 18
2.3含有shRNA之慢病毒(Lentivirus)製備 18
2.4慢病毒載體感染肝細胞癌細胞 19
三、 蛋白質分析 19
3.1蛋白質萃取及濃度測定 19
3.2十二烷基磺酸鈉-聚丙烯醯胺凝膠電泳法(SDS-PAGE) 19
3.3西方墨點法(Western Blot) 20
四、 Co-IP (Co-Immunoprecipitation) 21
五、 ChIP (Chromatin Immunoprecipitation) 22
5.1固定DNA與蛋白質(Cross-linking) 與震斷DNA (soniciation) 22
5.2免疫沉澱 (Immunoprecipitation) 22
5.3 DNA純化 23
5.4 聚合酶鏈鎖反應(PCR)與瓊脂凝膠電泳(agarose gel electrophoresis) 23
六、 細胞傷口癒合實驗(wound healing assay) 24
七、 細胞侵襲實驗(transwell assay) 24
7.1 裝置transwell 24
7.2 侵襲能力偵測 24
八、 RT-PCR 25
8.1 RNA萃取(RNA extraction) 25
8.2反轉錄聚合酶鏈式反應(Reverse transcription) 25
8.3聚合酶鏈鎖反應(PCR)與瓊脂凝膠電泳(agarose gel electrophoresis) 25
第四章 實驗結果 26
一、 IDO調控與增生相關分子(proliferation-related molecules)的表現量 26
二、 IDO參與促進Huh7轉移的能力 27
三、 IDO促進與轉移相關分子(EMT-related molecules)的表現量 27
四、 IDO活化後促進AhR和β-catenin相互作用(interaction) 28
五、 AhR和β-catenin共同調控snail的轉錄 29
六、 IDO透過抑制PTEN使Akt signaling pathway活化 30
七、 AhR活化後釋放Src以抑制PTEN/PI3K/Akt signaling pathway 30
八、 總結 31
九、 IDO在肝癌病患中的基因表現量 31
第五章 討論 33
一、 肝癌細胞中IDO的活化促進細胞增生與轉移 33
二、 IDO促進AhR的活化 33
三、 AhR和β-catenin訊息傳遞的相互調控 34
四、 AhR和β-catenin在細胞核中共同調控基因的轉錄 35
五、 AhR透過抑制PTEN使Akt活化進而啟動β-catenin 36
六、 IDO於癌症醫療的應用 38
第六章 參考文獻 41
第七章 圖表與說明 51
第八章 附錄 64
1.El-Serag, H.B. and K.L. Rudolph, Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007. 132(7): p. 2557-76.
2.McGlynn, K.A., J.L. Petrick, and W.T. London, Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis, 2015. 19(2): p. 223-38.
3.Wang, C.-K. and R.-A. Branch, Management consensus guideline for hepatocellular carcinoma: 2016 updated by the Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan. J Formos Med Assoc, 2018. 117(5): p. 381-403.
4.Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86.
5.Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006. 6(9): p. 674-87.
6.Plentz, R.R. and N.P. Malek, Early Detection of Hepatocellular Carcinoma: How to Screen and Follow up Patients with Liver Cirrhosis According to the GERMAN S3 Guideline? Diagnostics, 2015. 5(4): p. 497-503.
7.Pellicoro, A., et al., Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol, 2014. 14(3): p. 181-94.
8.Capece, D., et al., The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int, 2013. 2013: p. 187-204.
9.Mapara, M.Y. and M. Sykes, Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol, 2004. 22(6): p. 1136-51.
10.Zou, W., Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer, 2005. 5(4): p. 263-74.
11.Mellor, A.L. and D.H. Munn, IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol, 2004. 4(10): p. 762-74.
12.Uyttenhove, C., et al., Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med, 2003. 9(10): p. 1269-74.
13.Takikawa, O., Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochem Biophys Res Commun, 2005. 338(1): p. 12-9.
14.Katz, J.B., A.J. Muller, and G.C. Prendergast, Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev, 2008. 222: p. 206-21.
15.Muller, A.J., et al., Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med, 2005. 11(3): p. 312-9.
16.Pan, K., et al., Characterization of bridging integrator 1 (BIN1) as a potential tumor suppressor and prognostic marker in hepatocellular carcinoma. Mol Med, 2012. 18: p. 507-18.
17.Godin-Ethier, J., et al., Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res, 2011. 17(22): p. 6985-91.
18.Speeckaert, R., et al., Indoleamine 2,3-dioxygenase, a new prognostic marker in sentinel lymph nodes of melanoma patients. Eur J Cancer, 2012. 48(13): p. 2004-11.
19.Hou, D.Y., et al., Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res, 2007. 67(2): p. 792-801.
20.Babcock, T.A. and J.M. Carlin, Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine, 2000. 12(6): p. 588-94.
21.Robinson, C.M., K.A. Shirey, and J.M. Carlin, Synergistic transcriptional activation of indoleamine dioxygenase by IFN-gamma and tumor necrosis factor-alpha. J Interferon Cytokine Res, 2003. 23(8): p. 413-21.
22.Frumento, G., et al., Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med, 2002. 196(4): p. 459-68.
23.Fallarino, F., et al., T cell apoptosis by tryptophan catabolism. Cell Death Differ, 2002. 9(10): p. 1069-77.
24.Munn, D.H. and A.L. Mellor, IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol, 2016. 37(3): p. 193-207.
25.Chen, J.Y., et al., Cancer/stroma interplay via cyclooxygenase-2 and indoleamine 2,3-dioxygenase promotes breast cancer progression. Breast Cancer Res, 2014. 16(4): p. 410.
26.Zhong, W., et al., Mesenchymal stem cells in inflammatory microenvironment potently promote metastatic growth of cholangiocarcinoma via activating Akt/NF-kappaB signaling by paracrine CCL5. Oncotarget, 2017. 8(43): p. 73693-73704.
27.Murray, I.A., A.D. Patterson, and G.H. Perdew, Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer, 2014. 14(12): p. 801-14.
28.Ambrosio, L.F., et al., Role of Aryl Hydrocarbon Receptor (AhR) in the Regulation of Immunity and Immunopathology During Trypanosoma cruzi Infection. Front Immunol, 2019. 10: p. 631.
29.Cheong, J.E. and L. Sun, Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy - Challenges and Opportunities. Trends Pharmacol Sci, 2018. 39(3): p. 307-325.
30.Opitz, C.A., et al., An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 2011. 478(7368): p. 197-203.
31.Dietrich, C. and B. Kaina, The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis, 2010. 31(8): p. 1319-28.
32.Wright, E., et al., Canonical and Non-Canonical Aryl Hydrocarbon Receptor Signaling Pathways. Curr Opin Toxicol, 2017. 2: p. 87-92.
33.Ikuta, T., et al., Nucleocytoplasmic shuttling of the aryl hydrocarbon receptor. J Biol Chem, 2000. 127(3): p. 503-9.
34.Nguyen, L.P. and C.A. Bradfield, The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol, 2008. 21(1): p. 102-16.
35.Hankinson, O., The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol, 1995. 35: p. 307-40.
36.Denison, M.S., et al., Ligand binding and activation of the Ah receptor. Chem Biol Interact, 2002. 141(1-2): p. 3-24.
37.Fujisawa-Sehara, A., et al., Regulatory DNA elements localized remotely upstream from the drug-metabolizing cytochrome P-450c gene. Nucleic Acids Res, 1986. 14(3): p. 1465-77.
38.Vogel, C.F., et al., Interaction of aryl hydrocarbon receptor and NF-kappaB subunit RelB in breast cancer is associated with interleukin-8 overexpression. Arch Biochem Biophys, 2011. 512(1): p. 78-86.
39.Levine-Fridman, A., L. Chen, and C.J. Elferink, Cytochrome P4501A1 promotes G1 phase cell cycle progression by controlling aryl hydrocarbon receptor activity. Mol Pharmacol, 2004. 65(2): p. 461-9.
40.Apetoh, L., et al., The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol, 2010. 11(9): p. 854-61.
41.Xie, G., Z. Peng, and J.P. Raufman, Src-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates colon cancer cell proliferation. Am J Physiol Gastr L, 2012. 302(9): p. G1006-15.
42.Esser, C. and A. Rannug, The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev, 2015. 67(2): p. 259-79.
43.Puga, A., Y. Xia, and C. Elferink, Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem Biol Interact, 2002. 141(1-2): p. 117-30.
44.Elizondo, G., et al., Altered cell cycle control at the G(2)/M phases in aryl hydrocarbon receptor-null embryo fibroblast. Mol Pharmacol, 2000. 57(5): p. 1056-63.
45.Strobeck, M.W., et al., Restoration of retinoblastoma mediated signaling to Cdk2 results in cell cycle arrest. Oncogene, 2000. 19(15): p. 1857-67.
46.Bock, K.W. and C. Kohle, Ah receptor- and TCDD-mediated liver tumor promotion: clonal selection and expansion of cells evading growth arrest and apoptosis. Biochem Pharmacol, 2005. 69(10): p. 1403-8.
47.Canavese, M., et al., Hepatitis C virus drives the pathogenesis of hepatocellular carcinoma: from immune evasion to carcinogenesis. Clin Transl Immuno, 2016. 5(10): p. e101.
48.Hsu, S.H., et al., Aryl hydrocarbon receptor promotes hepatocellular carcinoma tumorigenesis by targeting intestine-specific homeobox expression. Mol Carcinog, 2017. 56(10): p. 2167-2177.
49.Song, L., L. Guo, and Z. Li, Molecular mechanisms of 3,3''4,4'',5- pentachlorobiphenyl-induced epithelial-mesenchymal transition in human hepatocellular carcinoma cells. Toxicol Appl Pharmacol, 2017. 322: p. 75-88.
50.Wang, L.T., et al., Aryl hydrocarbon receptor regulates histone deacetylase 8 expression to repress tumor suppressive activity in hepatocellular carcinoma. Oncotarget, 2017. 8(5): p. 7489-7501.
51.Loeppen, S., et al., A beta-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors. Carcinogenesis, 2005. 26(1): p. 239-48.
52.Tan, X., et al., Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology, 2006. 131(5): p. 1561-72.
53.Sekine, S., et al., Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology, 2006. 43(4): p. 817-25.
54.Braeuning, A., et al., Coordinate regulation of cytochrome P450 1a1 expression in mouse liver by the aryl hydrocarbon receptor and the beta-catenin pathway. Toxicol Sci, 2011. 122(1): p. 16-25.
55.Gumbiner, B.M., Signal transduction of beta-catenin. Curr Opin Cell Biol, 1995. 7(5): p. 634-40.
56.Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996. 84(3): p. 345-57.
57.Kimelman, D. and W. Xu, beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene, 2006. 25(57): p. 7482-91.
58.Hart, M.J., et al., Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol, 1998. 8(10): p. 573-81.
59.Munemitsu, S., et al., Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci USA, 1995. 92(7): p. 3046-50.
60.Yost, C., et al., The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev, 1996. 10(12): p. 1443-54.
61.Aberle, H., et al., beta-catenin is a target for the ubiquitin-proteasome pathway. Embo j, 1997. 16(13): p. 3797-804.
62.Kitagawa, M., et al., An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. Embo j, 1999. 18(9): p. 2401-10.
63.Li, V.S., et al., Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell, 2012. 149(6): p. 1245-56.
64.Stamos, J.L. and W.I. Weis, The beta-catenin destruction complex. CSH Perspect Biol, 2013. 5(1): p. a007898.
65.Shang, S., F. Hua, and Z.W. Hu, The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget, 2017. 8(20): p. 33972-33989.
66.MacDonald, B.T., K. Tamai, and X. He, Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009. 17(1): p. 9-26.
67.Valenta, T., G. Hausmann, and K. Basler, The many faces and functions of beta-catenin. Embo j, 2012. 31(12): p. 2714-36.
68.Polakis, P., The oncogenic activation of beta-catenin. Curr Opin Genet Dev, 1999. 9(1): p. 15-21.
69.Osada, T., et al., E-cadherin is involved in the intrahepatic metastasis of hepatocellular carcinoma. Hepatology, 1996. 24(6): p. 1460-7.
70.Pecina-Slaus, N., Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int, 2003. 3(1): p. 17.
71.Petrova, Y.I., L. Schecterson, and B.M. Gumbiner, Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell, 2016. 27(21): p. 3233-3244.
72.Desbois-Mouthon, C., et al., Dysregulation of glycogen synthase kinase-3beta signaling in hepatocellular carcinoma cells. Hepatology, 2002. 36(6): p. 1528-36.
73.Huang, K.T., et al., Correlation between tuberous sclerosis complex 2 and glycogen synthase kinase 3 beta levels, and outcomes of patients with hepatocellular carcinoma treated by hepatectomy. Hepatol Res, 2014. 44(11): p. 1142-50.
74.Ersahin, T., N. Tuncbag, and R. Cetin-Atalay, The PI3K/AKT/mTOR interactive pathway. Mol Biosyst, 2015. 11(7): p. 1946-54.
75.Maurer, U., et al., GSK-3 - at the crossroads of cell death and survival. J Cell Sci, 2014. 127(7): p. 1369-78.
76.Doble, B.W. and J.R. Woodgett, GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci, 2003. 116(7): p. 1175-86.
77.McCubrey, J.A., et al., GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget, 2014. 5(10): p. 2881-911.
78.Okumura, N., et al., PI3K/AKT/PTEN Signaling as a Molecular Target in Leukemia Angiogenesis. Adv Hematol, 2012. 2012: p. 1-6.
79.Jiang, B.H. and L.Z. Liu, PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res, 2009. 102: p. 19-65.
80.Tamguney, T. and D. Stokoe, New insights into PTEN. J Cell Sci, 2007. 120(23): p. 4071-9.
81.Pan, K., et al., Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J Cancer Res Clin, 2008. 134(11): p. 1247-53.
82.Ye, L.Y., et al., Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis. Cancer Res, 2016. 76(4): p. 818-30.
83.Asghar, K., et al., Indoleamine 2,3-dioxygenase: As a potential prognostic marker and immunotherapeutic target for hepatocellular carcinoma. World J Gastroenterol, 2017. 23(13): p. 2286-2293.
84.Nelson, J.D., O. Denisenko, and K. Bomsztyk, Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc, 2006. 1(1): p. 179-85.
85.Lai, D.W., et al., The novel Aryl hydrocarbon receptor inhibitor biseugenol inhibits gastric tumor growth and peritoneal dissemination. Oncotarget, 2014. 5(17): p. 7788-804.
86.Rahl, P.B. and R.A. Young, MYC and transcription elongation. Cold Spring Harb Perspect Med, 2014. 4(1): p. a020990.
87.Ozaki, T. and A. Nakagawara, Role of p53 in Cell Death and Human Cancers. Cancers, 2011. 3(1): p. 994-1013.
88.Chu, I.M., L. Hengst, and J.M. Slingerland, The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer, 2008. 8(4): p. 253-67.
89.Cano, A., et al., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000. 2(2): p. 76-83.
90.Batlle, E., et al., The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2000. 2(2): p. 84-9.
91.Baranwal, S. and S.K. Alahari, Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun, 2009. 384(1): p. 6-11.
92.Mohamed, H.T., et al., Inflammatory breast cancer: Activation of the aryl hydrocarbon receptor and its target CYP1B1 correlates closely with Wnt5a/b-beta-catenin signalling, the stem cell phenotype and disease progression. J Adv Res, 2019. 16: p. 75-86.
93.Wang, Y., et al., The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Tar, 2013. 13(9): p. 963-972.
94.Al-Dhfyan, A., A. Alhoshani, and H.M. Korashy, Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and beta-Catenin and Akt activation. Mol Cancer, 2017. 16(1): p. 14.
95.Zhang, J.-H., et al., GSK-3β suppresses HCC cell dissociation in vitro by upregulating epithelial junction proteins and inhibiting Wnt/β-catenin signaling pathway. J Cancer, 2017. 8(9): p. 1598-1608.
96.Lu, Y., et al., Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem, 2003. 278(41): p. 40057-66.
97.Chandrashekar DS1, B.B., Balasubramanya SAH1, Creighton CJ3, Ponce-Rodriguez I2, Chakravarthi BVSK1, Varambally S4., UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia, 2017 Aug. 19(8): p. 649-658.
98.Buchbinder, E.I. and A. Desai, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol, 2016. 39(1): p. 98-106.
99.Su, C., et al., Erianin inhibits indoleamine 2, 3-dioxygenase -induced tumor angiogenesis. Biomed Pharmacother, 2017. 88: p. 521-528.
100.Wei, L., et al., High Indoleamine 2,3-Dioxygenase Is Correlated With Microvessel Density and Worse Prognosis in Breast Cancer. Front Immunol, 2018. 9: p. 724.
101.Lin, L., et al., Relationship between the expressions of indoleamine 2, 3-dioxygenase in hepatocellular carcinoma and clinicopathological parameters. Zhonghua Yi Xue Za Zhi, 2013. 93(28): p. 2186-90.
102.Moennikes, O., et al., A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res, 2004. 64(14): p. 4707-10.
103.Andersson, P., et al., A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc Natl Acad Sci USA, 2002. 99(15): p. 9990-5.
104.Zudaire, E., et al., The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. J Clin Invest, 2008. 118(2): p. 640-50.
105.Spink, D.C., et al., Estrogen regulates Ah responsiveness in MCF-7 breast cancer cells. Carcinogenesis, 2003. 24(12): p. 1941-50.
106.Chen, P.H., et al., Aryl hydrocarbon receptor in association with RelA modulates IL-6 expression in non-smoking lung cancer. Oncogene, 2012. 31(20): p. 2555-65.
107.Zhang, H., et al., Crosstalk between AhR and wnt/beta-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Toxicology, 2016. 355: p. 31-8.
108.Wincent, E., J.J. Stegeman, and M.E. Jönsson, Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions. Toxicol appl pharm, 2015. 284(2): p. 163-179.
109.Kawajiri, K., et al., Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Natl Acad Sci USA, 2009. 106(32): p. 13481-6.
110.Prochazkova, J., et al., The interplay of the aryl hydrocarbon receptor and beta-catenin alters both AhR-dependent transcription and Wnt/beta-catenin signaling in liver progenitors. Toxicol Sci, 2011. 122(2): p. 349-60.
111.Schreiber, S., et al., Phenotype of single hepatocytes expressing an activated version of beta-catenin in liver of transgenic mice. J Mol Histol, 2011. 42(5): p. 393-400.
112.Braeuning, A., et al., Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of Ctnnb1. Drug Metab Dispos, 2009. 37(5): p. 1138-45.
113.Gerbal-Chaloin, S., et al., The WNT/beta-catenin pathway is a transcriptional regulator of CYP2E1, CYP1A2, and aryl hydrocarbon receptor gene expression in primary human hepatocytes. Mol Pharmacol, 2014. 86(6): p. 624-34.
114.Song, M.S., L. Salmena, and P.P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol, 2012. 13(5): p. 283-96.
115.Bermudez Brito, M., E. Goulielmaki, and E.A. Papakonstanti, Focus on PTEN Regulation. Front Oncol, 2015. 5: p. 166.
116.Kim, D.W., et al., The RelA NF-kappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene, 2000. 19(48): p. 5498-506.
117.Vogel, C.F., et al., Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-kappaB. J Biol Chem, 2014. 289(3): p. 1866-75.
118.Escriva, M., et al., Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis. Mol Cell Biol, 2008. 28(5): p. 1528-40.
119.Strimbu, K. and J.A. Tavel, What are biomarkers? Current opinion in HIV and AIDS, 2010. 5(6): p. 463-466.
120.Song, H.J., et al., Best serum biomarker combination for ovarian cancer classification. Biomed Eng Online, 2018. 17(2): p. 152.
121.Gao, J. and P. Song, Combination of triple biomarkers AFP, AFP-L3, and PIVAKII for early detection of hepatocellular carcinoma in China: Expectation. Drug Discov Ther, 2017. 11(3): p. 168-169.
122.Lou, J., et al., Biomarkers for Hepatocellular Carcinoma. Biomarkers in cancer, 2017. 9: p. 1-9.
123.Li, D., T. Mallory, and S. Satomura, AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta, 2001. 313(1-2): p. 15-9.
124.Choi, J., et al., Evaluation of automated serum des-gamma-carboxyprothrombin (DCP) assays for detecting hepatocellular carcinoma. Clin Biochem, 2011. 44(17-18): p. 1464-8.
125.Toyoda, H., et al., Prognostic significance of a combination of pre- and post-treatment tumor markers for hepatocellular carcinoma curatively treated with hepatectomy. J Hepatol, 2012. 57(6): p. 1251-7.
126.Prendergast, G.C., et al., Discovery of IDO1 Inhibitors: From Bench to Bedside. Cancer Res, 2017. 77(24): p. 6795-6811.
127.Botticelli, A., et al., Can IDO activity predict primary resistance to anti-PD-1 treatment in NSCLC? J Transl Med, 2018. 16(1): p. 219.
128.Toulmonde, M., et al., Use of PD-1 Targeting, Macrophage Infiltration, and IDO Pathway Activation in Sarcomas: A Phase 2 Clinical Trial. JAMA Oncol, 2018. 4(1): p. 93-97.
129.Spranger, S., et al., Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer, 2014. 2: p. 3.
130.Zhu, M.M.T., A.R. Dancsok, and T.O. Nielsen, Indoleamine Dioxygenase Inhibitors: Clinical Rationale and Current Development. Curr Oncol Rep, 2019. 21(1): p. 2.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔