(3.237.234.213) 您好!臺灣時間:2021/03/09 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅百尉
研究生(外文):Bai-Wei Lo
論文名稱:榕小蜂科的化學感受器基因家族演化
論文名稱(外文):The evolution of chemosensory gene families in fig wasps (Agaonidae)
指導教授:王弘毅
口試委員:丁照棣李承叡蔡怡陞
口試日期:2019-01-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:110
中文關鍵詞:榕小蜂嗅覺共演化基因體組裝寄主專一性
DOI:10.6342/NTU201903609
相關次數:
  • 被引用被引用:0
  • 點閱點閱:37
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
化學受器是昆蟲主要的感覺器官,昆蟲利用嗅覺來感知食物、配偶、宿主、掠食者等外在因子。榕小蜂科的物種丟失了大多數的化學受器基因,可能與其封閉的特殊生活史有關。即使如此,榕小蜂的嗅覺在其與榕樹的互利共生關係中至關重要,榕小蜂主要透過辨識榕樹隱頭果氣味,來達到專一性授粉。本論文透過定序兩種榕小蜂的基因體跟轉錄體,研究小蜂的化學受器基因如何與其宿主共演化。本文第一章使用粒線體基因標記,進行系統發生以及族群遺傳分析,進而釐清兩研究物種Wiebesia pumilae, W. sp3和他們的近親W. sp1之間的親緣關係、天然分佈位置、自然宿主,並揭露W. sp3有數個族群源於人為引入,且在其入侵地發生多次獨立轉換宿主,由原本共生的愛玉 (Ficus pumila var. awkeotsang)轉至薜荔 (Ficus pumila var. pumila)。經由回顧前人在入侵族群做的物候調查,我提出一個可能機轉解釋榕小蜂的宿主轉換在不同榕樹性別系統之最終演化結果。本文第二章提供詳細的生物資訊流程描述組裝及注釋兩研究物種的基因體以及粒線體基因體,並進行種間基因演化速率分析。
本文第三章探討不同演化層面和尺度下,榕小蜂嗅覺基因與其宿主的共演化。在精細演化尺度,利用近期與宿主達成共演化的W. pumilae和W. sp3的基因體與轉錄體,發現在科內基因拷貝數保守的嗅覺基因出現種間差異表達現象。而在跨越整個榕小蜂科的廣大演化尺度,藉由比較W. pumilae、W. sp3和Ceratosolen solmsi三物種,發現在嗅覺受器 (olfactory receptor)出現各支系獨有的適應性基因串聯重複 (adaptive tandem gene duplication),極有可能是與宿主榕樹氣味長期共適應、共演化的結果。最後我比較與不同性別系統榕樹共生之榕小蜂,發現三個在榕小蜂科中出現縮減的嗅覺基因家族,於雌雄同株榕樹的小蜂Elisabethiella stueckenbergi都出現較多的基因數目擴張,可能與雌雄同株榕樹小蜂具有更頻繁的宿主轉換有關。
Pollinating fig wasps (Agaonidae) have one of the most reduced chemosensory genes in insects, which is probably associated with specialized life cycle in obligate mutualism. On the other hand, olfaction plays a crucial role in maintaining host specificity in the fig-fig wasp coevolution. In this thesis, I sequenced genomic and transcriptomic data from two fig wasp species to understand how reduced chemosensory genes maintain host-specificity during species divergence. The first chapter describes the evolutionary relationships of the two studied fig wasps (Wiebesia pumilae and W. sp3), their close species (W. sp1), and their associated hosts (Ficus pumila var. pumila and Ficus pumila var. awkeotsang), which revealed that while originally an endemic species, recent human intervention had resulted in introduced populations along with recurrent host-shifting in W. sp3. Possible mechanism for distinct co-pollinator pattern seen in different fig sexual systems was also proposed. The second chapter provides bioinformatics pipelines to generate high quality nuclear genomes and mitochondrial genomes of both species using next generation sequencing, and assess the evolutionary rates in protein-coding genes between them.
The final chapter characterizes chemosensory gene evolution of fig wasp from multiple evolutionary perspectives. For fine scale evolution, utilizing the genome and transcriptome of W. sp3 and W. pumilae, both of which codiverged recently with their host, I discovered that regulatory changes at copy-number conservative chemosensory genes are associated with local coadaptations. For large scale evolution, by comparing the two Wiebesia species with Ceratosolen solmsi, I found that lineage-specific adaptive tandem gene duplications in olfactory receptors (OR) family may drive phenotypic coevolution with figs. For olfactory evolution in wasps belonging to different sexual systems of hosts, larger expanded gene families were found in the ancestrally contracted gene families: OR, gustatory receptor (GR) and odorant-binding protein (OBP) in the monoecious fig wasp Elisabethiella stueckenbergi, possibly reflecting differences in host-shifting frequency.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Genetic evidence revealed pollinator sharing via host-switching in pollinators associated with Ficus pumila 1
1.1 Introduction 1
1.2 Material and Methods 2
1.2.1 Phylogeny and population genetics 2
1.2.2 Species distribution modeling 3
1.3 Results 4
1.4 Discussion 6
1.4.1 How the introduced fig wasp species affect fig-fig wasp mutualism? 7
1.4.2 Evolutionary outcome of co-pollinator caused by host shifting 8
Chapter 2 The nuclear and mitochondrial genome of Wiebesia sp3 and Wiebesia pumilae 9
2.1 Introduction 9
2.1.1 Applying genomics in fig wasp study 9
2.1.2 Study species and system 10
2.2 Material and Methods 12
2.2.1 Biological materials for genomic DNA sequencing 12
2.2.2 Biological materials for RNA sequencing 13
2.2.3 Library construction and sequencing 13
2.2.4 Sequencing quality check 13
2.2.5 Taxonomic validation 14
2.2.6 Read decontamination and de novo assembly of jelly-fig wasp 14
2.2.7 Mapping-based assembly of creeping-fig wasp 16
2.2.8 Repeat annotation 17
2.2.9 Gene prediction 17
2.2.10 Manual gene curation 18
2.2.11 Functional annotation 19
2.2.12 Manual annotation of interested genes 19
2.2.13 Mitochondrial genome assembly and annotation 20
2.2.14 Orthology 21
2.2.15 Evolutionary rates between Wiebesia species 21
2.3 Results 22
2.3.1 Sequencing quality check and validation of taxonomy 22
2.3.2 Blobtools and de novo assembly of jelly-fig wasp 22
2.3.3 Genome assembly of creeping-fig wasp 23
2.3.4 Repeat annotations and Gene predictions 24
2.3.5 Functional annotation 24
2.3.6 Mitochondrial genome 24
2.3.7 Orthology 25
2.3.8 Evolutionary rate between Wiebesia species 25
2.4 Discussion 25
2.4.1 de novo genome assembly and symbionts DNA removal 25
2.4.2 Genome assembly using a closely related reference 27
2.4.3 Reference-based RNA assembly 28
2.4.4 Performance of ab initio predictors 29
2.4.5 Quality of gene predications 29
2.4.6 Mitochondrial genome assembly 29
2.4.7 Gene rearrangements in mitochondrial genome 30
2.4.8 Evolutionary rate between two species 30
2.4.9 Mito-nuclear coevolution 31
2.4.10 Rapid evolution and changes of expression in protease genes 32
Chapter 3 The evolution of chemosensory genes in pollinating fig wasps 34
3.1 Introduction 34
3.1.1 Basis of host recognition in pollinating fig wasps 34
3.1.2 Study system and design 35
3.2 Material and Methods 37
3.2.1 Sample collection and RNA sequencing 37
3.2.2 de novo transcriptome assembly of E. stueckenbergi 37
3.2.3 Reconstruction of fig wasp phylogeny 38
3.2.4 Annotation of chemosensory genes 38
3.2.5 Phylogenetic analysis of chemosensory genes 39
3.2.6 Selection analysis 39
3.2.7 Localization of transposable elements and odorant receptors within jelly fig wasp genome 40
3.2.8 Cross-species differential expression analysis on two Wiebesia species 41
3.3 Results 42
3.3.1 de novo transcriptome assembly 42
3.3.2 Phylogeny of studied fig wasps 42
3.3.3 Evolution of chemosensory gene families in fig wasps 42
3.3.4 TE density and gene duplication in OR 43
3.3.5 Cross species differential expression analysis 44
3.4 Discussion 44
3.4.1 On the fine-scale evolution between jelly-fig and creeping-fig wasp 45
3.4.2 Long-term effects of co-cladogenesis 46
3.4.3 Host sexual system and sizes of chemosensory gene family 48
Chapter 4 Conclusion 49
REFERENCE 50
FIGURES 72
TABLES 95
Akiva, E., Brown, S., Almonacid, D. E., Barber, A. E., Custer, A. F., Hicks, M. A., … Babbitt, P. C. (2014). The Structure–Function Linkage Database. Nucleic Acids Research, 42(D1), D521–D530. https://doi.org/10.1093/nar/gkt1130
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Andrews, S. (2010). FastQC A Quality Control tool for High Throughput Sequence Data. Retrieved June 1, 2018, from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Attwood, T. K., Coletta, A., Muirhead, G., Pavlopoulou, A., Philippou, P. B., Popov, I., … Mitchell, A. L. (2012). The PRINTS database: a fine-grained protein sequence annotation and analysis resource--its status in 2012. Database, 2012(0), bas019-bas019. https://doi.org/10.1093/database/bas019
Bailey, J. A., Liu, G., & Eichler, E. E. (2003). An Alu Transposition Model for the Origin and Expansion of Human Segmental Duplications. The American Journal of Human Genetics, 73(4), 823–834. https://doi.org/10.1086/378594
Bao, W., Kojima, K. K., & Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6(1), 11. https://doi.org/10.1186/s13100-015-0041-9
Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P., & Marth, G. T. (2011). BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics (Oxford, England), 27(12), 1691–1692. https://doi.org/10.1093/bioinformatics/btr174
Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Source: Journal of the Royal Statistical Society. Series B (Methodological) (Vol. 57). Retrieved from http://engr.case.edu/ray_soumya/mlrg/controlling_fdr_benjamini95.pdf
Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., … Stadler, P. F. (2013). MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2), 313–319. https://doi.org/10.1016/j.ympev.2012.08.023
Birney, E., Clamp, M., & Durbin, R. (2004). GeneWise and Genomewise. Genome Research, 14(5), 988–995. https://doi.org/10.1101/gr.1865504
Blanco, E., Parra, G., & Guigó, R. (2007). Using geneid to Identify Genes. In Current Protocols in Bioinformatics (Vol. 18, p. 4.3.1-4.3.28). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/0471250953.bi0403s18
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Brand, P., & Ramírez, S. R. (2017). The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees. Genome Biology and Evolution, 9(8), 2023–2036. https://doi.org/10.1093/gbe/evx149
Brand, P., Ramírez, S. R., Leese, F., Quezada-Euan, J. J. G., Tollrian, R., & Eltz, T. (2015). Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini). BMC Evolutionary Biology, 15(1), 176. https://doi.org/10.1186/s12862-015-0451-9
Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(5), 525–527. https://doi.org/10.1038/nbt.3519
Bru, C., Courcelle, E., Carrère, S., Beausse, Y., Dalmar, S., & Kahn, D. (2004). The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Research, 33(Database issue), D212–D215. https://doi.org/10.1093/nar/gki034
Castresana, J. (2000). Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Molecular Biology and Evolution, 17(4), 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
Chen, L., Chen, P.-Y., Xue, X.-F., Hua, H.-Q., Li, Y.-X., Zhang, F., & Wei, S.-J. (2018). Extensive gene rearrangements in the mitochondrial genomes of two egg parasitoids, Trichogramma japonicum and Trichogramma ostriniae (Hymenoptera: Chalcidoidea: Trichogrammatidae). Scientific Reports, 8(1), 7034. https://doi.org/10.1038/s41598-018-25338-3
Chen, Y., Compton, S. G., Liu, M., & Chen, X.-Y. (2012). Fig trees at the northern limit of their range: the distributions of cryptic pollinators indicate multiple glacial refugia. Molecular Ecology, 21(7), 1687–1701. https://doi.org/10.1111/j.1365-294X.2012.05491.x
Chen, Y., Huang, M., Wu, W., Wang, A., BAO, T., Zheng, C., … Tu, S. (2016). The floral scent of Ficus pumila var. pumila and its effect on the choosing behavior of pollinating wasps of Wiebesia pumilae. Acta Ecologica Sinica, 36(5), 321–326. https://doi.org/10.1016/j.chnaes.2016.06.008
Chen, Y., Li, H. Q., & Ma, W. L. (2002). The reproductive character of Ficus pumila var. pumilar, F.pumila var. awkeotsang and their pollinators. Acta Phytoecologica Sinica, 26(1), 58–63. Retrieved from http://scholar.googleusercontent.com/scholar?q=cache:rpDc96SYpZYJ:scholar.google.com/+pollination+ficus+pumila&hl=zh-TW&as_sdt=0,5
Chen, Y., Liu, M., Compton, S. G., & Chen, X.-Y. (2014). Distribution of nuclear mitochondrial pseudogenes in three pollinator fig wasps associated with Ficus pumila. Acta Oecologica, 57, 142–149. https://doi.org/10.1016/j.actao.2013.10.001
Chen, Y. Y., & Wu, W. W. (2010). Volatile compounds from the syconia of ficus awkeotsang makino and their attractiveness to pollinator wasps. Shengtai Xuebao/ Acta Ecologica Sinica, 30(8), 2212–2219. Retrieved from http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=stxb200909171221
Clement, M., Snell, Q., Walke, P., Posada, D., & Crandall, K. (2002). TCS: estimating gene genealogies. In Proceedings 16th International Parallel and Distributed Processing Symposium (p. 7 pp). IEEE. https://doi.org/10.1109/IPDPS.2002.1016585
Compton, S. G., Ellwood, M. D. F., Davis, A. J., & Welch, K. (2000). The Flight Heights of Chalcid Wasps (Hymenoptera, Chalcidoidea) in a Lowland Bornean Rain Forest: Fig Wasps are the High Fliers1. Biotropica, 32(3), 515–522. https://doi.org/10.1111/j.1744-7429.2000.tb00497.x
Consortium, T. H. G. S. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443(7114), 931–949. https://doi.org/10.1038/nature05260
Cook, J. M., & Segar, S. T. (2010). Speciation in fig wasps. Ecological Entomology, 35, 54–66. https://doi.org/10.1111/j.1365-2311.2009.01148.x
Croset, V., Rytz, R., Cummins, S. F., Budd, A., Brawand, D., Kaessmann, H., … Benton, R. (2010). Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genetics, 6(8), e1001064. https://doi.org/10.1371/journal.pgen.1001064
Cruaud, A., Ronsted, N., Chantarasuwan, B., Chou, L. S., Clement, W. L., Couloux, A., … Savolainen, V. (2012). An Extreme case of plant-insect codiversification: Figs and fig-pollinating wasps. Systematic Biology, 61(6), 1029–1047. https://doi.org/10.1093/sysbio/sys068
Database resources of the National Center for Biotechnology Information. (2012). Nucleic Acids Research, 41(D1), D8–D20. https://doi.org/10.1093/nar/gks1189
de Lima Morais, D. A., Fang, H., Rackham, O. J. L., Wilson, D., Pethica, R., Chothia, C., & Gough, J. (2011). SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic Acids Research, 39(Database), D427–D434. https://doi.org/10.1093/nar/gkq1130
Engsontia, P., Sangket, U., Chotigeat, W., & Satasook, C. (2014). Molecular Evolution of the Odorant and Gustatory Receptor Genes in Lepidopteran Insects: Implications for Their Adaptation and Speciation. Journal of Molecular Evolution, 79(1–2), 21–39. https://doi.org/10.1007/s00239-014-9633-0
Engsontia, P., Sangket, U., Robertson, H. M., & Satasook, C. (2015). Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors. BMC Research Notes, 8(1), 380. https://doi.org/10.1186/s13104-015-1371-x
Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131(2), 479–491. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1644282
Fellowes, M. D. E., Compton, S. G., & Cook, J. M. (n.d.). Sex Allocation and Local Mate Competition in Old World Non-Pollinating Fig Wasps. Behavioral Ecology and Sociobiology. Springer. https://doi.org/10.2307/4601647
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., … Bateman, A. (2016). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 44(D1), D279–D285. https://doi.org/10.1093/nar/gkv1344
Forêt, S., & Maleszka, R. (2006). Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Research, 16(11), 1404–1413. https://doi.org/10.1101/gr.5075706
Galil, J., & Eisikowitch, D. (1971). Studies on mutualistic symbiosis between syconia and sycophilous wasps in monoecious figs. New Phytologist, 70(4), 773–787. https://doi.org/10.1111/j.1469-8137.1971.tb02578.x
Gotz, S., Garcia-Gomez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., … Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420–3435. https://doi.org/10.1093/nar/gkn176
Grandi, G. (1920). Studio morfologico e biologico della Blastophaga psenes (L.). Estudio morfológico y biológico de Blastophaga psenes (L.). Bollettino Del Laboratorio Di Zoologia Generale Ed Agraria, 14, 60–204.
Grison-Pigé, L., Bessière, J.-M., & Hossaert-McKey, M. (2002). Specific Attraction of Fig-Pollinating Wasps: Role of Volatile Compounds Released by Tropical Figs. Journal of Chemical Ecology, 28(2), 283–295. https://doi.org/10.1023/A:1017930023741
Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., … Regev, A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8(8), 1494–1512. https://doi.org/10.1038/nprot.2013.084
Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., … Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology, 9(1), R7. https://doi.org/10.1186/gb-2008-9-1-r7
Haft, D. H., Selengut, J. D., Richter, R. A., Harkins, D., Basu, M. K., & Beck, E. (2012). TIGRFAMs and Genome Properties in 2013. Nucleic Acids Research, 41(D1), D387–D395. https://doi.org/10.1093/nar/gks1234
Hahn, C., Bachmann, L., & Chevreux, B. (2013). Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Research, 41(13), e129–e129. https://doi.org/10.1093/nar/gkt371
Harrison, M. C., Jongepier, E., Robertson, H. M., Arning, N., Bitard-Feildel, T., Chao, H., … Bornberg-Bauer, E. (2018). Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology & Evolution, 2(3), 557–566. https://doi.org/10.1038/s41559-017-0459-1
Herre, E. A. (1993). Population Structure and the Evolution of Virulence in Nematode Parasites of Fig Wasps. Science, 259(5100), 1442–1445. https://doi.org/10.1126/science.259.5100.1442
Herre, E. A. (1996). An Overview of Studies on a Community of Panamanian Figs. Journal of Biogeography, 23(4), 593–607. Retrieved from http://www.jstor.org/stable/2845802
Herre, E. A., Jandér, K. C., & Machado, C. A. (2008). Evolutionary Ecology of Figs and Their Associates: Recent Progress and Outstanding Puzzles. Annual Review of Ecology, Evolution, and Systematics, 39(1), 439–458. https://doi.org/10.1146/annurev.ecolsys.37.091305.110232
Holt, C., & Yandell, M. (2011). MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics, 12(1), 491. https://doi.org/10.1186/1471-2105-12-491
Hossaert-McKey, M., Soler, C., Schatz, B., & Proffit, M. (2010). Floral scents: their roles in nursery pollination mutualisms. Chemoecology, 20(2), 75–88. https://doi.org/10.1007/s00049-010-0043-5
Hsieh, C. F., Huang, T. C., Li, Z. Y., Lo, H. C., Ohashi, H., Shen, C. F., … Yang, K. C. (1993). Flora of Taiwan, Vol. 2 (2nd ed.). Taipei.
i5K Consortium, i5K. (2013). The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. The Journal of Heredity, 104(5), 595–600. https://doi.org/10.1093/jhered/est050
Jackson, A. P., Machado, C. A., Robbins, N., & Herre, E. A. (2008). Multi-locus phylogenetic analysis of neotropical figs does not support co-speciation with the pollinators: The importance of systematic scale in fig/wasp cophylogenetic studies. SYMBIOSIS, 45, xx–xx. Retrieved from http://evolve.zoo.ox.ac.uk/software
Jiang, S.-W. (2011). Morphological differences between pollinating fig wasps of Ficus pumila L. var. pumila and var. awkeotsang (Makino) Corner and their asymmetric host specificity. National Taiwan University.
Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., … Hunter, S. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics (Oxford, England), 30(9), 1236–1240. https://doi.org/10.1093/bioinformatics/btu031
Jousselin, E., Rasplus, J.-Y., & Kjellberg, F. (2003). Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of ficus. Evolution, 57(6), 1255–1269. https://doi.org/10.1111/j.0014-3820.2003.tb00334.x
Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10592173
Kanehisa, M., Sato, Y., & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of Molecular Biology, 428(4), 726–731. https://doi.org/10.1016/j.jmb.2015.11.006
Kanost, M. R., & Jiang, H. (2015). Clip-domain serine proteases as immune factors in insect hemolymph. Current Opinion in Insect Science, 11, 47–55. https://doi.org/10.1016/j.cois.2015.09.003
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357–360. https://doi.org/10.1038/nmeth.3317
Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5(1), 59. https://doi.org/10.1186/1471-2105-5-59
Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. . (2001). Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
Kulmuni, J., & Havukainen, H. (2013). Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling. PloS One, 8(5), e63688. https://doi.org/10.1371/journal.pone.0063688
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
Laetsch, D. R., & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies. F1000Research, 6, 1287. https://doi.org/10.12688/f1000research.12232.1
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Lechner, M., Findeiß, S., Steiner, L., Marz, M., Stadler, P. F., & Prohaska, S. J. (2011). Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics, 12(1), 124. https://doi.org/10.1186/1471-2105-12-124
Lee, E., Helt, G. A., Reese, J. T., Munoz-Torres, M. C., Childers, C. P., Buels, R. M., … Lewis, S. E. (2013). Web Apollo: a web-based genomic annotation editing platform. Genome Biology, 14(8), R93. https://doi.org/10.1186/gb-2013-14-8-r93
Lees, J., Yeats, C., Perkins, J., Sillitoe, I., Rentzsch, R., Dessailly, B. H., & Orengo, C. (2012). Gene3D: a domain-based resource for comparative genomics, functional annotation and protein network analysis. Nucleic Acids Research, 40(Database issue), D465-71. https://doi.org/10.1093/nar/gkr1181
Leigh, J. W., & Bryant, D. (2015). popart : full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
Letunic, I., Doerks, T., & Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research, 40(D1), D302–D305. https://doi.org/10.1093/nar/gkr931
Li, H. (n.d.). seqtk: Toolkit for processing sequences in FASTA/Q formats. Retrieved from https://github.com/lh3/seqtk
Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England), 27(21), 2987–2993. https://doi.org/10.1093/bioinformatics/btr509
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Retrieved from http://arxiv.org/abs/1303.3997
Li, H., & Durbin, R. (2011). Inference of human population history from individual whole-genome sequences. Nature, 475(7357), 493–496. https://doi.org/10.1038/nature10231
Li, Y., Zhang, R., Liu, S., Donath, A., Peters, R. S., Ware, J., … Zhou, X. (2017). The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evolutionary Biology, 17(1), 269. https://doi.org/10.1186/s12862-017-1111-z
Lima, T., Auchincloss, A. H., Coudert, E., Keller, G., Michoud, K., Rivoire, C., … Bairoch, A. (2009). HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Research, 37(Database issue), D471-8. https://doi.org/10.1093/nar/gkn661
Lindsey, A. R. I., Kelkar, Y. D., Wu, X., Sun, D., Martinson, E. O., Yan, Z., … Werren, J. H. (2018). Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biology, 16(1), 54. https://doi.org/10.1186/s12915-018-0520-9
Lischer, H. E. L., & Shimizu, K. K. (2017). Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinformatics, 18(1), 474. https://doi.org/10.1186/s12859-017-1911-6
Liu, M., Zhao, R., Chen, Y., Zhang, J., Compton, S. G., & Chen, X.-Y. (2014). Competitive Exclusion among Fig Wasps Achieved via Entrainment of Host Plant Flowering Phenology. PLoS ONE, 9(5), e97783. https://doi.org/10.1371/journal.pone.0097783
Löytynoja, A. (2014). Phylogeny-aware alignment with PRANK. In Methods in molecular biology (Clifton, N.J.) (Vol. 1079, pp. 155–170). https://doi.org/10.1007/978-1-62703-646-7_10
Machado, C. A., Robbins, N., Gilbert, M. T. P., & Herre, E. A. (2005). Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences of the United States of America, 102 Suppl 1(Suppl 1), 6558–6565. https://doi.org/10.1073/pnas.0501840102
Majoros, W. H., Pertea, M., & Salzberg, S. L. (2004). TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics, 20(16), 2878–2879. https://doi.org/10.1093/bioinformatics/bth315
Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6), 764–770. https://doi.org/10.1093/bioinformatics/btr011
Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., … Bryant, S. H. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43(D1), D222–D226. https://doi.org/10.1093/nar/gku1221
Martinson, E. O., Hackett, J. D., Machado, C. A., & Arnold, A. E. (2015). Metatranscriptome Analysis of Fig Flowers Provides Insights into Potential Mechanisms for Mutualism Stability and Gall Induction. PLOS ONE, 10(6), e0130745. https://doi.org/10.1371/journal.pone.0130745
Martinson, E. O., Mrinalini, Kelkar, Y. D., Chang, C.-H., & Werren, J. H. (2017). The Evolution of Venom by Co-option of Single-Copy Genes. Current Biology, 27(13), 2007–2013.e8. https://doi.org/10.1016/j.cub.2017.05.032
Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T., & Fuyama, Y. (2007). Odorant-Binding Proteins OBP57d and OBP57e Affect Taste Perception and Host-Plant Preference in Drosophila sechellia. PLoS Biology, 5(5), e118. https://doi.org/10.1371/journal.pbio.0050118
McBride, C. S. (2007). Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proceedings of the National Academy of Sciences, 104(12), 4996–5001. https://doi.org/10.1073/pnas.0608424104
McKenzie, S. K., & Kronauer, D. J. C. (2018). The genomic architecture and molecular evolution of ant odorant receptors. Genome Research, 28(11), 1757–1765. https://doi.org/10.1101/gr.237123.118
Meng, J., Huang, D., Xiao, J., & Bu, W. (2016). Antennal Sensilla of Fig Wasps (Hymenoptera: Agaonidae): Function-Driven Elaboration in Females and Degeneration in Males. Annals of the Entomological Society of America, 109(1), 99–105. https://doi.org/10.1093/aesa/sav084
Min, X. J., Butler, G., Storms, R., & Tsang, A. (2005). OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Research, 33(Web Server), W677–W680. https://doi.org/10.1093/nar/gki394
Munro, J. B., Heraty, J. M., Burks, R. A., Hawks, D., Mottern, J., Cruaud, A., … Jansta, P. (2011). A Molecular Phylogeny of the Chalcidoidea (Hymenoptera). PLoS ONE, 6(11), e27023. https://doi.org/10.1371/journal.pone.0027023
Nason, J. D., Herre, E. A., & Hamrick, J. L. (1998). The breeding structure of a tropical keystone plant resource. Nature, 391(6668), 685–687. https://doi.org/10.1038/35607
Necci, M., Piovesan, D., Dosztányi, Z., & Tosatto, S. C. E. (2017). MobiDB-lite: Fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics, 33(9), btx015. https://doi.org/10.1093/bioinformatics/btx015
Nei, M., & Gojobori, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution, 3(5), 418–426. https://doi.org/10.1093/oxfordjournals.molbev.a040410
Nei, M., Gu, X., & Sitnikova, T. (1997). Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proceedings of the National Academy of Sciences of the United States of America, 94(15), 7799–7806. https://doi.org/10.1073/PNAS.94.15.7799
Oliveira, D. C. S. G., Raychoudhury, R., Lavrov, D. V., & Werren, J. H. (2008). Rapidly Evolving Mitochondrial Genome and Directional Selection in Mitochondrial Genes in the Parasitic Wasp Nasonia (Hymenoptera: Pteromalidae). Molecular Biology and Evolution, 25(10), 2167–2180. https://doi.org/10.1093/molbev/msn159
Pacific Biosciences. (n.d.). Retrieved from https://github.com/PacificBiosciences/
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290–295. https://doi.org/10.1038/nbt.3122
Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786. https://doi.org/10.1038/nmeth.1701
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Rago, A., Gilbert, D. G., Choi, J.-H., Sackton, T. B., Wang, X., Kelkar, Y. D., … Colbourne, J. K. (2016). OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis. BMC Genomics, 17(1), 678. https://doi.org/10.1186/s12864-016-2886-9
Rasplus, J. Y. (1996). The one-to-one species specificity of the Ficus-Agaoninae mutualism: how casual? In The Biodiversity of African Plants (pp. 639–649). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-009-0285-5_78
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47–e47. https://doi.org/10.1093/nar/gkv007
Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov, J. P. (2011). Integrative genomics viewer. Nature Biotechnology, 29(1), 24–26. https://doi.org/10.1038/nbt.1754
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England), 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248
Ruan, J. (n.d.). A fuzzy Bruijn graph approach to long noisy reads assembly. Retrieved from https://github.com/ruanjue/wtdbg
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L. B., & Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature, 452(7190), 1002–1006. https://doi.org/10.1038/nature06850
Schrader, L., Kim, J. W., Ence, D., Zimin, A., Klein, A., Wyschetzki, K., … Oettler, J. (2014). Transposable element islands facilitate adaptation to novel environments in an invasive species. Nature Communications, 5(1), 5495. https://doi.org/10.1038/ncomms6495
She, R., Chu, J. S.-C., Wang, K., Pei, J., & Chen, N. (2009). GenBlastA: enabling BLAST to identify homologous gene sequences. Genome Research, 19(1), 143–149. https://doi.org/10.1101/gr.082081.108
Shiao, M.-S., Chang, J.-M., Fan, W.-L., Lu, M.-Y. J., Notredame, C., Fang, S., … Li, W.-H. (2015). Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift. Genome Biology and Evolution, 7(10), 2843–2858. https://doi.org/10.1093/gbe/evv183
Sigrist, C. J. A., de Castro, E., Cerutti, L., Cuche, B. A., Hulo, N., Bridge, A., … Xenarios, I. (2012). New and continuing developments at PROSITE. Nucleic Acids Research, 41(D1), D344–D347. https://doi.org/10.1093/nar/gks1067
Sim, A. D., & Wheeler, D. (2016). The venom gland transcriptome of the parasitoid wasp Nasonia vitripennis highlights the importance of novel genes in venom function. BMC Genomics, 17(1), 571. https://doi.org/10.1186/s12864-016-2924-7
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351
Singh, R., Lawal, H. M., Schilde, C., Glöckner, G., Barton, G. J., Schaap, P., & Cole, C. (2017). Improved annotation with de novo transcriptome assembly in four social amoeba species. BMC Genomics, 18(1), 120. https://doi.org/10.1186/s12864-017-3505-0
Smit, A., & Hubley, R. (n.d.-a). RepeatMasker Open-4.0. Retrieved from http://www.repeatmasker.org
Smit, A., & Hubley, R. (n.d.-b). RepeatModeler Open-1.0. Retrieved from http://www.repeatmasker.org
Smith, M. D., Wertheim, J. O., Weaver, S., Murrell, B., Scheffler, K., & Kosakovsky Pond, S. L. (2015). Less Is More: An Adaptive Branch-Site Random Effects Model for Efficient Detection of Episodic Diversifying Selection. Molecular Biology and Evolution, 32(5), 1342–1353. https://doi.org/10.1093/molbev/msv022
Solovyev, V., Kosarev, P., Seledsov, I., & Vorobyev, D. (2006). Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biology, 7 Suppl 1(Suppl 1), S10.1-12. https://doi.org/10.1186/gb-2006-7-s1-s10
Soneson, C., Love, M. I., & Robinson, M. D. (2016). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research, 4, 1521. https://doi.org/10.12688/f1000research.7563.2
Souto-Vilarós, D., Proffit, M., Buatois, B., Rindos, M., Sisol, M., Kuyaiva, T., … Segar, S. T. (2018). Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism. Journal of Ecology, 106(6), 2256–2273. https://doi.org/10.1111/1365-2745.12995
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England), 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Stanke, M., & Morgenstern, B. (2005). AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research, 33(Web Server issue), W465-7. https://doi.org/10.1093/nar/gki458
Tang, P., Zhu, J., Zheng, B., Wei, S., Sharkey, M., Chen, X., & Vogler, A. P. (2019). Mitochondrial phylogenomics of the Hymenoptera. Molecular Phylogenetics and Evolution, 131, 8–18. https://doi.org/10.1016/j.ympev.2018.10.040
UniProt Consortium. (2012). Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Research, 40(D1), D71–D75. https://doi.org/10.1093/nar/gkr981
Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, A., … DePristo, M. A. (2013). From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. In Current Protocols in Bioinformatics (Vol. 43, p. 11.10.1-11.10.33). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/0471250953.bi1110s43
Vieira, F. G., Forêt, S., He, X., Rozas, J., Field, L. M., & Zhou, J.-J. (2012). Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analyses. PloS One, 7(8), e43034. https://doi.org/10.1371/journal.pone.0043034
Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., … Earl, A. M. (2014). Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE, 9(11), e112963. https://doi.org/10.1371/journal.pone.0112963
Wang, H.-Y., Hsieh, C.-H., Huang, C.-G., Kong, S.-W., Chang, H.-C., Lee, H.-H., … Wu, W.-J. (2013). Genetic and physiological data suggest demographic and adaptive responses in complex interactions between populations of figs ( Ficus pumila ) and their pollinating wasps ( Wiebesia pumilae ). Molecular Ecology, 22(14), 3814–3832. https://doi.org/10.1111/mec.12336
Wang, N., Wang, N. X., Niu, L. M., Bian, S. N., Xiao, J. H., & Huang, D. W. (2014). Odorant-binding protein (OBP) genes affect host specificity in a fig-pollinator mutualistic system. Insect Molecular Biology, 23(5), 621–631. https://doi.org/10.1111/imb.12110
Ware, A. B., & Compton, S. G. (1992). Repeated evolution of elongate multiporous plate sensilla in female fig wasps (Hymenoptera: Agaonidae: Agaoninae). In Proc K Ned Akad Wet (Vol. 95, pp. 275–292).
Ware, A. B., Kaye, P. T., Compton, S. G., & Van Noort, S. (1993). Fig volatiles: Their role in attracting pollinators and maintaining pollinator specificity. Plant Systematics and Evolution, 186(3–4), 147–156. https://doi.org/10.1007/BF00940794
Werren, J. H., Richards, S., Desjardins, C. A., Niehuis, O., Gadau, J., Colbourne, J. K., … Gibbs, R. A. (2010). Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science (New York, N.Y.), 327(5963), 343–348. https://doi.org/10.1126/science.1178028
Wiebes, J. T. (1979). Co-Evolution of Figs and their Insect Pollinators. Annual Review of Ecology and Systematics, 10(1), 1–12. https://doi.org/10.1146/annurev.es.10.110179.000245
Williams, C. R., Baccarella, A., Parrish, J. Z., & Kim, C. C. (2016). Trimming of sequence reads alters RNA-Seq gene expression estimates. BMC Bioinformatics, 17(1), 103. https://doi.org/10.1186/s12859-016-0956-2
Wu, C. H., Nikolskaya, A., Huang, H., Yeh, L.-S. L., Natale, D. A., Vinayaka, C. R., … Barker, W. C. (2004). PIRSF: family classification system at the Protein Information Resource. Nucleic Acids Research, 32(90001), 112D–114. https://doi.org/10.1093/nar/gkh097
Wu, D.-D., Wang, G.-D., Irwin, D. M., & Zhang, Y.-P. (2009). A Profound Role for the Expansion of Trypsin-Like Serine Protease Family in the Evolution of Hematophagy in Mosquito. Molecular Biology and Evolution, 26(10), 2333–2341. https://doi.org/10.1093/molbev/msp139
Xiao, J.-H., Jia, J.-G., Murphy, R. W., & Huang, D.-W. (2011). Rapid evolution of the mitochondrial genome in Chalcidoid wasps (Hymenoptera: Chalcidoidea) driven by parasitic lifestyles. PloS One, 6(11), e26645. https://doi.org/10.1371/journal.pone.0026645
Xiao, J.-H., Wang, N.-X., Murphy, R. W., Cook, J., Jia, L.-Y., & Huang, D.-W. (2012). Wolbachia infection and dramatic intraspecific mitochondrial DNA divergence in a fig wasp. Evolution, 66(6), 1907–1916. https://doi.org/10.1111/j.1558-5646.2011.01561.x
Xiao, J.-H., Yue, Z., Jia, L.-Y., Yang, X.-H., Niu, L.-H., Wang, Z., … Huang, D.-W. (2013). Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biology, 14(12), R141. https://doi.org/10.1186/gb-2013-14-12-r141
Yang, L.-Y., Machado, C. A., Dang, X.-D., Peng, Y.-Q., Yang, D.-R., Zhang, D.-Y., & Liao, W.-J. (2015). The incidence and pattern of copollinator diversification in dioecious and monoecious figs. Evolution; International Journal of Organic Evolution, 69(2), 294–304. https://doi.org/10.1111/evo.12584
Yang, S., Arguello, J. R., Li, X., Ding, Y., Zhou, Q., Chen, Y., … Wang, W. (2008). Repetitive Element-Mediated Recombination as a Mechanism for New Gene Origination in Drosophila. PLoS Genetics, 4(1), e3. https://doi.org/10.1371/journal.pgen.0040003
Yang, Z. (n.d.). PAML 4: Phylogenetic Analysis by Maximum Likelihood. https://doi.org/10.1093/molbev/msm088
Zdobnov, E. M., Tegenfeldt, F., Kuznetsov, D., Waterhouse, R. M., Simão, F. A., Ioannidis, P., … Kriventseva, E. V. (2017). OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Research, 45(D1), D744–D749. https://doi.org/10.1093/nar/gkw1119
Zeng, J., & Yu, H. (2018). Transcriptome analysis of genes involved in the response of a pollinator fig wasp to volatile organic compounds from its host figs. Acta Oecologica, 90, 91–98. https://doi.org/10.1016/J.ACTAO.2018.01.003
Zhou, X., Rokas, A., Berger, S. L., Liebig, J., Ray, A., & Zwiebel, L. J. (2015). Chemoreceptor Evolution in Hymenoptera and Its Implications for the Evolution of Eusociality. Genome Biology and Evolution, 7(8), 2407–2416. https://doi.org/10.1093/gbe/evv149
Zhu, J., Tang, P., Zheng, B.-Y., Wu, Q., Wei, S., & Chen, X. (2018). The first two mitochondrial genomes of the family Aphelinidae with novel gene orders and phylogenetic implications. International Journal of Biological Macromolecules, 118(Pt A), 386–396. https://doi.org/10.1016/j.ijbiomac.2018.06.087
Zou, Z., Lopez, D. L., Kanost, M. R., Evans, J. D., & Jiang, H. (2006). Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity. Insect Molecular Biology, 15(5), 603–614. https://doi.org/10.1111/j.1365-2583.2006.00684.x
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔