|
1.Bougnoux, M. E.; Aanensen, D. M.; Morand, S.; Théraud, M.; Spratt, B. G.; d''Enfert, C., Multilocus sequence typing of Candida albicans: strategies, data exchange and applications. Infect Genet Evol 2004, 4, (3), 243-52. 2.Eggimann, P.; Garbino, J.; Pittet, D., Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis 2003, 3, (11), 685-702. 3.Tan, B. H.; Chakrabarti, A.; Li, R. Y.; Patel, A. K.; Watcharananan, S. P.; Liu, Z.; Chindamporn, A.; Tan, A. L.; Sun, P. L.; Wu, U. I.; Chen, Y. C.; Xu, Y. C.; Wang, H.; Sun, Z. Y.; Wang, L. L.; Lu, J.; Yang, Q.; Zhang, Q. Q.; Shao, H. F.; Liao, K.; Woo, P. C. Y.; Marak, R. S. K.; Kindo, A. J.; Wu, C. L.; Ho, M. W.; Lu, P. L.; Wang, L. S.; Riengchan, P., Incidence and species distribution of candidaemia in Asia: a laboratory-based surveillance study. Clin Microbiol Infect 2015, 21, (10), 946-953. 4.Chen, P. Y.; Chuang, Y. C.; Wang, J. T.; Sheng, W. H.; Yu, C. J.; Chu, C. C.; Hsueh, P. R.; Chang, S. C.; Chen, Y. C., Comparison of epidemiology and treatment outcome of patients with candidemia at a teaching hospital in Northern Taiwan, in 2002 and 2010. Microbiol Immunol Infect 2014, 47, (2), 95-103. 5.Perlroth, J.; Spellberg, B.; Choi, B., Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med. Mycol. 2007, 45, (4), 321-346. 6.Brown, D. H. J.; Giusani, A. D.; Chen, X.; Kumamoto, C. A., Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol. Microbiol. 1999, 34, (4), 651-662. 7.Sudbery, P. E., Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 2011, 9, (10), 737-48. 8.Albuquerque, P.; Casadevall, A., Quorum sensing in fungi-a review. Med. Mycol. 2012, 50, (4), 337-45. 9.Berman, J.; Sudbery, P. E., Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet. 2002, 3, (12), 918-30. 10.Lo, H. J.; Köhler, J. R.; DiDomenico, B.; Loebenberg, D.; Cacciapuoti, A.; Fink, G. R., Nonfilamentous C. albicans Mutants Are Avirulent. Cell 1997, 90, (5), 939–949. 11.Dalle, F.; Wachtler, B.; L''Ollivier, C.; Holland, G.; Bannert, N.; Wilson, D.; Labruere, C.; Bonnin, A.; Hube, B., Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 2010, 12, (2), 248-71. 12.Jayatilake, J. A.; Samaranayake, Y. H.; Cheung, L. K.; Samaranayake, L. P., Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. J Oral Pathol Med 2006, 35, (8), 484–491. 13.Scherwitz, C., Ultrastructure of human cutaneous candidosis. J Invest Dermatol 1982, 78, (3), 200-205. 14.Nantel, A.; Dignard, D.; Bachewich, C.; Harcus, D.; Marcil, A.; Bouin, A.-P.; Sensen, C. W.; Hogues, H.; van het Hoog, M.; Gordon, P.; Rigby, T.; Benoit, F.; Tessier, D. C.; Thomas, D. Y.; Whiteway, M., Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell. 2002, 13, (10), 3452-3465. 15.Lane, S.; Birse, C.; Zhou, S.; Matson, R.; Liu, H., DNA Array Studies Demonstrate Convergent Regulation of Virulence Factors by Cph1, Cph2, and Efg1 in Candida albicans. J. Biol. Chem. 2001, 276, (52), 48988-48996. 16.Kadosh, D.; Johnson, A. D., Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol. Biol. Cell. 2005, 16, (6), 2903-2912. 17.Li, F.; Palecek, S. P., Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiol 2008, 154, (Pt 4), 1193-203. 18.Drago, L.; Mombelli, B.; De Vecchi, E.; Bonaccorso, C.; Fassina, M. C.; Gismondo, M. R., Candida albicans cellular internalization: a new pathogenic factor? Int J Antimicrob Agents 2000, 16, (4), 545–547. 19.Phan, Q. T.; Myers, C. L.; Fu, Y.; Sheppard, D. C.; Yeaman, M. R.; Welch, W. H.; Ibrahim, A. S.; Edwards, J. E., Jr.; Filler, S. G., Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells. PLoS Biol 2007, 5, (3), e64. 20.Wachtler, B.; Citiulo, F.; Jablonowski, N.; Forster, S.; Dalle, F.; Schaller, M.; Wilson, D.; Hube, B., Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PloS one 2012, 7, (5), e36952. 21.Shapiro, R. S.; Robbins, N.; Cowen, L. E., Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiol Mol Biol Rev 2011, 75, (2), 213. 22.Xu, X.-L.; Lee, R. T. H.; Fang, H.-M.; Wang, Y.-M.; Li, R.; Zou, H.; Zhu, Y.; Wang, Y., Bacterial Peptidoglycan Triggers Candida albicans Hyphal Growth by Directly Activating the Adenylyl Cyclase Cyr1p. Cell Host Microbe. 2008, 4, (1), 28-39. 23.Hall, R. A.; De Sordi, L.; MacCallum, D. M.; Topal, H.; Eaton, R.; Bloor, J. W.; Robinson, G. K.; Levin, L. R.; Buck, J.; Wang, Y.; Gow, N. A. R.; Steegborn, C.; Mühlschlegel, F. A., CO2 Acts as a Signalling Molecule in Populations of the Fungal Pathogen Candida albicans. PLoS Pathog. 2010, 6, (11), e1001193. 24.Feng, Q.; Summers, E.; Guo, B.; Fink, G., Ras Signaling Is Required for Serum-Induced Hyphal Differentiation in Candida albicans. J Bacteriol 1999, 181, (20), 6339. 25.Leberer, E.; Harcus, D.; Dignard, D.; Johnson, L.; Ushinsky, S.; Thomas, D. Y.; Schröppel, K., Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 2001, 42, (3), 673-687. 26.Zhu, Y.; Fang, H.-M.; Wang, Y.-M.; Zeng, G.-S.; Zheng, X.-D.; Wang, Y., Ras1 and Ras2 play antagonistic roles in regulating cellular cAMP level, stationary-phase entry and stress response in Candida albicans. Mol. Microbiol. 2009, 74, (4), 862-875. 27.Fang, H.-M.; Wang, Y., RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Mol. Microbiol. 2006, 61, (2), 484-496. 28.Rocha, C. R. C.; Schröppel, K.; Harcus, D.; Marcil, A.; Dignard, D.; Taylor, B. N.; Thomas, D. Y.; Whiteway, M.; Leberer, E., Signaling through Adenylyl Cyclase Is Essential for Hyphal Growth and Virulence in the Pathogenic Fungus Candida albicans. Mol. Biol. Cell. 2001, 12, (11), 3631-3643. 29.Klengel, T.; Liang, W.-J.; Chaloupka, J.; Ruoff, C.; Schröppel, K.; Naglik, J. R.; Eckert, S. E.; Mogensen, E. G.; Haynes, K.; Tuite, M. F.; Levin, L. R.; Buck, J.; Mühlschlegel, F. A., Fungal Adenylyl Cyclase Integrates CO2 Sensing with cAMP Signaling and Virulence. Curr Biol 2005, 15, (22), 2021-2026. 30.Bockmühl, D. P.; Krishnamurthy, S.; Gerads, M.; Sonneborn, A.; Ernst, J. F., Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol. Microbiol. 2001, 42, (5), 1243-1257. 31.Sonneborn, A.; Bockmühl, D. P.; Gerads, M.; Kurpanek, K.; Sanglard, D.; Ernst, J. F., Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol. Microbiol. 2000, 35, (2), 386-396. 32.Staab, J. F.; Bahn, Y.-S.; Sundstrom, P., Integrative, multifunctional plasmids for hypha-specific or constitutive expression of green fluorescent protein in Candida albicans. Microbiol 2003, 149, (10), 2977-2986. 33.Doedt, T.; Krishnamurthy, S.; Bockmühl, D. P.; Tebarth, B.; Stempel, C.; Russell, C. L.; Brown, A. J. P.; Ernst, J. F., APSES Proteins Regulate Morphogenesis and Metabolism in Candida albicans. Mol. Biol. Cell. 2004, 15, (7), 3167-3180. 34.Bockmühl, D. P.; Ernst, J. F., A Potential Phosphorylation Site for an A-Type Kinase in the Efg1 Regulator Protein Contributes to Hyphal Morphogenesis of Candida albicans. Genetics 2001, 157, (4), 1523. 35.Lo, H.-J.; Köhler, J. R.; DiDomenico, B.; Loebenberg, D.; Cacciapuoti, A.; Fink, G. R., Nonfilamentous C. albicans Mutants Are Avirulent. Cell 1997, 90, (5), 939-949. 36.Stoldt, V. R.; Sonneborn, A.; Leuker, C. E.; Ernst, J. F., Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 1997, 16, (8), 1982. 37.Wang, A.; Raniga, P. P.; Lane, S.; Lu, Y.; Liu, H., Hyphal Chain Formation in Candida albicans: Cdc28-Hgc1 Phosphorylation of Efg1 Represses Cell Separation Genes. Mol Cell Biol 2009, 29, (16), 4406. 38.Russell, C. L.; Brown, A. J. P., Expression of one-hybrid fusions with Staphylococcus aureus lexA in Candida albicans confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genet Biol 2005, 42, (8), 676-683. 39.White, S. J.; Rosenbach, A.; Lephart, P.; Nguyen, D.; Benjamin, A.; Tzipori, S.; Whiteway, M.; Mecsas, J.; Kumamoto, C. A., Self-Regulation of Candida albicans Population Size during GI Colonization. PLoS Pathog. 2007, 3, (12), e184. 40.Bachewich, C.; Thomas, D. Y.; Whiteway, M., Depletion of a Polo-like Kinase in Candida albicans Activates Cyclase-dependent Hyphal-like Growth. Mol. Biol. Cell. 2003, 14, (5), 2163-2180. 41.Andaluz, E.; Ciudad, T.; Gómez-Raja, J.; Calderone, R.; Larriba, G., Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Mol. Microbiol. 2006, 59, (5), 1452-1472. 42.Shapiro, R. S.; Uppuluri, P.; Zaas, A. K.; Collins, C.; Senn, H.; Perfect, J. R.; Heitman, J.; Cowen, L. E., Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling. Curr Biol 2009, 19, (8), 621-629. 43.Schweizer, A.; Rupp, S.; Taylor, B. N.; Röllinghoff, M.; Schröppel, K., The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol. Microbiol. 2000, 38, (3), 435-445. 44.Nobile, C. J.; Andes, D. R.; Nett, J. E.; Smith, F. J., Jr.; Yue, F.; Phan, Q.-T.; Edwards, J. E., Jr.; Filler, S. G.; Mitchell, A. P., Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo. PLoS Pathog. 2006, 2, (7), e63. 45.Nobile, C. J.; Mitchell, A. P., Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p. Curr Biol 2005, 15, (12), 1150-1155. 46.Bassilana, M.; Blyth, J.; Arkowitz, R. A., Cdc24, the GDP-GTP Exchange Factor for Cdc42, Is Required for Invasive Hyphal Growth of Candida albicans. Eukaryot Cell 2003, 2, (1), 9. 47.Csank, C.; Schröppel, K.; Leberer, E.; Harcus, D.; Mohamed, O.; Meloche, S.; Thomas, D. Y.; Whiteway, M., Roles of the Candida albicans Mitogen-Activated Protein Kinase Homolog, Cek1p, in Hyphal Development and Systemic Candidiasis. Infect Immun 1998, 66, (6), 2713. 48.Köhler, J. R.; Fink, G. R., Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A 1996, 93, (23), 13223. 49.Leberer, E.; Harcus, D.; Broadbent, I. D.; Clark, K. L.; Dignard, D.; Ziegelbauer, K.; Schmidt, A.; Gow, N. A. R.; Brown, A. J. P.; Thomas, D. Y., Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A 1996, 93, (23), 13217. 50.Huang, H.; Harcus, D.; Whiteway, M., Transcript profiling of a MAP kinase pathway in C. albicans. Microbiol. Res 2008, 163, (4), 380-393. 51.Liu, H.; Kohler, J.; Fink, G. R., Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Sci 1994, 266, (5191), 1723. 52.Sharkey, L. L.; McNemar, M. D.; Saporito-Irwin, S. M.; Sypherd, P. S.; Fonzi, W. A., HWP1 Functions in the Morphological Development of Candida albicans Downstream of EFG1, TUP1, and RBF1. J Bacteriol 1999, 181, (17), 5273. 53.Argimón, S.; Wishart, J. A.; Leng, R.; Macaskill, S.; Mavor, A.; Alexandris, T.; Nicholls, S.; Knight, A. W.; Enjalbert, B.; Walmsley, R.; Odds, F. C.; Gow, N. A. R.; Brown, A. J. P., Developmental Regulation of an Adhesin Gene during Cellular Morphogenesis in the Fungal Pathogen Candida albicans. Eukaryot Cell 2007, 6, (4), 682. 54.Leng, P.; Lee, P. R.; Wu, H.; Brown, A. J. P., Efg1, a Morphogenetic Regulator in Candida albicans, Is a Sequence-Specific DNA Binding Protein. J Bacteriol 2001, 183, (13), 4090. 55.Román, E.; Alonso-Monge, R.; Pla, J.; Li, D.; Gong, Q.; Calderone, R., The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res 2009, 9, (6), 942-955. 56.Wang, X.; Chang, P.; Ding, J.; Chen, J., Distinct and Redundant Roles of the Two MYST Histone Acetyltransferases Esa1 and Sas2 in Cell Growth and Morphogenesis of Candida albicans. Eukaryot Cell 2013, 12, (3), 438. 57.Lee, J.-E.; Oh, J.-H.; Ku, M.; Kim, J.; Lee, J.-S.; Kang, S.-O., Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31. FEBS Lett 2015, 589, (4), 513-520. 58.Wurtele, H.; Tsao, S.; Lépine, G.; Mullick, A.; Tremblay, J.; Drogaris, P.; Lee, E.-H.; Thibault, P.; Verreault, A.; Raymond, M., Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med. 2010, 16, 774. 59.Lu, Y.; Su, C.; Mao, X.; Raniga, P. P.; Liu, H.; Chen, J., Efg1-mediated recruitment of NuA4 to promoters is required for hypha-specific Swi/Snf binding and activation in Candida albicans. Mol. Biol. Cell. 2008, 19, (10), 4260-4272. 60.Chang, P.; Fan, X.; Chen, J., Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Fungal Genet Biol 2015, 81, 132-141. 61.Lopes da Rosa, J.; Boyartchuk, V. L.; Zhu, L. J.; Kaufman, P. D., Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci U S A 2010, 107, (4), 1594. 62.Tscherner, M.; Stappler, E.; Hnisz, D.; Kuchler, K., The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis in Candida albicans. Mol. Microbiol. 2012, 86, (5), 1197-1214. 63.Lu, Y.; Su, C.; Wang, A.; Liu, H., Hyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance. PLoS Biol 2011, 9, (7), e1001105. 64.Lu, Y.; Su, C.; Liu, H., A GATA Transcription Factor Recruits Hda1 in Response to Reduced Tor1 Signaling to Establish a Hyphal Chromatin State in Candida albicans. PLoS Pathog. 2012, 8, (4), e1002663. 65.Davey, M. E.; O'' tool, G. A., Microbial biofilms: from ecology to molecular genetics. Crit Rev Microbiol 2000, 64, (4), 847-867. 66.Kojic, E. M.; Darouiche, R. O., Candida Infections of Medical Devices. Clin Microbiol Rev 2004, 17, (2), 255. 67.Nobile, C., The Role of Candida albicans Biofilms in Human Disease. In 2013; pp 1-24. 68.Ozkan, S.; Kaynak, F.; Kalkanci, A.; Abbasoglu, U.; Kustimur, S., Slime production and proteinase activity of Candida species isolated from blood samples and the comparison of these activities with minimum inhibitory concentration values of antifungal agents. Mem Inst Oswaldo Cruz 2005, 100, (3), 319-324. 69.Andes, D. R.; Safdar, N.; Baddley, J. W.; Pappas, P. G.; Reboli, A. C.; Rex, J. H.; Sobel, J. D.; Playford, G.; Kullberg, B. J., Impact of Treatment Strategy on Outcomes in Patients with Candidemia and Other Forms of Invasive Candidiasis: A Patient-Level Quantitative Review of Randomized Trials. Clin Infect Dis 2012, 54, (8), 1110-1122. 70.Sardi, J. C.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A. M.; Mendes Giannini, M. J., Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 2013, 62, (Pt 1), 10-24. 71.Blankenship, J. R.; Mitchell, A. P., How to build a biofilm: a fungal perspective. Curr Opin Microbiol 2006, 9, (6), 588-94. 72.Gulati, M.; Nobile, C. J., Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 2016, 18, (5), 310-321. 73.Chandra, J.; Kuhn, D. M.; Mukherjee, P. K.; Hoyer, L. L.; McCormick, T.; Ghannoum, M. A., Biofilm Formation by the Fungal Pathogen Candida albicans: Development, Architecture, and Drug Resistance. J Bacteriol 2001, 183, (18), 5385. 74.Nobile, C. J.; Fox, E. P.; Nett, J. E.; Sorrells, T. R.; Mitrovich, Q. M.; Hernday, A. D.; Tuch, B. B.; Andes, D. R.; Johnson, A. D., A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell 2012, 148, (1), 126-138. 75.Ramage, G.; Wickes, B. L.; López-Ribot, J. L.; VandeWalle, K., The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 2002, 214, (1), 95-100. 76.Cohen, B. E., Amphotericin B toxicity and lethality: a tale of two channels. Int J Pharm 1998, 162, (1-2), 95-106. 77.Akyol Erikci, A.; Ozyurt, M.; Terekeci, H.; Ozturk, A.; Karabudak, O.; Oncu, K., Oesophageal aspergillosis in a case of acute lymphoblastic leukaemia successfully treated with caspofungin alone due to liposomal amphotericin B induced severe hepatotoxicity. Mycoses 2009, 52, (1), 84-86. 78.Vermes, A.; Guchelaar, H. J.; Dankert, J., Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 2000, 46, (2), 171-9. 79.Kriengkauykiat, J.; Ito, J. I.; Dadwal, S. S., Epidemiology and treatment approaches in management of invasive fungal infections. J Clin Epidemiol 2011, 3, 175-191. 80.Hof, H., Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine? Drug Resist Upda 2008, 11, (1-2), 25-31. 81.Pfaller, M. A.; Diekema, D. J.; Gibbs, D. L.; Newell, V. A.; Ellis, D.; Tullio, V.; Rodloff, A.; Fu, W.; Ling, T. A.; Group, G. A. S., Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-Year Analysis of Susceptibilities of Candida Species to Fluconazole and Voriconazole as Determined by CLSI Standardized Disk Diffusion. J Clin Microbiol 2010, 48, (4), 1366-1377. 82.Nucci, M., Use of antifungal drugs in hematology. Rev Bras Hematol Hemoter 2012, 34, (5), 383-391. 83.Lane, N.; Martin, W., The energetics of genome complexity. Nat 2010, 467, (7318), 929-934. 84.Brown, G. D.; Denning, D. W.; Gow, N. A. R.; Levitz, S. M.; Netea, M. G.; White, T. C., Hidden Killers: Human Fungal Infections. Sci Transl Med 2012, 4, (165), 165rv13. 85.Shingu-Vazquez, M.; Traven, A., Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell 2011, 10, (11), 1376-1383. 86.Watanabe, T.; Ogasawara, A.; Mikami, T.; Matsumoto, T., Hyphal formation of Candida albicans is controlled by electron transfer system. Biochem Biophys Res Commun 2006, 348, (1), 206-211. 87.Boguski, M. S.; McCormick, F., Proteins regulating Ras and its relatives. Nat 1993, 366, 643-654. 88.Fang, H. M.; Wang, Y., RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Mol. Microbiol. 2006, 61, 484-496. 89.Cassola, A.; Parrot, M.; Silberstein, S.; Magee, B. B.; Passeron, S.; Giasson, L.; Cantore, M. L., Candida albicans Lacking the Gene Encoding the Regulatory Subunit of Protein Kinase A Displays a Defect in Hyphal Formation and an Altered Localization of the Catalytic Subunit. Eukaryot Cell 2004, 3, (1), 190-199. 90.Grahl, N.; Demers, E. G.; Lindsay, A. K.; Harty, C. E.; Willger, S. D.; Piispanen, A. E.; Hogan, D. A., Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of C. albicans Virulence Pathways. PLoS Pathog. 2015, 11, (8), e1005133. 91.Leberer, E., Harcus, D., Dignard, D., Johnson, L., Ushinsky, S., Thomas, D.Y., Schröppel, K., Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol. Microbiol. 2001, 42, (3), 673–687. 92.Huang, G.; Yi, S.; Sahni, N.; Daniels, K. J.; Srikantha, T.; Soll, D. R., N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in Candida albicans. PLoS Pathog. 2010, 6, (3), e1000806. 93.Thomas, E.; Roman, E.; Claypool, S.; Manzoor, N.; Pla, J.; Panwar, S. L., Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans. Antimicrob. Agents Chemother. 2013, 57, (11), 5580-5599. 94.Shahi, P.; Moye-Rowley, W. S., Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi. Biochim Biophys Acta 2009, 1794, (5), 852-859. 95.Geraghty, P.; Kavanagh, K., Erythromycin, an inhibitor of mitoribosomal protein biosynthesis, alters the amphotericin B susceptibility of Candida albicans. J Pharm Pharmacol 2003, 55, (2), 179-184. 96.Geraghty, P.; Kavanagh, K., Disruption of mitochondrial function in Candida albicans leads to reduced cellular ergosterol levels and elevated growth in the presence of amphotericin B. Arch Microbiol. 2003, 179, (4), 295-300. 97.Chen, H.; Calderone, R.; Sun, N.; Wang, Y.; Li, D., Caloric restriction restores the chronological life span of the goa1 null mutant of Candida albicans in spite of high cell levels of ROS. Fungal Genet Biol 2012, 49, (12), 1023-1032. 98.Qu, Y.; Jelicic, B.; Pettolino, F.; Perry, A.; Lo, T. L.; Hewitt, V. L.; Bantun, F.; Beilharz, T. H.; Peleg, A. Y.; Lithgow, T.; Djordjevic, J. T.; Traven, A., Mitochondrial Sorting and Assembly Machinery Subunit Sam37 in Candida albicans: Insight into the Roles of Mitochondria in Fitness, Cell Wall Integrity, and Virulence. Eukaryot Cell 2012, 11, (4), 532-544. 99.Chang, C. C.; Wu, J.-Y.; Chang, T.-C., A carbazole derivative synthesis for stabilizing the quadruplex structure. J Chin Chem Soc 2003, 50, 185-188. 100.Huang, F.-C.; Chang, C.-C.; Lou, P.-J.; Kuo, I. C.; Chien, C.-W.; Chen, C.-T.; Shieh, F.-Y.; Chang, T.-C.; Lin, J.-J., G-Quadruplex Stabilizer 3,6-Bis(1-Methyl-4-Vinylpyridinium)Carbazole Diiodide Induces Accelerated Senescence and Inhibits Tumorigenic Properties in Cancer Cells. Mol Cancer Res 2008, 6, (6), 955. 101.Kang, C.-C.; Chang, C.-C.; Chang, T.-C.; Liao, L.-J.; Lou, P.-J.; Xie, W.; Yeung, E. S., A handheld device for potential point-of-care screening of cancer. Analyst 2007, 132, (8), 745-749. 102.Kang, C.-C.; Huang, W.-C.; Kouh, C.-W.; Wang, Z.-F.; Cho, C.-C.; Chang, C.-C.; Wang, C.-L.; Chang, T.-C.; Seemann, J.; Huang, L. J.-s., Chemical principles for the design of a novel fluorescent probe with high cancer-targeting selectivity and sensitivity. Integr. Biol. 2013, 5, (10), 1217-1228. 103.Huang, W.-C.; Tseng, T.-Y.; Chen, Y.-T.; Chang, C.-C.; Wang, Z.-F.; Wang, C.-L.; Hsu, T.-N.; Li, P.-T.; Chen, C.-T.; Lin, J.-J.; Lou, P.-J.; Chang, T.-C., Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res 2015, 43, (21), 10102-10113. 104.Rajakumar, P.; Sekar, K.; Shanmugaiah, V.; Mathivanan, N., Synthesis of novel carbazole based macrocyclic amides as potential antimicrobial agents. Eur. J. Med. Chem. 2009, 44, (7), 3040-3045. 105.Institute., C. a. L. S., Clinical and Laboratory Standards Institute. Epidemiological cutoff values for antifungal susceptibility testing. 1st ed., CLSI standard M59. 2016: Clinical and Laboratory Standards Institute, Wayne, PA, USA. 2008. 106.Blankenship, J. R.; Mitchell, A. P., How to build a biofilm: a fungal perspective. Current Opinion in Microbiology 2006, 9, (6), 588-594. 107.Donlan, R. M.; Costerton, J. W., Biofilms: survival mechanisms of clinically relevant microorganisms. Crit Rev Microbiol 2002, 15, (2), 167-193. 108.Kojic, E. M.; Darouiche, R. O., Candida Infections of Medical Devices. Crit Rev Microbiol 2004, 17, (2), 255-267. 109.Ramage, G.; Saville, S. P.; Thomas, D. P.; Lopez-Ribot, J. L., Candida biofilms: an update. Eukaryot Cell 2005, 4, (4), 633-8. 110.Huang, X.; Chen, X.; He, Y.; Yu, X.; Li, S.; Gao, N.; Niu, L.; Mao, Y.; Wang, Y.; Wu, X.; Wu, W.; Wu, J.; Zhou, D.; Zhan, X.; Chen, C., Mitochondrial complex I bridges a connection between regulation of carbon flexibility and gastrointestinal commensalism in the human fungal pathogen Candida albicans. PLoS Pathog. 2017, 13, (6), e1006414. 111.Kim, J.; Lee, J.-E.; Lee, J.-S., Histone deacetylase-mediated morphological transition in Candida albicans. J. Microbio 2015, 53, (12), 805-811. 112.Kuchler, K.; Jenull, S.; Shivarathri, R.; Chauhan, N., Fungal KATs/KDACs: A New Highway to Better Antifungal Drugs? PLoS Pathog. 2016, 12, (11), e1005938. 113.Zhou, X.; Qian, G.; Yi, X.; Li, X.; Liu, W., Systematic Analysis of the Lysine Acetylome in Candida albicans. J Proteome Res 2016, 15, (8), 2525-2536. 114.Kim, S. C.; Sprung, R.; Chen, Y.; Xu, Y.; Ball, H.; Pei, J.; Cheng, T.; Kho, Y.; Xiao, H.; Xiao, L.; Grishin, N. V.; White, M.; Yang, X.-J.; Zhao, Y., Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey. Mol Cell 2006, 23, (4), 607-618. 115.Han, J.; Lee, J. D.; Bibbs, L.; Ulevitch, R. J., A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Sci 1994, 265, (5173), 808. 116.Tsai, Y.-J.; Tsai, T.; Peng, P.-C.; Li, P.-T.; Chen, C.-T., Histone acetyltransferase p300 is induced by p38MAPK after photodynamic therapy: the therapeutic response is increased by the p300HAT inhibitor anacardic acid. Free Radic Biol Med 2015, 86, 118-132. 117.Meletiadis, J.; Antachopoulos, C.; Stergiopoulou, T.; Pournaras, S.; Roilides, E.; Walsh, T. J., Differential fungicidal activities of amphotericin B and voriconazole against Aspergillus species determined by microbroth methodology. Antimicrob. Agents Chemother. 2007, 51, (9), 3329. 118.Pfaller, M. A.; Sheehan, D. J.; Rex, J. H., Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev 2004, 17, (2), 268. 119.Biswas, S.; Van Dijck, P.; Datta, A., Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 2007, 71, (2), 348-376. 120.Zou, H.; Fang, H.-M.; Zhu, Y.; Wang, Y., Candida albicans Cyr1, Cap1 and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth. Mol. Microbiol. 2010, 75, (3), 579-591. 121.Cleary, I. A.; Lazzell, A. L.; Monteagudo, C.; Thomas, D. P.; Saville, S. P., BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol. Microbiol. 2012, 85, (3), 557-573. 122.Braun, B. R.; Kadosh, D.; Johnson, A. D., NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. EMBO J. 2001, 20, (17), 4753-4761. 123.Kayingo, G.; Wong, B., The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans. Microbiol 2005, 151, (9), 2987-2999. 124.Alonso-Monge, R.; Navarro-García, F.; Román, E.; Negredo, A. I.; Eisman, B.; Nombela, C.; Pla, J., The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2003, 2, (2), 351-361. 125.Liang, S.-H.; Cheng, J.-H.; Deng, F.-S.; Tsai, P.-A.; Lin, C.-H., A Novel Function for Hog1 Stress-Activated Protein Kinase in Controlling White-Opaque Switching and Mating in Candida albicans. Eukaryot Cell 2014, 13, (12), 1557. 126.Eisman, B.; Alonso-Monge, R.; Román, E.; Arana, D.; Nombela, C.; Pla, J., The Cek1 and Hog1 Mitogen-Activated Protein Kinases Play Complementary Roles in Cell Wall Biogenesis and Chlamydospore Formation in the Fungal Pathogen Candida albicans. Eukaryot Cell 2006, 5, (2), 347. 127.Mishra, P. K.; Baum, M.; Carbon, J., DNA methylation regulates phenotype-dependent transcriptional activity in Candida albicans. Proc Natl Acad Sci U S A.Analyst 2011, 108, (29), 11965-11970. 128.Loftsson, T.; Másson, M.; Brewster, M. E., Self-Association of Cyclodextrins and Cyclodextrin Complexes. J Pharm Sci 2004, 93, (5), 1091-1099. 129.Noble, S. M.; Gianetti, B. A.; Witchley, J. N., Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat. Rev. Microbiol. 2016, 15, 96.
|