|
1.El-Serag, H.B. and K.L. Rudolph, Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007. 132(7): p. 2557-76. 2.McGlynn, K.A., J.L. Petrick, and W.T. London, Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis, 2015. 19(2): p. 223-38. 3.Wang, C.-K. and R.-A. Branch, Management consensus guideline for hepatocellular carcinoma: 2016 updated by the Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan. J Formos Med Assoc, 2018. 117(5): p. 381-403. 4.Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015. 136(5): p. E359-86. 5.Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006. 6(9): p. 674-87. 6.Plentz, R.R. and N.P. Malek, Early Detection of Hepatocellular Carcinoma: How to Screen and Follow up Patients with Liver Cirrhosis According to the GERMAN S3 Guideline? Diagnostics, 2015. 5(4): p. 497-503. 7.Pellicoro, A., et al., Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol, 2014. 14(3): p. 181-94. 8.Capece, D., et al., The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int, 2013. 2013: p. 187-204. 9.Mapara, M.Y. and M. Sykes, Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol, 2004. 22(6): p. 1136-51. 10.Zou, W., Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer, 2005. 5(4): p. 263-74. 11.Mellor, A.L. and D.H. Munn, IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol, 2004. 4(10): p. 762-74. 12.Uyttenhove, C., et al., Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med, 2003. 9(10): p. 1269-74. 13.Takikawa, O., Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochem Biophys Res Commun, 2005. 338(1): p. 12-9. 14.Katz, J.B., A.J. Muller, and G.C. Prendergast, Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev, 2008. 222: p. 206-21. 15.Muller, A.J., et al., Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med, 2005. 11(3): p. 312-9. 16.Pan, K., et al., Characterization of bridging integrator 1 (BIN1) as a potential tumor suppressor and prognostic marker in hepatocellular carcinoma. Mol Med, 2012. 18: p. 507-18. 17.Godin-Ethier, J., et al., Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res, 2011. 17(22): p. 6985-91. 18.Speeckaert, R., et al., Indoleamine 2,3-dioxygenase, a new prognostic marker in sentinel lymph nodes of melanoma patients. Eur J Cancer, 2012. 48(13): p. 2004-11. 19.Hou, D.Y., et al., Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res, 2007. 67(2): p. 792-801. 20.Babcock, T.A. and J.M. Carlin, Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine, 2000. 12(6): p. 588-94. 21.Robinson, C.M., K.A. Shirey, and J.M. Carlin, Synergistic transcriptional activation of indoleamine dioxygenase by IFN-gamma and tumor necrosis factor-alpha. J Interferon Cytokine Res, 2003. 23(8): p. 413-21. 22.Frumento, G., et al., Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med, 2002. 196(4): p. 459-68. 23.Fallarino, F., et al., T cell apoptosis by tryptophan catabolism. Cell Death Differ, 2002. 9(10): p. 1069-77. 24.Munn, D.H. and A.L. Mellor, IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol, 2016. 37(3): p. 193-207. 25.Chen, J.Y., et al., Cancer/stroma interplay via cyclooxygenase-2 and indoleamine 2,3-dioxygenase promotes breast cancer progression. Breast Cancer Res, 2014. 16(4): p. 410. 26.Zhong, W., et al., Mesenchymal stem cells in inflammatory microenvironment potently promote metastatic growth of cholangiocarcinoma via activating Akt/NF-kappaB signaling by paracrine CCL5. Oncotarget, 2017. 8(43): p. 73693-73704. 27.Murray, I.A., A.D. Patterson, and G.H. Perdew, Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer, 2014. 14(12): p. 801-14. 28.Ambrosio, L.F., et al., Role of Aryl Hydrocarbon Receptor (AhR) in the Regulation of Immunity and Immunopathology During Trypanosoma cruzi Infection. Front Immunol, 2019. 10: p. 631. 29.Cheong, J.E. and L. Sun, Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy - Challenges and Opportunities. Trends Pharmacol Sci, 2018. 39(3): p. 307-325. 30.Opitz, C.A., et al., An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 2011. 478(7368): p. 197-203. 31.Dietrich, C. and B. Kaina, The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis, 2010. 31(8): p. 1319-28. 32.Wright, E., et al., Canonical and Non-Canonical Aryl Hydrocarbon Receptor Signaling Pathways. Curr Opin Toxicol, 2017. 2: p. 87-92. 33.Ikuta, T., et al., Nucleocytoplasmic shuttling of the aryl hydrocarbon receptor. J Biol Chem, 2000. 127(3): p. 503-9. 34.Nguyen, L.P. and C.A. Bradfield, The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol, 2008. 21(1): p. 102-16. 35.Hankinson, O., The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol, 1995. 35: p. 307-40. 36.Denison, M.S., et al., Ligand binding and activation of the Ah receptor. Chem Biol Interact, 2002. 141(1-2): p. 3-24. 37.Fujisawa-Sehara, A., et al., Regulatory DNA elements localized remotely upstream from the drug-metabolizing cytochrome P-450c gene. Nucleic Acids Res, 1986. 14(3): p. 1465-77. 38.Vogel, C.F., et al., Interaction of aryl hydrocarbon receptor and NF-kappaB subunit RelB in breast cancer is associated with interleukin-8 overexpression. Arch Biochem Biophys, 2011. 512(1): p. 78-86. 39.Levine-Fridman, A., L. Chen, and C.J. Elferink, Cytochrome P4501A1 promotes G1 phase cell cycle progression by controlling aryl hydrocarbon receptor activity. Mol Pharmacol, 2004. 65(2): p. 461-9. 40.Apetoh, L., et al., The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol, 2010. 11(9): p. 854-61. 41.Xie, G., Z. Peng, and J.P. Raufman, Src-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates colon cancer cell proliferation. Am J Physiol Gastr L, 2012. 302(9): p. G1006-15. 42.Esser, C. and A. Rannug, The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev, 2015. 67(2): p. 259-79. 43.Puga, A., Y. Xia, and C. Elferink, Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem Biol Interact, 2002. 141(1-2): p. 117-30. 44.Elizondo, G., et al., Altered cell cycle control at the G(2)/M phases in aryl hydrocarbon receptor-null embryo fibroblast. Mol Pharmacol, 2000. 57(5): p. 1056-63. 45.Strobeck, M.W., et al., Restoration of retinoblastoma mediated signaling to Cdk2 results in cell cycle arrest. Oncogene, 2000. 19(15): p. 1857-67. 46.Bock, K.W. and C. Kohle, Ah receptor- and TCDD-mediated liver tumor promotion: clonal selection and expansion of cells evading growth arrest and apoptosis. Biochem Pharmacol, 2005. 69(10): p. 1403-8. 47.Canavese, M., et al., Hepatitis C virus drives the pathogenesis of hepatocellular carcinoma: from immune evasion to carcinogenesis. Clin Transl Immuno, 2016. 5(10): p. e101. 48.Hsu, S.H., et al., Aryl hydrocarbon receptor promotes hepatocellular carcinoma tumorigenesis by targeting intestine-specific homeobox expression. Mol Carcinog, 2017. 56(10): p. 2167-2177. 49.Song, L., L. Guo, and Z. Li, Molecular mechanisms of 3,3''4,4'',5- pentachlorobiphenyl-induced epithelial-mesenchymal transition in human hepatocellular carcinoma cells. Toxicol Appl Pharmacol, 2017. 322: p. 75-88. 50.Wang, L.T., et al., Aryl hydrocarbon receptor regulates histone deacetylase 8 expression to repress tumor suppressive activity in hepatocellular carcinoma. Oncotarget, 2017. 8(5): p. 7489-7501. 51.Loeppen, S., et al., A beta-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors. Carcinogenesis, 2005. 26(1): p. 239-48. 52.Tan, X., et al., Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology, 2006. 131(5): p. 1561-72. 53.Sekine, S., et al., Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology, 2006. 43(4): p. 817-25. 54.Braeuning, A., et al., Coordinate regulation of cytochrome P450 1a1 expression in mouse liver by the aryl hydrocarbon receptor and the beta-catenin pathway. Toxicol Sci, 2011. 122(1): p. 16-25. 55.Gumbiner, B.M., Signal transduction of beta-catenin. Curr Opin Cell Biol, 1995. 7(5): p. 634-40. 56.Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996. 84(3): p. 345-57. 57.Kimelman, D. and W. Xu, beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene, 2006. 25(57): p. 7482-91. 58.Hart, M.J., et al., Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol, 1998. 8(10): p. 573-81. 59.Munemitsu, S., et al., Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci USA, 1995. 92(7): p. 3046-50. 60.Yost, C., et al., The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev, 1996. 10(12): p. 1443-54. 61.Aberle, H., et al., beta-catenin is a target for the ubiquitin-proteasome pathway. Embo j, 1997. 16(13): p. 3797-804. 62.Kitagawa, M., et al., An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. Embo j, 1999. 18(9): p. 2401-10. 63.Li, V.S., et al., Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell, 2012. 149(6): p. 1245-56. 64.Stamos, J.L. and W.I. Weis, The beta-catenin destruction complex. CSH Perspect Biol, 2013. 5(1): p. a007898. 65.Shang, S., F. Hua, and Z.W. Hu, The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget, 2017. 8(20): p. 33972-33989. 66.MacDonald, B.T., K. Tamai, and X. He, Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009. 17(1): p. 9-26. 67.Valenta, T., G. Hausmann, and K. Basler, The many faces and functions of beta-catenin. Embo j, 2012. 31(12): p. 2714-36. 68.Polakis, P., The oncogenic activation of beta-catenin. Curr Opin Genet Dev, 1999. 9(1): p. 15-21. 69.Osada, T., et al., E-cadherin is involved in the intrahepatic metastasis of hepatocellular carcinoma. Hepatology, 1996. 24(6): p. 1460-7. 70.Pecina-Slaus, N., Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int, 2003. 3(1): p. 17. 71.Petrova, Y.I., L. Schecterson, and B.M. Gumbiner, Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell, 2016. 27(21): p. 3233-3244. 72.Desbois-Mouthon, C., et al., Dysregulation of glycogen synthase kinase-3beta signaling in hepatocellular carcinoma cells. Hepatology, 2002. 36(6): p. 1528-36. 73.Huang, K.T., et al., Correlation between tuberous sclerosis complex 2 and glycogen synthase kinase 3 beta levels, and outcomes of patients with hepatocellular carcinoma treated by hepatectomy. Hepatol Res, 2014. 44(11): p. 1142-50. 74.Ersahin, T., N. Tuncbag, and R. Cetin-Atalay, The PI3K/AKT/mTOR interactive pathway. Mol Biosyst, 2015. 11(7): p. 1946-54. 75.Maurer, U., et al., GSK-3 - at the crossroads of cell death and survival. J Cell Sci, 2014. 127(7): p. 1369-78. 76.Doble, B.W. and J.R. Woodgett, GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci, 2003. 116(7): p. 1175-86. 77.McCubrey, J.A., et al., GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget, 2014. 5(10): p. 2881-911. 78.Okumura, N., et al., PI3K/AKT/PTEN Signaling as a Molecular Target in Leukemia Angiogenesis. Adv Hematol, 2012. 2012: p. 1-6. 79.Jiang, B.H. and L.Z. Liu, PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res, 2009. 102: p. 19-65. 80.Tamguney, T. and D. Stokoe, New insights into PTEN. J Cell Sci, 2007. 120(23): p. 4071-9. 81.Pan, K., et al., Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J Cancer Res Clin, 2008. 134(11): p. 1247-53. 82.Ye, L.Y., et al., Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis. Cancer Res, 2016. 76(4): p. 818-30. 83.Asghar, K., et al., Indoleamine 2,3-dioxygenase: As a potential prognostic marker and immunotherapeutic target for hepatocellular carcinoma. World J Gastroenterol, 2017. 23(13): p. 2286-2293. 84.Nelson, J.D., O. Denisenko, and K. Bomsztyk, Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc, 2006. 1(1): p. 179-85. 85.Lai, D.W., et al., The novel Aryl hydrocarbon receptor inhibitor biseugenol inhibits gastric tumor growth and peritoneal dissemination. Oncotarget, 2014. 5(17): p. 7788-804. 86.Rahl, P.B. and R.A. Young, MYC and transcription elongation. Cold Spring Harb Perspect Med, 2014. 4(1): p. a020990. 87.Ozaki, T. and A. Nakagawara, Role of p53 in Cell Death and Human Cancers. Cancers, 2011. 3(1): p. 994-1013. 88.Chu, I.M., L. Hengst, and J.M. Slingerland, The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer, 2008. 8(4): p. 253-67. 89.Cano, A., et al., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000. 2(2): p. 76-83. 90.Batlle, E., et al., The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2000. 2(2): p. 84-9. 91.Baranwal, S. and S.K. Alahari, Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun, 2009. 384(1): p. 6-11. 92.Mohamed, H.T., et al., Inflammatory breast cancer: Activation of the aryl hydrocarbon receptor and its target CYP1B1 correlates closely with Wnt5a/b-beta-catenin signalling, the stem cell phenotype and disease progression. J Adv Res, 2019. 16: p. 75-86. 93.Wang, Y., et al., The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Tar, 2013. 13(9): p. 963-972. 94.Al-Dhfyan, A., A. Alhoshani, and H.M. Korashy, Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and beta-Catenin and Akt activation. Mol Cancer, 2017. 16(1): p. 14. 95.Zhang, J.-H., et al., GSK-3β suppresses HCC cell dissociation in vitro by upregulating epithelial junction proteins and inhibiting Wnt/β-catenin signaling pathway. J Cancer, 2017. 8(9): p. 1598-1608. 96.Lu, Y., et al., Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem, 2003. 278(41): p. 40057-66. 97.Chandrashekar DS1, B.B., Balasubramanya SAH1, Creighton CJ3, Ponce-Rodriguez I2, Chakravarthi BVSK1, Varambally S4., UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia, 2017 Aug. 19(8): p. 649-658. 98.Buchbinder, E.I. and A. Desai, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol, 2016. 39(1): p. 98-106. 99.Su, C., et al., Erianin inhibits indoleamine 2, 3-dioxygenase -induced tumor angiogenesis. Biomed Pharmacother, 2017. 88: p. 521-528. 100.Wei, L., et al., High Indoleamine 2,3-Dioxygenase Is Correlated With Microvessel Density and Worse Prognosis in Breast Cancer. Front Immunol, 2018. 9: p. 724. 101.Lin, L., et al., Relationship between the expressions of indoleamine 2, 3-dioxygenase in hepatocellular carcinoma and clinicopathological parameters. Zhonghua Yi Xue Za Zhi, 2013. 93(28): p. 2186-90. 102.Moennikes, O., et al., A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res, 2004. 64(14): p. 4707-10. 103.Andersson, P., et al., A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc Natl Acad Sci USA, 2002. 99(15): p. 9990-5. 104.Zudaire, E., et al., The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. J Clin Invest, 2008. 118(2): p. 640-50. 105.Spink, D.C., et al., Estrogen regulates Ah responsiveness in MCF-7 breast cancer cells. Carcinogenesis, 2003. 24(12): p. 1941-50. 106.Chen, P.H., et al., Aryl hydrocarbon receptor in association with RelA modulates IL-6 expression in non-smoking lung cancer. Oncogene, 2012. 31(20): p. 2555-65. 107.Zhang, H., et al., Crosstalk between AhR and wnt/beta-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Toxicology, 2016. 355: p. 31-8. 108.Wincent, E., J.J. Stegeman, and M.E. Jönsson, Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions. Toxicol appl pharm, 2015. 284(2): p. 163-179. 109.Kawajiri, K., et al., Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Natl Acad Sci USA, 2009. 106(32): p. 13481-6. 110.Prochazkova, J., et al., The interplay of the aryl hydrocarbon receptor and beta-catenin alters both AhR-dependent transcription and Wnt/beta-catenin signaling in liver progenitors. Toxicol Sci, 2011. 122(2): p. 349-60. 111.Schreiber, S., et al., Phenotype of single hepatocytes expressing an activated version of beta-catenin in liver of transgenic mice. J Mol Histol, 2011. 42(5): p. 393-400. 112.Braeuning, A., et al., Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of Ctnnb1. Drug Metab Dispos, 2009. 37(5): p. 1138-45. 113.Gerbal-Chaloin, S., et al., The WNT/beta-catenin pathway is a transcriptional regulator of CYP2E1, CYP1A2, and aryl hydrocarbon receptor gene expression in primary human hepatocytes. Mol Pharmacol, 2014. 86(6): p. 624-34. 114.Song, M.S., L. Salmena, and P.P. Pandolfi, The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol, 2012. 13(5): p. 283-96. 115.Bermudez Brito, M., E. Goulielmaki, and E.A. Papakonstanti, Focus on PTEN Regulation. Front Oncol, 2015. 5: p. 166. 116.Kim, D.W., et al., The RelA NF-kappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene, 2000. 19(48): p. 5498-506. 117.Vogel, C.F., et al., Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-kappaB. J Biol Chem, 2014. 289(3): p. 1866-75. 118.Escriva, M., et al., Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis. Mol Cell Biol, 2008. 28(5): p. 1528-40. 119.Strimbu, K. and J.A. Tavel, What are biomarkers? Current opinion in HIV and AIDS, 2010. 5(6): p. 463-466. 120.Song, H.J., et al., Best serum biomarker combination for ovarian cancer classification. Biomed Eng Online, 2018. 17(2): p. 152. 121.Gao, J. and P. Song, Combination of triple biomarkers AFP, AFP-L3, and PIVAKII for early detection of hepatocellular carcinoma in China: Expectation. Drug Discov Ther, 2017. 11(3): p. 168-169. 122.Lou, J., et al., Biomarkers for Hepatocellular Carcinoma. Biomarkers in cancer, 2017. 9: p. 1-9. 123.Li, D., T. Mallory, and S. Satomura, AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta, 2001. 313(1-2): p. 15-9. 124.Choi, J., et al., Evaluation of automated serum des-gamma-carboxyprothrombin (DCP) assays for detecting hepatocellular carcinoma. Clin Biochem, 2011. 44(17-18): p. 1464-8. 125.Toyoda, H., et al., Prognostic significance of a combination of pre- and post-treatment tumor markers for hepatocellular carcinoma curatively treated with hepatectomy. J Hepatol, 2012. 57(6): p. 1251-7. 126.Prendergast, G.C., et al., Discovery of IDO1 Inhibitors: From Bench to Bedside. Cancer Res, 2017. 77(24): p. 6795-6811. 127.Botticelli, A., et al., Can IDO activity predict primary resistance to anti-PD-1 treatment in NSCLC? J Transl Med, 2018. 16(1): p. 219. 128.Toulmonde, M., et al., Use of PD-1 Targeting, Macrophage Infiltration, and IDO Pathway Activation in Sarcomas: A Phase 2 Clinical Trial. JAMA Oncol, 2018. 4(1): p. 93-97. 129.Spranger, S., et al., Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer, 2014. 2: p. 3. 130.Zhu, M.M.T., A.R. Dancsok, and T.O. Nielsen, Indoleamine Dioxygenase Inhibitors: Clinical Rationale and Current Development. Curr Oncol Rep, 2019. 21(1): p. 2.
|