|
1.Thompson, C.A., et al., Systematic review of information and support interventions for caregivers of people with dementia. BMC Geriatrics, 2007. 7(1): p. 18. 2.Wimo, A., et al., The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimer''s & Dementia, 2017. 13(1): p. 1-7. 3.Bondi, M.W., E.C. Edmonds, and D.P. Salmon, Alzheimer’s Disease: Past, Present, and Future. Journal of the International Neuropsychological Society, 2017. 23(9-10): p. 818-831. 4.Du, X., X. Wang, and M. Geng, Alzheimer’s disease hypothesis and related therapies. Translational Neurodegeneration, 2018. 7(1): p. 2. 5.Haass, C. and D.J. Selkoe, Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer''s amyloid β-peptide. Nature Reviews Molecular Cell Biology, 2007. 8: p. 101. 6.Shankar, G.M., et al., Amyloid-β protein dimers isolated directly from Alzheimer''s brains impair synaptic plasticity and memory. Nature Medicine, 2008. 14: p. 837. 7.Zhao, L.N., et al., The Toxicity of Amyloid ß Oligomers. International Journal of Molecular Sciences, 2012. 13(6). 8.van der Kant, R. and Lawrence S.B. Goldstein, Cellular Functions of the Amyloid Precursor Protein from Development to Dementia. Developmental Cell, 2015. 32(4): p. 502-515. 9.Gu, L. and Z. Guo, Alzheimer''s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. Journal of Neurochemistry, 2013. 126(3): p. 305-311. 10.Pauwels, K., et al., Structural Basis for Increased Toxicity of Pathological Aβ42:Aβ40 Ratios in Alzheimer Disease. Journal of Biological Chemistry, 2012. 287(8): p. 5650-5660. 11.Chen, G.-f., et al., Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 2017. 38: p. 1205. 12.Balbach, J.J., et al., Supramolecular Structure in Full-Length Alzheimer''s β-Amyloid Fibrils: Evidence for a Parallel β-Sheet Organization from Solid-State Nuclear Magnetic Resonance. Biophysical Journal, 2002. 83(2): p. 1205-1216. 13.Ou, S.H., et al., Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. Journal of Virology, 1995. 69(6): p. 3584. 14.Buratti, E. and F.E. Baralle, Characterization and Functional Implications of the RNA Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator ofCFTR Exon 9. Journal of Biological Chemistry, 2001. 276(39): p. 36337-36343. 15.Arai, T., et al., TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications, 2006. 351(3): p. 602-611. 16.Kabashi, E., et al., TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics, 2008. 40: p. 572. 17.Josephs, K.A., et al., Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathologica, 2014. 127(3): p. 441-450. 18.Chanson, J.B., et al., TDP43-Positive Intraneuronal Inclusions in a Patient with Motor Neuron Disease and Parkinson’s Disease. Neurodegenerative Diseases, 2010. 7(4): p. 260-264. 19.Davidson, Y., et al., TDP-43 in ubiquitinated inclusions in the inferior olives in frontotemporal lobar degeneration and in other neurodegenerative diseases: a degenerative process distinct from normal ageing. Acta Neuropathologica, 2009. 118(3): p. 359-369. 20.Mompeán, M., et al., Point mutations in the N-terminal domain of transactive response DNA-binding protein 43 kDa (TDP-43) compromise its stability, dimerization, and functions. Journal of Biological Chemistry, 2017. 292(28): p. 11992-12006. 21.Lukavsky, P.J., et al., Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nature Structural &Amp; Molecular Biology, 2013. 20: p. 1443. 22.Cohen, T.J., V.M.Y. Lee, and J.Q. Trojanowski, TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends in Molecular Medicine, 2011. 17(11): p. 659-667. 23.Davis, S.A., et al., TDP-43 expression influences amyloidβ plaque deposition and tau aggregation. Neurobiology of Disease, 2017. 103: p. 154-162. 24.James, B.D., et al., TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain, 2016. 139(11): p. 2983-2993. 25.Gu, J., et al., TDP-43 suppresses tau expression via promoting its mRNA instability. Nucleic Acids Research, 2017. 45(10): p. 6177-6193. 26.Fang, Y.-S., et al., Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nature Communications, 2014. 5: p. 4824. 27.LaFerla, F.M., K.N. Green, and S. Oddo, Intracellular amyloid-β in Alzheimer''s disease. Nature Reviews Neuroscience, 2007. 8: p. 499. 28.Wang, P., et al., TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLOS Genetics, 2019. 15(5): p. e1007947. 29.Querfurth, H.W. and F.M. LaFerla, Alzheimer''s Disease. New England Journal of Medicine, 2010. 362(4): p. 329-344. 30.Iguchi, Y., et al., Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain, 2016. 139(12): p. 3187-3201. 31.Gao, J., et al., Pathomechanisms of TDP-43 in neurodegeneration. Journal of Neurochemistry, 2018. 146(1): p. 7-20. 32.Hawe, A., M. Sutter, and W. Jiskoot, Extrinsic Fluorescent Dyes as Tools for Protein Characterization. Pharmaceutical Research, 2008. 25(7): p. 1487-1499. 33.Ni, C.-L., et al., Folding stability of amyloid-β 40 monomer is an important determinant of the nucleation kinetics in fibrillization. The FASEB Journal, 2011. 25(4): p. 1390-1401. 34.Tjernberg, L.O., et al., Amyloid β-peptide polymerization studied using fluorescence correlation spectroscopy. Chemistry & Biology, 1999. 6(1): p. 53-62. 35.Xue, C., et al., Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. Royal Society Open Science. 4(1): p. 160696. 36.Kumar, S., et al., Foldamer-Mediated Structural Rearrangement Attenuates Aβ Oligomerization and Cytotoxicity. Journal of the American Chemical Society, 2017. 139(47): p. 17098-17108. 37.Janowska, M.K., K.-P. Wu, and J. Baum, Unveiling transient protein-protein interactions that modulate inhibition of alpha-synuclein aggregation by beta-synuclein, a pre-synaptic protein that co-localizes with alpha-synuclein. Scientific Reports, 2015. 5: p. 15164. 38.Fezoui, Y., et al., An improved method of preparing the amyloid β-protein for fibrillogenesis and neurotoxicity experiments. Amyloid, 2000. 7(3): p. 166-178. 39.Hou, L., et al., Solution NMR Studies of the Aβ(1−40) and Aβ(1−42) Peptides Establish that the Met35 Oxidation State Affects the Mechanism of Amyloid Formation. Journal of the American Chemical Society, 2004. 126(7): p. 1992-2005. 40.Hou, L. and M.G. Zagorski, NMR Reveals Anomalous Copper(II) Binding to the Amyloid Aβ Peptide of Alzheimer''s Disease. Journal of the American Chemical Society, 2006. 128(29): p. 9260-9261. 41.Afroz, T., et al., Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nature Communications, 2017. 8(1): p. 45. 42.Reyes Barcelo, A.A., F.J. Gonzalez-Velasquez, and M.A. Moss, Soluble aggregates of the amyloid-β peptide are trapped by serum albumin to enhance amyloid-β activation of endothelial cells. Journal of Biological Engineering, 2009. 3(1): p. 5.
|