跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/30 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝承恩
研究生(外文):Cheng-En Hsieh
論文名稱:山麻雀物種分布模式
論文名稱(外文):Species distribution models of Russet Sparrow (Passer cinnamomeus)
指導教授:李培芬李培芬引用關係
口試委員:柯佳吟林瑞興
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:山麻雀物種分布模式合適棲地eBird賞鳥資料庫
DOI:10.6342/NTU201903853
相關次數:
  • 被引用被引用:2
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
瞭解限制物種分布的環境因子是物種保育重要的基礎,但受限於物種特性或調查限制,物種的分布範圍、棲息地等相關知識無法全面瞭解。物種分布模式 (Species Distribution Models) 運用物種出現的紀錄和相關的環境因子來預測物種的潛在棲地,於提供生態與保育管理的資訊,評估生物多樣性與保護區設定的策略等有廣泛的應用價值。在臺灣,山麻雀 (Passer cinnamomeus) 面臨數量減少與分布範圍縮減的威脅,目前估計全臺灣島族群量在1,000隻以下。山麻雀主要分布海拔介於600至2000公尺,早期文獻稱山麻雀的數量普遍,常可見於空曠或已開墾之地區。過去一些可見到山麻雀蹤跡的地區,現已不再有山麻雀的紀錄,山麻雀面臨的威脅尚未確定。過去山麻雀的研究多針對臺灣特定地區進行,其族群狀態與趨勢為綜合不同空間尺度,各項環境與生物因子共同作用的結果。本研究嘗試由東亞尺度分析山麻雀完整分布範圍的環境特性,並與臺灣分布現況比較,以探討其分布受壓縮的程度與可能原因。藉由山麻雀在東亞分布的資料與環境資料,以三種模式(MaxEnt, GARP和Bioclim)分別建立東亞尺度(約10×10公里)及臺灣尺度(約1×1公里)的物種分布模式,並分析合適棲地的棲地特性。結果顯示,將山麻雀在東亞尺度預測的合適棲地範圍投射於臺灣島,和臺灣尺度的合適棲地範圍比較時,東亞尺度在臺灣的合適棲地範圍大於臺灣尺度 (60.6% > 13.8%)。不同尺度預測模式的重要環境因子亦不相同,東亞尺度的重要環境因子皆與自然的植被類型有關,而臺灣尺度則和海拔高度、溫度與降水量有關。由模式之合適棲地特性分析得知,山麻雀的合適棲地分布較靠近山區 (1100m) 且年降水量豐沛 (1400mm) 的區域,從植被類型來看,合適棲地位於農業和自然環境的交界帶。透過不同尺度的物種分布模式結果,山麻雀在臺灣的合適棲地範圍應大於現有的分布範圍,推測棲地量應不是山麻雀分布限制的因子。建議未來可針對非繁殖季的棲息環境、不同海拔的繁殖成功率與行為及築巢地點的選擇來探討山麻雀在臺灣分布受限的因子,並可以參考本研究臺灣尺度的合適棲地範圍,規劃系統性調查和長期監測,為山麻雀的保育提供更完整的資訊。
Understanding the environmental factors that influence the distribution of species is an important basis for species conservation, but restricted by species characteristics or survey constraints, the knowledge of species distribution and habitats cannot be fully understood. Species Distribution Models use species occurrences data and related environmental data to predict potential habitats, providing information on ecological and conservation management, and evaluate strategies for biodiversity and protected areas.
In Taiwan, the Russet Sparrow (Passer cinnamomeus) faces the threat of abundance declining and distribution range decreasing. It is estimated that the population in Taiwan is below 1,000. The Russet Sparrow mainly distribute on the altitude range from 600 to 2000 meters. The earlier literature recorded that the number of Russet Sparrow was common and could be found around agricultural land, but now Russet Sparrow cannot be observed in some areas where Russet Sparrow was abundant before. However, the threat has not been determined.
The researches about Russet Sparrow were mostly studied in specific areas of Taiwan. The population status and trends were the results of combining different spatial scales and various environmental and biological factors. This study attempts to analyze the environmental characteristics of the complete distribution of Russet Sparrow from the East Asian scale, and compare it with the current situation in Taiwan to explore the distribution extent and possible reasons. Using eBird open data and environmental data to establish East Asia scale (about 10×10 km) and Taiwan scale (about 1×1 km) of species distribution models by three models (MaxEnt, GARP and Bioclim) respectively. And then analyze the habitat characteristics of suitable habitats.
The results show that when comparing different scale of suitable habitats in Taiwan, the suitable habitats range from East Asian scale are larger than the Taiwan scale (60.6% > 13.8%). The important environmental factors of different scales are also different, the factors of East Asian scale are related to natural vegetation types, while the Taiwan scale is related to the altitude, temperature seasonality and precipitation seasonality. The suitable habitats of Russet Sparrow is close to mountainous area (1100m) and the annual precipitation is abundant (1400mm). From the vegetation type, the suitable habitats is located in the agricultural and natural environment. Through the results of species distribution patterns of different scales, the suitable habitat of the mountain sparrow in Taiwan should be larger than the existing distribution range. It is assumed that the habitat amount should not be a factor limiting the distribution of Russet Sparrow.
It is suggested that in the future, we can explore the factors that restrict the distribution of Russet Sparrow in Taiwan, like habitats of non-breeding seasons, the reproductive success rate and behavior at different altitudes, and the choice of nesting sites. We can use the suitable habitat range of Taiwan scale in this study to plan systematic investigations and long-term monitoring, providing more complete information for the conservation of Russet Sparrow.
口試委員會審定書 #
致謝 I
摘要 III
ABSTRACT IV
目錄 VI
圖目錄 VIII
表目錄 XI
前言 1
材料與方法 3
研究物種 3
物種資料 3
研究範圍 4
東亞尺度 4
臺灣尺度 4
環境因子資料 4
氣候 5
土地覆蓋類型 5
地形 5
分析方法 5
物種資料整理 5
物種分布模式建構 6
最大熵值法 (Maximum Entropy, MaxEnt) 7
遺傳演算法 (Genetic Algorithm for Rule-Set Production, GARP) 7
Bioclim 8
模式驗證 8
決定閾值 (threshold) 10
整合模式 (Ensemble models) 11
山麻雀合適棲地之棲地特性 11
不同尺度預測結果之比較 11
結果 12
山麻雀分布 12
物種分布模式結果 13
東亞尺度 13
臺灣尺度 13
山麻雀合適棲地之棲地特性 15
不同尺度預測結果比較 15
討論 17
物種分布模式 17
合適棲地之棲地特性 18
不同尺度預測結果比較 19
公民科學資料應用 20
預測結果應用及未來研究方向建議 21
參考文獻 23
圖 27
表 55
附錄 71
附錄 1、山麻雀原始資料分布圖 71
附錄 2、環境因子列表 72
附錄 2、環境因子列表(續) 73
附錄 3、各國山麻雀出現網格數 74
附錄 3、各國山麻雀出現網格數(續) 75
附錄 3、各國山麻雀出現網格數(續) 76
Araujo, M. B., and M. New. 2007. Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22:42-47.
Booth, T. H., H. A. Nix, J. R. Busby, M. F. Hutchinson, and J. Franklin. 2014. Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions 20:1-9.
Bourke, J., K. Busse, and W. Böhme. 2012. Searching for a lost frog (Rhinoderma rufum): identification of the most promising areas for future surveys and possible reasons of its enigmatic decline. North-Western Journal of Zoology 8:99-106.
Clements, J. F., T. S. Schulenberg, M. J. Iliff, D. Roberson, T. A. Fredericks, B. L. Sullivan, and C. L. Wood. 2018. The eBird/Clements checklist of birds of the world: v2018.
Boyce, M. S., P. R. Vernier, S. E. Nielsen, and F. K. Schmiegelow. 2002. Evaluating resource selection functions. Ecological Modelling 157:281-300.
DeLeo, J. M. 1993. Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. Proceedings of the Second International Symposium on Uncertainty Modelling and Analysis, Computer Society Press, College Park, 318–325.
eBird. 2012. eBird: An online database of bird distribution and abundance. Version 2. eBird, Ithaca, New York. Available: http://www.ebird.org. (Accessed: 2019/7/20).
Ehrlen, J., and W. F. Morris. 2015. Predicting changes in the distribution and abundance of species under environmental change. Ecology Letters 18:303-314.
Elith, J., and J. R. Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40:677-697.
Fielding, A. H., and J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49.
Franklin, J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press.
Freeman, E. A., and G. Moisen. 2008. PresenceAbsence: An R Package for Presence Absence Analysis. Journal of Statistical Software 23:31.
Gaston, K. J. 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford, UK.
Gilfedder, M., C. J. Robinson, J. E. M. Watson, T. G. Campbell, B. L. Sullivan, and H. P. Possingham. 2018. Brokering trust in citizen science. Society & Natural Resources 32:292-302.
Gould, J. (1836) Characters of several new species of insessorial birds, including a new genus (Stenorhynchus). Proceedings of Zoological Society of London 3: 185–186.
Grand, J., and S. A. Cushman. 2003. A multi-scale analysis of species-environment relationships: breeding birds in a pitch pine–scrub oak (Pinus rigida–Quercus ilicifolia) community. Biological Conservation 112:307-317.
Guisan, A., and W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8:993-1009.

Guisan, A., R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis, P. R. Sutcliffe, A. I. Tulloch, T. J. Regan, L. Brotons, E. McDonald-Madden, C. Mantyka-Pringle, T. G. Martin, J. R. Rhodes, R. Maggini, S. A. Setterfield, J. Elith, M. W. Schwartz, B. A. Wintle, O. Broennimann, M. Austin, S. Ferrier, M. R. Kearney, H. P. Possingham, and Y. M. Buckley. 2013. Predicting species distributions for conservation decisions. Ecology Letters 16:1424-1435.
Hijmans, R. J., and J. Elith. 2013. Species distribution modeling with R. R CRAN Project.
Hijmans, R. J., S. Phillips, J. Leathwick, and J. Elith. 2012. dismo: Species distribution modeling R package version 0.7-23. R Foundation for Statistical Computing, Vienna, Austria. http://CRAN.R-project.org/package=dismo
Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology 22:415-427.
IUCN 2019. The IUCN Red List of Threatened Species. Version 2019-2. http://www.iucnredlist.org. Downloaded on 18 July 2019.
Jaynes, E. T. 1957. Information theory and statistical mechanics. Physical Review 106:620-630.
Johnston, A., W. M. Hochachka, M. E. Strimas-Mackey, V. R. Gutierrez, O. J. Robinson, E. T. Miller, T. Auer, S. T. Kelling, and D. Fink. 2019. Best practices for making reliable inferences from citizen science data: case study using eBird to estimate species distributions. bioRxiv 574392.
Karger, D. N., O. Conrad, J. Bohner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann, H. P. Linder, and M. Kessler. 2017. Climatologies at high resolution for the earth''s land surface areas. Scientific Data 4:170122.
Landis, J. R., and G. G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics 33:159-174.
Levin, S. A. 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73:1943-1967.
MacArthur, R. H. 1972. Geographical Ecology: Patterns in the Distribution of Species. . Princeton University Press, New York.
Manel, S., H. C. Williams, and S. J. Ormerod. 2001. Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38:921-931.
McKinley, D. C., A. J. Miller-Rushing, H. L. Ballard, R. Bonney, H. Brown, S. C. Cook-Patton, D. M. Evans, R. A. French, J. K. Parrish, T. B. Phillips, S. F. Ryan, L. A. Shanley, J. L. Shirk, K. F. Stepenuck, J. F. Weltzin, A. Wiggins, O. D. Boyle, R. D. Briggs, S. F. Chapin, D. A. Hewitt, P. W. Preuss, and M. A. Soukup. 2017. Citizen science can improve conservation science, natural resource management, and environmental protection. Biological Conservation 208:15-28.
Mlíkovský, J. 2011. Correct name for the Asian Russet Sparrow. Chinese Birds 2:109-110.
Nezer, O., S. Bar-David, T. Gueta, and Y. Carmel. 2016. High-resolution species-distribution model based on systematic sampling and indirect observations. Biodiversity and Conservation 26:421-437.
Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259.
Ricklefs, R. E. 1987. Community diversity: relative roles of local and regional processes. Science 235:167-171.
Robinson, O. J., V. Ruiz-Gutierrez, D. Fink, R. J. Meese, M. Holyoak, and E. G. Cooch. 2018. Using citizen science data in integrated population models to inform conservation. Biological Conservation 227:361-368.
Royle, J. A., R. B. Chandler, C. Yackulic, and J. D. Nichols. 2012. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution 3:545-554.

Šálek, M., J. Riegert, and S. Grill. 2015. House Sparrows Passer domesticus and Tree Sparrows Passer montanus: fine-Scale distribution, population densities, and habitat selection in a Central European city. Acta Ornithologica 50:221-232.
Soberon, J., and A. T. Peterson. 2005. Interpretation of models of fundamental ecological niches and species'' distributional areas. Biodiversity Informatics 2:1-10.
Stockwell, D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13:143-158.
Stockwell, D. R. B., and I. R. Noble. 1992. Induction of sets of rules from animal distribution data. Mathematics and Computers in Simulation 33:385-390.
Sullivan, B. L., J. L. Aycrigg, J. H. Barry, R. E. Bonney, N. Bruns, C. B. Cooper, T. Damoulas, A. A. Dhondt, T. Dietterich, A. Farnsworth, D. Fink, J. W. Fitzpatrick, T. Fredericks, J. Gerbracht, C. Gomes, W. M. Hochachka, M. J. Iliff, C. Lagoze, F. A. La Sorte, M. Merrifield, W. Morris, T. B. Phillips, M. Reynolds, A. D. Rodewald, K. V. Rosenberg, N. M. Trautmann, A. Wiggins, D. W. Winkler, W.-K. Wong, C. L. Wood, J. Yu, and S. Kelling. 2014. The eBird enterprise: An integrated approach to development and application of citizen science. Biological Conservation 169:31-40.
Sullivan, B. L., C. L. Wood, M. J. Iliff, R. E. Bonney, D. Fink, and S. Kelling. 2009. eBird: A citizen-based bird observation network in the biological sciences. Biological Conservation 142:2282-2292.
Summers-Smith, J. 1988. The Sparrows: A study of the genus Passer. T & AD Poyser, Staffordshier, England.
Thrush, S. F., J. E. Hewitt, P. M. J. Herman, and T. Ysebaert. 2005. Multi-scale analysis of species–environment relationships. Marine Ecology Progress Series 302:13-26.
Tuanmu, M.-N., and W. Jetz. 2014. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography 23:1031-1045.
Wisz, M. S., J. Pottier, W. D. Kissling, L. Pellissier, J. Lenoir, C. F. Damgaard, C. F. Dormann, M. C. Forchhammer, J. A. Grytnes, A. Guisan, R. K. Heikkinen, T. T. Hoye, I. Kuhn, M. Luoto, L. Maiorano, M. C. Nilsson, S. Normand, E. Ockinger, N. M. Schmidt, M. Termansen, A. Timmermann, D. A. Wardle, P. Aastrup, and J. C. Svenning. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews 88:15-30.
方偉宏。2004。臺灣受脅鳥種。中華民國野鳥學會,臺北市。
王李廉。2015。山麻雀非繁殖期的食物。臺灣溼地雜誌 1: 36-39。
王龍兒。2013。屏東霧台與神山社區鳥類資源調查之行動研究。碩士論文,國立屏東教育大學,屏東市。
林務局。2019。保育類野生動物名錄。行政院農業委員會林務局,臺北市。
吳采諭。2012。臺灣繁殖鳥類之空間分布,保護區涵蓋及熱點分析。博士論文,國立臺灣大學,臺北市。
呂佳家、劉奕炘、吳采諭、林瑞興、蔡若詩。2018。叮咚~查水表!2017 全台山麻雀大調查。2018年動物行為與生態研討會摘要集。
李文玉。2011。八色鳥潛在繁殖地與度冬地分布預測。碩士論文,國立臺灣大學,臺北市。
沙謙中。1986。忽影悠鳴隱山林。玉山國家公園管理處,南投縣。
林雅雯。2018。環境因子對山麻雀 (Passer rutilans) 巢位選擇及繁殖成敗的影響。碩士論文,國立嘉義大學,嘉義市。
張萬福。1980。臺灣鳥類彩色圖鑑 A field guide to the birds of Taiwan。禽影圖書有限公司,臺中市。
溫唯佳和蔡若詩。2015。瀕危的神秘鳥─山麻雀在台灣分布的時空變化。臺灣濕地雜誌 1:8-11。
廖晟宏。2016。使用占據模型探討棲地對山麻雀 (Passer rutilans) 分布的影響。碩士論文,國立嘉義大學,嘉義市。
翟鵬。1977。台灣鳥類生態隔離的研究。碩士論文,東海大學,臺中市。
劉小如、丁宗蘇、方偉宏、林文宏、蔡牧起、顏重威。2012。臺灣鳥類誌(下),第二版。行政院農業委員會林務局,臺北市。
盧冠安。2004。台灣山麻雀的分布模式與棲地選擇。碩士論文,國立臺灣大學,臺北市。
羅時有、王燕、沈君梁。1990。山麻雀的生態研究。四川動物 9: 23-26。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top