|
1Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, et al., and Steliarova-Foucher E. International incidence of childhood cancer, 2001-10: a population-based registry study. The Lancet Oncology 18, 719-731, (2017). 2National Cancer Institute. Unusual Cancers of Childhood Treatment (PDQ®)–Health Professional Version, <https://www.cancer.gov/types/childhood-cancers/hp/unusual-cancers-childhood-pdq> (2019). 3Maris JM, Hogarty MD, Bagatell R & Cohn SL. Neuroblastoma. Lancet 369, 2106-2120, (2007). 4Stewart BW & Wild CP. World Cancer Report. (2014). 5中華民國兒童癌症基金會. 兒童神經母細胞瘤疾病簡介, <http://www.ccfroc.org.tw/content_sub2.php?id=358&level1ID=2&level2ID=16&level3ID=1&level4ID=1> (2019). 6National Cancer Institute. Neuroblastoma Treatment (PDQ®)–Health Professional Version, <https://www.cancer.gov/types/neuroblastoma/hp/neuroblastoma-treatment-pdq> (2019). 7中華民國兒童癌症基金會. 2010-2017 年台灣兒童癌症診斷人數, <http://www.ccfroc.org.tw/upload/files/Newsletter/2017/2017.pdf> (2017). 8Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al., and Maris JM. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930, (2008). 9Machin GA. Histogenesis and histopathology of neuroblastoma. Clinical and Biological Manifestations, 195-231, (1982). 10Hoehner JC, Gestblom C, Hedborg F, Sandstedt B, Olsen L & Påhlman S. A developmental model of neuroblastoma: differentiating stroma-poor tumors'' progress along an extra-adrenal chromaffin lineage. Laboratory investigation; a journal of technical methods and pathology 75, 659-675, (1996). 11Ratner N, Brodeur GM, Dale RC & Schor NF. The “neuro” of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder. Annals of Neurology 80, 13-23, (2016). 12Bresler Scott C, Weiser Daniel A, Huwe Peter J, Park Jin H, Krytska K, Ryles H, et al., and Mossé Yaël P. ALK Mutations Confer Differential Oncogenic Activation and Sensitivity to ALK Inhibition Therapy in Neuroblastoma. Cancer Cell 26, 682-694, (2014). 13Weiss WA, Aldape K, Mohapatra G, Feuerstein BG & Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. The EMBO journal 16, 2985-2995, (1997). 14Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nature reviews cancer 3, 203-216, (2003). 15Brodeur GM & Nakagawara A. Molecular basis of clinical heterogeneity in neuroblastoma. The American journal of pediatric hematology/oncology 14, 111-116, (1992). 16Maris JM. Recent Advances in Neuroblastoma. New England Journal of Medicine 362, 2202-2211, (2010). 17Kushner BH & Cheung N-KV. Neuroblastoma--from genetic profiles to clinical challenge. The New England journal of medicine 353, 2215-2217, (2005). 18Bernardi BD, Pianca C, Pistamiglio P, Veneselli E, Viscardi E, Pession A, et al., and Bruzzi P. Neuroblastoma With Symptomatic Spinal Cord Compression at Diagnosis: Treatment and Results With 76 Cases. Journal of Clinical Oncology 19, 183-190, (2001). 19Plantaz D, Rubie H, Michon J, Mechinaud F, Coze C, Chastagner P, et al., and Hartmann O. The treatment of neuroblastoma with intraspinal extension with chemotherapy followed by surgical removal of residual disease: A prospective study of 42 patients--Results of the NBL 90 study of the French Society of Pediatric Oncology. Cancer 78, 311-319, (1996). 20Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, et al., and et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. Journal of Clinical Oncology 11, 1466-1477, (1993). 21Matthay KK. Stage 4S neuroblastoma: what makes it special? Journal of Clinical Oncology 16, 2003-2006, (1998). 22Shimada H, Umehara S, Monobe Y, Hachitanda Y, Nakagawa A, Goto S, et al., and Matthay KK. International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children''s Cancer Group. Cancer 92, 2451-2461, (2001). 23Park JR, Eggert A & Caron H. Neuroblastoma: Biology, Prognosis, and Treatment. Pediatric Clinics of North America 55, 97-120, (2008). 24Rufini V, Fisher GA, Shulkin BL, Sisson JC & Shapiro B. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. The Journal of Nuclear Medicine 37, 1464, (1996). 25Geatti O, Shapiro B, Sisson JC, Hutchinson RJ, Mallette S, Eyre P & Beierwaltes WH. Iodine-131 metaiodobenzylguanidine scintigraphy for the location of neuroblastoma: preliminary experience in ten cases. Journal of Nuclear Medicine 26, 736-742, (1985). 26Joyner BD. Neuroblastoma Workup, <https://emedicine.medscape.com/article/439263-workup#c4> (2017). 27American Cancer Society. Neuroblastoma Stages and Prognostic Markers, <https://www.cancer.org/cancer/neuroblastoma/detection-diagnosis-staging/staging.html> (Last Revised: March 19, 2018). 28National Institutes of Health U.S. National Library of Medicine. MYCN gene, <https://ghr.nlm.nih.gov/gene/MYCN#location> (Last Revised: May 14, 2019). 29Giannini G, Cerignoli F, Mellone M, Massimi I, Ambrosi C, Rinaldi C, et al., and Gulino A. High Mobility Group A1 Is a Molecular Target for MYCN in Human Neuroblastoma. Cancer Research 65, 8308, (2005). 30Lasorella A, Boldrini R, Dominici C, Donfrancesco A, Yokota Y, Inserra A & Iavarone A. Id2 Is Critical for Cellular Proliferation and Is the Oncogenic Effector of N-Myc in Human Neuroblastoma. Cancer Research 62, 301, (2002). 31Hogarty MD, Norris MD, Davis K, Liu X, Evageliou NF, Hayes CS, et al., and Haber M. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Research 68, 9735-9745, (2008). 32Chen L, Iraci N, Gherardi S, Gamble LD, Wood KM, Perini G, et al., and Tweddle DA. p53 is a direct transcriptional target of MYCN in neuroblastoma. Cancer Research 70, 1377-1388, (2010). 33Hatzi E, Murphy C, Zoephel A, Ahorn H, Tontsch U, Bamberger A-M, et al., and Fotsis T. N-myc oncogene overexpression down-regulates leukemia inhibitory factor in neuroblastoma. European Journal of Biochemistry 269, 3732-3741, (2002). 34Brodeur GM, Seeger RC, Schwab M, Varmus HE & Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121-1124, (1984). 35Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY & Hammond D. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. New England Journal of Medicine 313, 1111-1116, (1985). 36Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, et al., and Maris JM. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. British Journal of Cancer 100, 1471, (2009). 37Sawai S, Shimono A, Wakamatsu Y, Palmes C, Hanaoka K & Kondoh HJD. Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. Development 117, 1445-1455, (1993). 38Sawai S, Shimono A, Hanaoka K & Kondoh H. Embryonic lethality resulting from disruption of both N-myc alleles in mouse zygotes. The New biologist 3, 861-869, (1991). 39White PS, Maris JM, Beltinger C, Sulman E, Marshall HN, Fujimori M, et al., and Hilliard CJPotNAoS. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36. 2-36.3. PNAS 92, 5520-5524, (1995). 40Attiyeh EF, London WB, Mossé YP, Wang Q, Winter C, Khazi D, et al., and Shimada H. Chromosome 1p and 11q deletions and outcome in neuroblastoma. New England Journal of Medicine 353, 2243-2253, (2005). 41White PS, Thompson PM, Gotoh T, Okawa ER, Igarashi J, Kok M, et al., and Brodeur GM. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene 24, 2684-2694, (2005). 42Caron H, van Sluis P, de Kraker J, Bökkerink J, Egeler M, Laureys G, et al., and Versteeg R. Allelic Loss of Chromosome 1p as a Predictor of Unfavorable Outcome in Patients with Neuroblastoma. The New England journal of medicine 334, 225-230, (1996). 43Mlakar V, Jurkovic Mlakar S, Lopez G, Maris JM, Ansari M & Gumy-Pause F. 11q deletion in neuroblastoma: a review of biological and clinical implications. Molecular Cancer 16, 114, (2017). 44Carén H, Kryh H, Nethander M, Sjöberg R-M, Träger C, Nilsson S, et al., and Martinsson T. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proceedings of the National Academy of Sciences of the United States of America 107, 4323-4328, (2010). 45Schleiermacher G, Janoueix-Lerosey I & Delattre O. Recent insights into the biology of neuroblastoma. International Journal of Cancer 135, 2249-2261, (2014). 46Bown N, Cotterill S, Łastowska M, O''Neill S, Pearson ADJ, Plantaz D, et al., and Speleman F. Gain of Chromosome Arm 17q and Adverse Outcome in Patients with Neuroblastoma. New England Journal of Medicine 340, 1954-1961, (1999). 47Janoueix-Lerosey I, Schleiermacher G, Michels E, Mosseri V, Ribeiro A, Lequin D, et al., and delattre O. Overall Genomic Pattern Is a Predictor of Outcome in Neuroblastoma. Journal of Clinical Oncology 27, 1026-1033, (2009). 48Kaneko Y, Kanda N, Maseki N, Sakurai M, Tsuchida Y, Takeda T, et al., and Sakurai M. Different Karyotypic Patterns in Early and Advanced Stage Neuroblastomas. Cancer Research 47, 311, (1987). 49Joshi VV, Cantor AB, Brodeur GM, Look AT, Shuster JJ, Altshuler G, et al., and et al. Correlation between morphologic and other prognostic markers of neuroblastoma. A study of histologic grade, DNA index, N-myc gene copy number, and lactic dehydrogenase in patients in the Pediatric Oncology Group. Cancer 71, 3173-3181, (1993). 50Look AT, Hayes FA, Nitschke R, McWilliams NB & Green AA. Cellular DNA Content as a Predictor of Response to Chemotherapy in Infants with Unresectable Neuroblastoma. New England Journal of Medicine 311, 231-235, (1984). 51Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, et al., and Evans AE. Trk Receptor Expression and Inhibition in Neuroblastomas. Clinical Cancer Research 15, 3244, (2009). 52Nakagawara A, Azar CG, Scavarda NJ & Brodeur GM. Expression and function of TRK-B and BDNF in human neuroblastomas. Molecular and Cellular Biology 14, 759, (1994). 53Rydén M, Sehgal R, Dominici C, Schilling FH, Ibáñez CF & Kogner P. Expression of mRNA for the neurotrophin receptor trkC in neuroblastomas with favourable tumour stage and good prognosis. British Journal of Cancer 74, 773-779, (1996). 54Schulz G, Cheresh DA, Varki NM, Yu A, Staffileno LK & Reisfeld RA. Detection of Ganglioside GD2 in Tumor Tissues and Sera of Neuroblastoma Patients. Cancer Research 44, 5914, (1984). 55Hung J-T & Yu AL. in Neuroblastoma (ed Swapan K. Ray) 63-78 (Academic Press, 2019). 56Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, et al., and Matthay KK. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. Journal of Clinical Oncology 27, 289-297, (2009). 57Kembhavi SA, Shah S, Rangarajan V, Qureshi S, Popat P & Kurkure P. Imaging in neuroblastoma: An update. Indian Journal of Radiology & Imaging 25, 129-136, (2015). 58Strother DR, London WB, Schmidt ML, Brodeur GM, Shimada H, Thorner P, et al., and Cohn SL. Outcome after surgery alone or with restricted use of chemotherapy for patients with low-risk neuroblastoma: results of Children''s Oncology Group study P9641. Journal of Clinical Oncology 30, 1842-1848, (2012). 59American Cancer Society. Neuroblastoma Survival Rates by Risk Group, <https://www.cancer.org/cancer/neuroblastoma/detection-diagnosis-staging/survival-rates.html> (Last Revised: March 19, 2018). 60Baker DL, Schmidt ML, Cohn SL, Maris JM, London WB, Buxton A, et al., and Matthay KK. Outcome after Reduced Chemotherapy for Intermediate-Risk Neuroblastoma. New England Journal of Medicine 363, 1313-1323, (2010). 61Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al., and Reynolds CP. Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-cis-Retinoic Acid. The New England journal of medicine 341, 1165-1173, (1999). 62De Bernardi B, Nicolas B, Boni L, Indolfi P, Carli M, Cordero Di Montezemolo L, et al., and Bruzzi P. Disseminated neuroblastoma in children older than one year at diagnosis: comparable results with three consecutive high-dose protocols adopted by the Italian Co-Operative Group for Neuroblastoma. Journal of Clinical Oncology 21, 1592-1601, (2003). 63Kerjaschki D, Sharkey DJ & Farquhar MG. Identification and characterization of podocalyxin--the major sialoprotein of the renal glomerular epithelial cell. The Journal of cell biology 98, 1591-1596, (1984). 64Doyonnas R, Nielsen JS, Chelliah S, Drew E, Hara T, Miyajima A & McNagny KM. Podocalyxin is a CD34-related marker of murine hematopoietic stem cells and embryonic erythroid cells. Blood 105, 4170, (2005). 65Kershaw DB, Thomas PE, Wharram BL, Goyal M, Wiggins JE, Whiteside CI & Wiggins RC. Molecular Cloning, Expression, and Characterization of Podocalyxin-like Protein 1 from Rabbit as a Transmembrane Protein of Glomerular Podocytes and Vascular Endothelium. Journal of Biological Chemistry 270, 29439-29446, (1995). 66Vitureira N, Andrés R, Pérez-Martínez E, Martínez A, Bribián A, Blasi J, et al., and Burgaya F. Podocalyxin is a novel polysialylated neural adhesion protein with multiple roles in neural development and synapse formation. PloS One 5, e12003, (2010). 67Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al., and Uhlen M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics 13, 397-406, (2014). 68Nielsen JS & McNagny KM. The role of podocalyxin in health and disease. American Society of Nephrology 20, 1669-1676, (2009). 69Turunen O, Wahlström T & Vaheri A. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. The Journal of Cell Biology 126, 1445, (1994). 70Tsukita S, Yonemura S & Tsukita S. ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Current Opinion in Cell Biology 9, 70-75, (1997). 71Vaheri A, Carpén O, Heiska L, Helander TS, Jääskeläinen J, Majander-Nordenswan P, et al., and Turunen O. The ezrin protein family: membrane-cytoskeleton interactions and disease associations. Current Opinion in Cell Biology 9, 659-666, (1997). 72Li Y, Li J, Straight SW & Kershaw DB. PDZ domain-mediated interaction of rabbit podocalyxin and Na+/H+ exchange regulatory factor-2. American Journal of Physiology-Renal Physiology 282, F1129-F1139, (2002). 73Takeda T. Podocyte cytoskeleton is connected to the integral membrane protein podocalyxin through Na+/H+-exchanger regulatory factor 2 and ezrin. Clinical and Experimental Nephrology 7, 260-269, (2003). 74Schmieder S, Nagai M, Orlando RA, Takeda T & Farquhar MG. Podocalyxin activates RhoA and induces actin reorganization through NHERF1 and Ezrin in MDCK cells. American Society of Nephrology 15, 2289-2298, (2004). 75Tan PC, Furness SG, Merkens H, Lin S, McCoy ML, Roskelley CD, et al., and McNagny KM. Na+/H+ exchanger regulatory factor-1 is a hematopoietic ligand for a subset of the CD34 family of stem cell surface proteins. Stem Cells 24, 1150-1161, (2006). 76Sassetti C, Tangemann K, Singer MS, Kershaw DB & Rosen SD. Identification of podocalyxin-like protein as a high endothelial venule ligand for L-selectin: parallels to CD34. Journal of Experimental Medicine 187, 1965-1975, (1998). 77Thomas SN, Schnaar RL & Konstantopoulos K. Podocalyxin-like protein is an E-/L-selectin ligand on colon carcinoma cells: comparative biochemical properties of selectin ligands in host and tumor cells. American journal of physiology-Cell physiology 296, C505-C513, (2009). 78Dallas MR, Chen S-H, Streppel MM, Sharma S, Maitra A & Konstantopoulos K. Sialofucosylated podocalyxin is a functional E- and L-selectin ligand expressed by metastatic pancreatic cancer cells. American Journal of Physiology - Cell Physiology 303, C616, (2012). 79Ley K. The role of selectins in inflammation and disease. Trends in Molecular Medicine 9, 263-268, (2003). 80Barthel SR, Gavino JD, Descheny L & Dimitroff CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opinion on Therapeutic Targets 11, 1473-1491, (2007). 81Boman K, Larsson AH, Segersten U, Kuteeva E, Johannesson H, Nodin B, et al., and Jirstrom K. Membranous expression of podocalyxin-like protein is an independent factor of poor prognosis in urothelial bladder cancer. British Journal of Cancer 108, 2321-2328, (2013). 82Laitinen A, Böckelman C, Hagström J, Kokkola A, Fermér C, Nilsson O & Haglund C. Podocalyxin as a prognostic marker in gastric cancer. PloS One 10, e0145079, (2015). 83Borg D, Hedner C, Nodin B, Larsson A, Johnsson A, Eberhard J & Jirström K. Expression of podocalyxin-like protein is an independent prognostic biomarker in resected esophageal and gastric adenocarcinoma. BMC Clinical Pathology 16, 13, (2016). 84Kaprio T, Fermér C, Hagström J, Mustonen H, Böckelman C, Nilsson O & Haglund C. Podocalyxin is a marker of poor prognosis in colorectal cancer. BMC Cancer 14, 493, (2014). 85Larsson AH, Lehn S, Wangefjord S, Karnevi E, Kuteeva E, Sundström M, et al., and Birgisson H. Significant association and synergistic adverse prognostic effect of podocalyxin-like protein and epidermal growth factor receptor expression in colorectal cancer. Journal of Translational Medicine 14, 128, (2016). 86Saukkonen K, Hagström J, Mustonen H, Juuti A, Nordling S, Fermér C, et al., and Haglund C. Podocalyxin Is a Marker of Poor Prognosis in Pancreatic Ductal Adenocarcinoma. PloS One 10, e0129012, (2015). 87Taniuchi K, Furihata M, Naganuma S, Dabanaka K, Hanazaki K & Saibara T. Podocalyxin-like protein, linked to poor prognosis of pancreatic cancers, promotes cell invasion by binding to gelsolin. Cancer Science 107, 1430-1442, (2016). 88Flores-Téllez TN, Lopez TV, Garzón VRV & Villa-Treviño S. Co-expression of ezrin-CLIC5-podocalyxin is associated with migration and invasiveness in hepatocellular carcinoma. PloS One 10, e0131605, (2015). 89Somasiri A, Nielsen JS, Makretsov N, McCoy ML, Prentice L, Gilks CB, et al., and Roskelley CD. Overexpression of the anti-adhesin podocalyxin is an independent predictor of breast cancer progression. Cancer Research 64, 5068-5073, (2004). 90McNagny KM, Pettersson I, Rossi F, Flamme I, Shevchenko A, Mann M & Graf T. Thrombomucin, a novel cell surface protein that defines thrombocytes and multipotent hematopoietic progenitors. The Journal of cell biology 138, 1395-1407, (1997). 91Kelley TW, Huntsman D, McNagny KM, Roskelley CD & Hsix ED. Podocalyxin: a marker of blasts in acute leukemia. American Journal of Clinical Pathology 124, 134-142, (2005). 92Riccioni R, Calzolari A, Biffoni M, Senese M, Riti V, Petrucci E, et al., and Diverio D. Podocalyxin is expressed in normal and leukemic monocytes. Blood Cells, Molecules, and Diseases 37, 218-225, (2006). 93Lin C-W, Sun M-S, Liao M-Y, Chung C-H, Chi Y-H, Chiou L-T, et al., and Wu H-C. Podocalyxin-like 1 promotes invadopodia formation and metastasis through activation of Rac1/Cdc42/cortactin signaling in breast cancer cells. Carcinogenesis 35, 2425-2435, (2014). 94Meng X, Ezzati P & Wilkins JA. Requirement of podocalyxin in TGF-beta induced epithelial mesenchymal transition. PloS One 6, e18715, (2011). 95Zhang J, Zhu Z, Wu H, Yu Z, Rong Z, Luo Z, et al., and Huang C. PODXL, negatively regulated by KLF4, promotes the EMT and metastasis and serves as a novel prognostic indicator of gastric cancer. Gastric Cancer 22, 48-59, (2019). 96Lin CW, Sun MS & Wu HC. Podocalyxin-like 1 is associated with tumor aggressiveness and metastatic gene expression in human oral squamous cell carcinoma. International Journal of Oncology 45, 710-718, (2014). 97Zhang J, Zhu Z, Sheng J, Yu Z, Yao B, Huang K, et al., and Huang C. miR-509-3-5P inhibits the invasion and lymphatic metastasis by targeting PODXL and serves as a novel prognostic indicator for gastric cancer. Oncotarget 8, 34867, (2017). 98Favreau AJ, Cross E & Sathyanarayana P. miR-199b-5p directly targets PODXL and DDR1 and decreased levels of miR-199b-5p correlate with elevated expressions of PODXL and DDR1 in acute myeloid leukemia. American Journal of Hematology 87, 442, (2012). 99Chijiiwa Y, Moriyama T, Ohuchida K, Nabae T, Ohtsuka T, Miyasaka Y, et al., and Nakamura M. Overexpression of microRNA-5100 decreases the aggressive phenotype of pancreatic cancer cells by targeting PODXL. International Journal of Oncology 48, 1688-1700, (2016). 100Li X, Yao N, Zhang J & Liu Z. MicroRNA-125b is involved in atherosclerosis obliterans in vitro by targeting podocalyxin. Molecular Medicine Reports 12, 561-568, (2015). 101Lee RC, Feinbaum RL & Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854, (1993). 102Wightman B, Ha I & Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862, (1993). 103He L & Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics 5, 522-531, (2004). 104Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology 6, 376-385, (2005). 105Winter J, Jung S, Keller S, Gregory RI & Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology 11, 228, (2009). 106Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233, (2009). 107Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B & Bartel DP. MicroRNAs in plants. Genes and Development 16, 1616-1626, (2002). 108Golden TA, Schauer SE, Lang JD, Pien S, Mushegian AR, Grossniklaus U, et al., and Ray A. Short Integuments1/suspensor1/carpel Factory a Dicer Homolog, Is a Maternal Effect Gene Required for Embryo Development in Arabidopsis. Plant Physiology 130, 808, (2002). 109Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al., and Hannon GJ. Dicer is essential for mouse development. Nature Genetics 35, 215-217, (2003). 110Wang Y, Medvid R, Melton C, Jaenisch R & Blelloch RJNg. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genetics 39, 380, (2007). 111Makeyev EV, Zhang J, Carrasco MA & Maniatis T. The MicroRNA miR-124 Promotes Neuronal Differentiation by Triggering Brain-Specific Alternative Pre-mRNA Splicing. Molecular Cell 27, 435-448, (2007). 112Yu J-Y, Chung K-H, Deo M, Thompson RC & Turner DL. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research 314, 2618-2633, (2008). 113Cordes KR & Srivastava D. MicroRNA regulation of cardiovascular development. Circulation Research 104, 724-732, (2009). 114Callis TE, Chen J-F & Wang D-Z. MicroRNAs in skeletal and cardiac muscle development. DNA and Cell Biology 26, 219-225, (2007). 115Lawrie C, Saunders N, Soneji S, Palazzo S, Dunlop H, Cooper C, et al., and Enver T. MicroRNA expression in lymphocyte development and malignancy. Leukemia 22, 1440, (2008). 116Sayed D & Abdellatif M. MicroRNAs in Development and Disease. Physiological Reviews 91, 827-887, (2011). 117Esquela-Kerscher A & Slack FJJNrc. Oncomirs—microRNAs with a role in cancer. nature reviews cancer 6, 259, (2006). 118Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al., and Rai KJPotNAoS. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. PNAS 99, 15524-15529, (2002). 119Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al., and Dono MJPotNAoS. miR-15 and miR-16 induce apoptosis by targeting BCL2. PNAS 102, 13944-13949, (2005). 120Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, et al., and Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Research 65, 7065, (2005). 121Chan JA, Krichevsky AM & Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer research 65, 6029-6033, (2005). 122Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al., and Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189-198, (2006). 123Connolly E, Melegari M, Landgraf P, Tchaikovskaya T, Tennant BC, Slagle BL, et al., and Rogler CE. Elevated expression of the miR-17–92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. The American journal of pathology 173, 856-864, (2008). 124Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, et al., and Vyzula R. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72, 397-402, (2007). 125Meng F, Henson R, Wehbe–Janek H, Ghoshal K, Jacob ST & Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647-658, (2007). 126Asangani IA, Rasheed SA, Nikolova D, Leupold J, Colburn N, Post S & Allgayer H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128, (2008). 127Liang L, Wong CM, Ying Q, Fan DNY, Huang S, Ding J, et al., and Yao M. MicroRNA‐125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B. Hepatology 52, 1731-1740, (2010). 128Bousquet M, Harris MH, Zhou B & Lodish HF. MicroRNA miR-125b causes leukemia. Proceedings of the National Academy of Sciences 107, 21558-21563, (2010). 129Enomoto Y, Kitaura J, Hatakeyama K, Watanuki J, Akasaka T, Kato N, et al., and Taniwaki M. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies. Leukemia 25, 1849, (2011). 130Leung YY, Kuksa PP, Amlie-Wolf A, Valladares O, Ungar LH, Kannan S, et al., and Wang L-S. DASHR: database of small human noncoding RNAs. Nucleic Acids Research 44, D216-D222, (2015). 131Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, et al., and Lim B. MicroRNA-125b is a novel negative regulator of p53. Genes and Development 23, 862-876, (2009). 132Wu L & Belasco JG. Micro-RNA Regulation of the Mammalian lin-28 Gene during Neuronal Differentiation of Embryonal Carcinoma Cells. Molecular and Cellular Biology 25, 9198, (2005). 133Le MT, Xie H, Zhou B, Chia PH, Rizk P, Um M, et al., and Lodish HF. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Molecular and Cellular Biology 29, 5290-5305, (2009). 134Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, et al., and Borbone E. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26, 7590, (2007). 135Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, et al., and Kim S. MicroRNA expression profiles in serous ovarian carcinoma. Clinical Cancer Research 14, 2690-2695, (2008). 136Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, et al., and Waldron J. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clinical Cancer Research 16, 1129-1139, (2010). 137Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS & Benz CC. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. Journal of Biological Chemistry 282, 1479-1486, (2007). 138Lee YS, Kim HK, Chung S, Kim K-S & Dutta A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. Journal of Biological Chemistry 280, 16635-16641, (2005). 139Zhang Y, Yan L-X, Wu Q-N, Du Z-M, Chen J, Liao D-Z, et al., and Zeng M-S. miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Research 71, 3552-3562, (2011). 140Xu N, Zhang L, Meisgen F, Harada M, Heilborn J, Homey B, et al., and Pivarcsi A. MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. Journal of Biological Chemistry 287, 29899-29908, (2012). 141Cui F, Li X, Zhu X, Huang L, Huang Y, Mao C, et al., and Shi H. MiR-125b inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting phosphoinositide 3-kinase catalytic subunit delta. Cellular Physiology and Biochemistry 30, 1310-1318, (2012). 142Wu N, Xiao L, Zhao X, Zhao J, Wang J, Wang F, et al., and Lin X. miR‐125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Letters 586, 3831-3839, (2012). 143Shiiba M, Shinozuka K, Saito K, Fushimi K, Kasamatsu A, Ogawara K, et al., and Tanzawa H. MicroRNA-125b regulates proliferation and radioresistance of oral squamous cell carcinoma. British Journal of Cancer 108, 1817, (2013). 144Bhattacharjya S, Nath S, Ghose J, Maiti G, Biswas N, Bandyopadhyay S, et al., and Roychoudhury S. miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression. Cell Death and Differentiation 20, 430, (2013). 145張勝凱. I.探討微核醣核酸-125b/LIN28B調控神經母細胞瘤惡性度之角色II.建立微核醣核酸-125b基因剔除小鼠 博士 thesis, 國立臺灣大學, (2013). 146Molenaar JJ, Domingo-Fernández R, Ebus ME, Lindner S, Koster J, Drabek K, et al., and Van Nes J. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nature Genetics 44, 1199, (2012). 147Bousquet M, Quelen C, Rosati R, Mansat-De Mas V, La Starza R, Bastard C, et al., and Leroux D. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplasic syndrome and acute myeloid leukemia with the t (2; 11)(p21; q23) translocation. Journal of Experimental Medicine 205, 2499-2506, (2008). 148Chapiro E, Russell L, Struski S, Cave H, Radford-Weiss I, Valle V, et al., and Harrison C. A new recurrent translocation t (11; 14)(q24; q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia 24, 1362, (2010). 149Shi X-B, Xue L, Yang J, Ma A-H, Zhao J, Xu M, et al., and deVere White RW. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proceedings of the National Academy of Sciences 104, 19983-19988, (2007). 150Shi XB, Xue L, Ma AH, Tepper CG, Kung HJ & White RWD. miR‐125b promotes growth of prostate cancer xenograft tumor through targeting pro‐apoptotic genes. The Prostate 71, 538-549, (2011). 151Mestdagh P, Fredlund E, Pattyn F, Schulte J, Muth D, Vermeulen J, et al., and Van Roy NJO. MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 29, 1394, (2010). 152Bray I, Bryan K, Prenter S, Buckley PG, Foley NH, Murphy DM, et al., and Stallings RL. Widespread Dysregulation of MiRNAs by MYCN Amplification and Chromosomal Imbalances in Neuroblastoma: Association of miRNA Expression with Survival. PloS One 4, e7850, (2009). 153Chang T-C, Yu D, Lee Y-S, Wentzel EA, Arking DE, West KM, et al., and Mendell JTJNg. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics 40, 43, (2008). 154Lovén J, Zinin N, Wahlström T, Müller I, Brodin P, Fredlund E, et al., and Henriksson MJPotNAoS. MYCN-regulated microRNAs repress estrogen receptor-α (ESR1) expression and neuronal differentiation in human neuroblastoma. PNAS 107, 1553-1558, (2010). 155Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, Gulino A, et al., and Caffarelli EJPotNAoS. The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. PNAS 104, 7957-7962, (2007). 156蔡明憲. 探討LIN28B在神經母細胞瘤中之角色 碩士 thesis, 國立臺灣大學, (2012). 157Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al., and Maris JM. The genetic landscape of high-risk neuroblastoma. Nature Genetics 45, 279, (2013). 158Itai S, Yamada S, Kaneko MK, Sano M, Nakamura T, Yanaka M, et al., and Furusawa Y. Podocalyxin is crucial for the growth of oral squamous cell carcinoma cell line HSC-2. Biochemistry and biophysics reports 15, 93-96, (2018). 159George RE, London WB, Cohn SL, Maris JM, Kretschmar C, Diller L, et al., and Look AT. Hyperdiploidy plus nonamplified MYCN confers a favorable prognosis in children 12 to 18 months old with disseminated neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 23, 6466-6473, (2005). 160Toyoda H, Nagai Y, Kojima A & Kinoshita-Toyoda A. Podocalyxin as a major pluripotent marker and novel keratan sulfate proteoglycan in human embryonic and induced pluripotent stem cells. Glycoconjugate Journal 34, 817-823, (2017). 161Frose J, Chen MB, Hebron KE, Reinhardt F, Hajal C, Zijlstra A, et al., and Weinberg RA. Epithelial-Mesenchymal Transition Induces Podocalyxin to Promote Extravasation via Ezrin Signaling. Cell Reports 24, 962-972, (2018). 162Gao C-F, Xie Q, Su Y-L, Koeman J, Khoo SK, Gustafson M, et al., and Woude GFV. Proliferation and invasion: plasticity in tumor cells. Proceedings of the National Academy of Sciences 102, 10528-10533, (2005). 163Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, et al., and Nevins JR. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene 28, 2796-2805, (2009). 164Greenburg G & Hay EDJTJocb. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. The Journal of Cell Biology 95, 333-339, (1982). 165Kalluri R & Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. Journal of Clinical Investigation 112, 1776-1784, (2003). 166Kalluri R & Weinberg RA. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation 119, 1420-1428, (2009). 167Sha Y, Haensel D, Gutierrez G, Du H, Dai X & Nie Q. Intermediate cell states in epithelial-to-mesenchymal transition. Physical Biology 16, (2019). 168Lamouille S, Xu J & Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nature reviews Molecular cell biology 15, 178, (2014). 169Nieto MA, Huang Ruby Y-J, Jackson Rebecca A & Thiery Jean P. EMT: 2016. Cell 166, 21-45, (2016). 170Díaz-López A, Moreno-Bueno G & Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Management and Research 6, 205-216, (2014). 171Bedi U, Mishra VK, Wasilewski D, Scheel C & Johnsen SA. Epigenetic plasticity: a central regulator of epithelial-to-mesenchymal transition in cancer. Oncotarget 5, 2016, (2014). 172Kohl NE, Gee CE & Alt FW. Activated expression of the N-myc gene in human neuroblastomas and related tumors. Science 226, 1335-1337, (1984). 173Padovan-Merhar OM, Raman P, Ostrovnaya I, Kalletla K, Rubnitz KR, Sanford EM, et al., and Granger MP. Enrichment of targetable mutations in the relapsed neuroblastoma genome. Plos Genetics 12, e1006501, (2016). 174Mitra SK, Hanson DA & Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nature Reviews Molecular Cell Biology 6, 56-68, (2005). 175Serrels A, Canel M, Brunton VG & Frame MC. Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement: insights from in vivo imaging. Cell adhesion & migration 5, 360-365, (2011). 176Negishi M & Katoh H. Rho Family GTPases as Key Regulators for Neuronal Network Formation. The Journal of Biochemistry 132, 157-166, (2002). 177Dyberg C, Fransson S, Andonova T, Sveinbjörnsson B, Lännerholm-Palm J, Olsen TK, et al., and Brodin B. Rho-associated kinase is a therapeutic target in neuroblastoma. Proceedings of the National Academy of Sciences 114, E6603-E6612, (2017). 178Rath N & Olson MF. Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Reports 13, 900-908, (2012). 179Martín-Villar E, Megías D, Castel S, Yurrita MM, Vilaró S & Quintanilla M. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. Journal of Cell Science 119, 4541-4553, (2006).
|