(3.237.97.64) 您好!臺灣時間:2021/03/04 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張家誠
研究生(外文):Chia-Cheng Chang
論文名稱:暖化對生物共生關係、掠食關係及其交互作用的影響─以螞蟻、瓢蟲、蚜蟲為例
論文名稱(外文):Warming impact on mutualism, predation and their interaction in an ant-aphid-ladybug system
指導教授:何傳愷
指導教授(外文):Chuan-Kai Ho
口試委員:林宗岐澤大衛郭奇芊郭美華
口試委員(外文):David Zelený
口試日期:2019-01-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:40
中文關鍵詞:蚜蟲 (aphids)螞蟻 (ants)瓢蟲 (ladybug)大豆(soybean)氣候暖化 (climate warming)生物交互作用 (species interactions)互利共生(mutualism)獵食關係(predation)複因子設計實驗 (factorial design experiment)
DOI:10.6342/NTU201901205
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
互利共生(如螞蟻和蚜蟲)或掠食(如瓢蟲和蚜蟲)關係為重要的生物互動關係,並且能影響生物群聚的結構與穩定生態系統。在氣候變遷持續進行下,目前已經有許多文獻探討暖化如何影響生物的互動關係。然而,有兩個重要議題仍待釐清:第一是互利共生與掠食關係經常被單獨地研究,但這兩種生物互動關係常在野外同時存在,而它們的交互作用仍不清楚;第二是過去的研究通常沒有控制物種以及數量,所以難以釐清暖化影響生物群聚的機制。為了回答這兩個議題,本研究藉由操控性實驗探討暖化會如何影響1)螞蟻與蚜蟲的互利共生關係,2)瓢蟲與蚜蟲的掠食關係,和3)上述兩種關係的交互作用。本研究利用在台灣野外具互動關係的大豆、大豆蚜、七星瓢蟲及熱帶火蟻,進行2 x 2 x 3複因子設計實驗: 包含2組螞蟻處理(有/無) x 2組瓢蟲處理(有/無) x 3組溫度處理(控制組/+3ºC/+6ºC),以上每組皆含大豆及蚜蟲。本研究的物種密度與控制組溫度均依據野外調查資料來設定,而暖化的增溫程度則依據聯合國氣候變遷委員會的預測來設定。本研究記錄蚜蟲數量、植株上的螞蟻數量以及瓢蟲的行為反應。結果顯示:一、 在控制組溫度下,螞蟻與蚜蟲的互利共生關係增加了264% − 328% 的蚜蟲數量,但這樣的效益卻隨著暖化而減弱。二、在控制組溫度下,瓢蟲與蚜蟲的掠食關係減少了38% 的蚜蟲數量。在暖化情況下,當有螞蟻存在時,瓢蟲的掠食關係會減少60% 的蚜蟲數量;然而,當螞蟻不存在時,瓢蟲掠食關係對蚜蟲數量的影響則會消失,雖然暖化下的瓢蟲掠食行為有提高的現象。三、 瓢蟲的存在會提升在植株上巡邏的螞蟻數量(+39%),暗示螞蟻為保護蚜蟲而與瓢蟲產生敵對的關係;此外,暖化似乎增強了這樣的敵對關係、改變瓢蟲偏好的微棲地、增加瓢蟲在敵對情況下的死亡率。本研究顯示暖化可減弱互利共生、減弱掠食關係及影響其交互作用,鑒於這些生物互動關係會影響生態系統的穩定,暖化有可能會透過改變這些關係進而降低生態系統的穩定性,相關的議題值得後續研究來驗證。
Mutualism (e.g., ants and aphids) and predation (e.g., ladybugs and aphids) are important species interactions that can shape community structure and stabilize ecosystems. As climate change proceeds, studies have investigated warming impact on these species interactions. However, two knowledge gaps exist. First, mutualism and predation were usually examined in isolation, although they often coexist. Therefore, their interaction remains to be answered. Second, previous studies usually did not explicitly manipulate species identities and densities. Therefore, the underlying mechanisms for warming impact may be confounded. To fill the knowledge gaps, this laboratory empirical study examined warming impact on 1) the mutualism between ants and aphids, 2) the predation of aphids by ladybugs, and 3) the interaction between mutualism and predation (e.g., antagonism). This study focused on the ant-aphid-ladybug system in Taiwan’s soybean farms, including the tropical fire ants (Solenopsis geminata), soybean aphids (Aphis glycines), and seven-spotted ladybugs (Coccinella septempunctata) on soybean plants (Glycine max). The experiment had a 2 x 2 x 3 factorial design: mutualism treatment (ant presence/absence) x predator treatment (ladybug presence/absence) x temperature treatment (control, +3, +6°C). Each treatment combination was performed with a caged soybean plant and aphid colony. The species densities and control temperature were based on field data, and the warming scenarios were based on the prediction by Intergovernmental Panel on Climate Change (IPCC). We recorded aphid density, ant density, and ladybug behavior. The results included the followings: 1) Ant-aphid mutualism increased aphid populations by 264% − 328% at control temperature, but this benefit reduced under warming. 2) Predation of aphids by ladybugs reduced aphid population by 38% at control temperature; this top-down control on aphid populations under warming reduced aphid population by 60% at ant presence but disappeared at ant absence, although warming increased the predation behavior of ladybugs. 3) Ladybug presence increased the number of patrolling ants (protecting aphids) on soybean plants by 39% on average, suggesting an antagonism between ants and ladybugs (i.e., interaction between mutualism and predation).Furthermore, warming seemed to intensity this antagonism, affect ladybugs’ location, and increase ladybugs’ mortality. Taken together, this study demonstrates that warming may reduce mutualism effect, reduce predation effect, and affect their interaction. Given that mutualism and predation can stabilize ecosystems, climate warming impact on these critical species interactions may potentially destabilize ecosystems and deserves further investigations.
口試委員審定書 i
中文摘要 ii
英文摘要 Abstract i ii
Introduction 1
Material and methods 7
Species 7
Experimental design 8
Experimental device 9
Ladybug’s behavior 9
Statistical analyses 10
Results 12
Warming impact on the mutualism between ants and aphids 12
Warming impact on the predation of aphids by ladybugs 13
Warming impact on mutualism-predation interactions 14
Discussion 16
Why warming reduced mutualism effect 17
Why warming reduced predation effect at ant absence, but increased at ant presence 19
How warming shifted the antagonism between ants and ladybugs 20
What value this study design provides 22
Which caveat this study comes with 22
Conclusions 23
Reference 25
附錄 30
Albrecht, M., B. Schmid, Y. Hautier and C. B. Müller (2012). "Diverse pollinator communities enhance plant reproductive success." Proc. R. Soc. B 279(1748): 4845-4852.
Ali, A., N. Desneux, Y. Lu and K. Wu (2018). "Key aphid natural enemies showing positive effects on wheat yield through biocontrol services in northern China." Agriculture, Ecosystems & Environment 266: 1-9.
Barton, B. T. and A. R. Ives (2014). "Direct and indirect effects of warming on aphids, their predators, and ant mutualists." Ecology 95(6): 1479-1484.
Bartrons, M., I. Arranz, M. Cañedo-Argüelles, S. Sgarzi, T. L. Lauridsen, F. Landkildehus, X. D. Quintana, S. Brucet and E. Jeppesen (2018). "Fish shift the feeding behaviour and trophic niche diversification of their prey in subarctic Lake Mývatn, Iceland." Hydrobiologia 816(1): 243-254.
Brewer, S., M. Rejmanek, E. Johnstone and T. Caro (1997). "Top‐Down Control in Tropical Forests 1." Biotropica 29(3): 364-367.
Donihue, C. M., L. M. Porensky, J. Foufopoulos, C. Riginos and R. M. Pringle (2013). "Glade cascades: indirect legacy effects of pastoralism enhance the abundance and spatial structuring of arboreal fauna." Ecology 94(4): 827-837.
Doremus, M. R., A. H. Smith, K. L. Kim, A. J. Holder, J. A. Russell and K. M. Oliver (2018). "Breakdown of a defensive symbiosis, but not endogenous defences, at elevated temperatures." Molecular ecology 27(8): 2138-2151.
Duffy, J. E., P. L. Reynolds, C. Boström, J. A. Coyer, M. Cusson, S. Donadi, J. G. Douglass, J. S. Eklöf, A. H. Engelen and B. K. Eriksson (2015). "Biodiversity mediates top–down control in eelgrass ecosystems: a global comparative‐experimental approach." Ecology letters 18(7): 696-705.
El‐Danasoury, H. and J. Iglesias‐Piñeiro (2018). "Predation by polyphagous carabid beetles on eggs of a pest slug: Potential implications of climate change." Journal of Applied Entomology 142(3): 340-348.
Evans, E. W. and A. Dixon (1986). "Cues for oviposition by ladybird beetles (Coccinellidae): response to aphids." The Journal of Animal Ecology: 1027-1034.
Flatt, T. and W. W. Weisser (2000). "The effects of mutualistic ants on aphid life history traits." Ecology 81(12): 3522-3529.
Fontúrbel, F. E., P. Jordano and R. Medel (2017). "Plant-animal mutualism effectiveness in native and transformed habitats: assessing the coupled outcomes of pollination and seed dispersal." Perspectives in Plant Ecology, Evolution and Systematics 28: 87-95.
Forbes, S. J. and T. D. Northfield (2017). "Oecophylla smaragdina ants provide pest control in Australian cacao." Biotropica 49(3): 328-336.
Garibaldi, L. A., L. G. Carvalheiro, B. E. Vaissière, B. Gemmill-Herren, J. Hipólito, B. M. Freitas, H. T. Ngo, N. Azzu, A. Sáez and J. Åström (2016). "Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms." Science 351(6271): 388-391.
Garibaldi, L. A., I. Steffan-Dewenter, R. Winfree, M. A. Aizen, R. Bommarco, S. A. Cunningham, C. Kremen, L. G. Carvalheiro, L. D. Harder and O. Afik (2013). "Wild pollinators enhance fruit set of crops regardless of honey bee abundance." science 339(6127): 1608-1611.
Garratt, M. P., J. Bishop, E. Degani, S. G. Potts, R. F. Shaw, A. Shi and S. Roy (2018). "Insect pollination as an agronomic input: Strategies for oilseed rape production." Journal of Applied Ecology.
Geslin, B., B. Gauzens, M. Baude, I. Dajoz, C. Fontaine, M. Henry, L. Ropars, O. Rollin, E. Thébault and N. J. Vereecken (2017). Massively introduced managed species and their consequences for plant–pollinator interactions. Advances in Ecological Research, Elsevier. 57: 147-199.
Hammill, E., C. P. Hawkins, H. S. Greig, P. Kratina, J. B. Shurin and T. B. Atwood (2018). "Landscape heterogeneity strengthens the relationship between β‐diversity and ecosystem function." Ecology 99(11): 2467-2475.
Hanski, I., L. Hansson and H. Henttonen (1991). "Specialist predators, generalist predators, and the microtine rodent cycle." The Journal of Animal Ecology: 353-367.
Hegland, S. J., A. Nielsen, A. Lázaro, A. L. Bjerknes and Ø. Totland (2009). "How does climate warming affect plant‐pollinator interactions?" Ecology letters 12(2): 184-195.
Hemptinne, J. and A. Dixon (1997). "Are aphidophagous ladybirds (Coccinellidae) prudent predators?" Biological agriculture & horticulture 15(1-4): 151-159.
Hoover, S. E., J. J. Ladley, A. A. Shchepetkina, M. Tisch, S. P. Gieseg and J. M. Tylianakis (2012). "Warming, CO2, and nitrogen deposition interactively affect a plant‐pollinator mutualism." Ecology Letters 15(3): 227-234.
IPCC (2007). "Climate change 2007: The physical science basis." Agenda 6(07): 333.
IPCC (2014). "IPCC." Climate change.
Jennings, M. D. and G. M. Harris (2017). "Climate change and ecosystem composition across large landscapes." Landscape Ecology 32(1): 195-207.
Jevanandam, N., A. G. Goh and R. T. Corlett (2013). "Climate warming and the potential extinction of fig wasps, the obligate pollinators of figs." Biology letters 9(3): 20130041.
Kerr, J. T. and S. Z. Dobrowski (2013). "Predicting the impacts of global change on species, communities and ecosystems: it takes time." Global Ecology and Biogeography 22(3): 261-263.
Kordas, R. L., C. D. Harley and M. I. O''Connor (2011). "Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems." Journal of Experimental Marine Biology and Ecology 400(1-2): 218-226.
Kudo, G. and T. Y. Ida (2013). "Early onset of spring increases the phenological mismatch between plants and pollinators." Ecology 94(10): 2311-2320.
Li, G., Y. Liu, L. E. Frelich and S. Sun (2011). "Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions." Journal of Applied Ecology 48(3): 659-667.
Majerus, M. E., J. J. Sloggett, J.-F. Godeau and J.-L. Hemptinne (2007). "Interactions between ants and aphidophagous and coccidophagous ladybirds." Population Ecology 49(1): 15-27.
Marquis, M., I. Del Toro and S. L. Pelini (2014). "Insect mutualisms buffer warming effects on multiple trophic levels." Ecology 95(1): 9-13.
Matson, P. A. and M. D. Hunter (1992). "THE RELATIVE CONTRIBUTIONS OF TOP-DOWN AND BOTTOM-UP FORCES IN POPULATION AND COMMUNITY ECOLOGY." Ecology 73(3): 723-723.
Montesinos-Navarro, A., F. Hiraldo, J. L. Tella and G. Blanco (2017). "Network structure embracing mutualism–antagonism continuums increases community robustness." Nature ecology & evolution 1(11): 1661.
Murdoch, W. W. (1969). "Switching in general predators: experiments on predator specificity and stability of prey populations." Ecological monographs 39(4): 335-354.
Nell, C. S., L. Abdala-Roberts, V. Parra-Tabla and K. A. Mooney (2018). "Tropical tree diversity mediates foraging and predatory effects of insectivorous birds." Proc. R. Soc. B 285(1890): 20181842.
Nielsen, C., A. A. Agrawal and A. E. Hajek (2009). "Ants defend aphids against lethal disease." Biology letters: rsbl20090743.
Oliver, T. H., I. Jones, J. M. Cook and S. R. Leather (2008). "Avoidance responses of an aphidophagous ladybird, Adalia bipunctata, to aphid‐tending ants." Ecological Entomology 33(4): 523-528.
Ollerton, J. (2017). "Pollinator diversity: distribution, ecological function, and conservation." Annual Review of Ecology, Evolution, and Systematics 48.
P Harmon, J. and D. Andow (2007). "Behavioral mechanisms underlying ants’ density‐dependent deterrence of aphid‐eating predators." Oikos 116(6): 1030-1036.
Parry, M., O. Canziani, J. Palutikof, P. J. van der Linden and C. E. Hanson (2007). Climate change 2007: impacts, adaptation and vulnerability, Cambridge University Press Cambridge.
Pasteels, J. M. (2007). "Chemical defence, offence and alliance in ants–aphids–ladybirds relationships." Population Ecology 49(1): 5-14.
Potts, S. G., P. Neumann, B. Vaissière and N. J. Vereecken (2018). "Robotic bees for crop pollination: Why drones cannot replace biodiversity." Science of The Total Environment 642: 665-667.
Riddick, E. W. (2017). "Identification of Conditions for Successful Aphid Control by Ladybirds in Greenhouses." Insects 8(2): 38.
Robinson, A., D. W. Inouye, J. E. Ogilvie and E. H. Mooney (2017). "Multitrophic interactions mediate the effects of climate change on herbivore abundance." Oecologia 185(2): 181-190.
Rosenzweig, C., D. Karoly, M. Vicarelli, P. Neofotis, Q. Wu, G. Casassa, A. Menzel, T. L. Root, N. Estrella and B. Seguin (2008). "Attributing physical and biological impacts to anthropogenic climate change." Nature 453(7193): 353.
Sanchez, C., M. Gamez, F. Burguillo, J. Garay and T. Cabello (2018). "Comparison of predator-parasitoid-prey interaction models for different host plant qualities." Community Ecology 19(2): 125-132.
Schaum, C. E., S. R. Team, R. ffrench‐Constant, C. Lowe, J. S. Ólafsson, D. Padfield, G. Yvon‐Durocher, Y. Ashton, R. Botoli and P. Coles (2018). "Temperature‐driven selection on metabolic traits ince strength reases the of an algal–grazer interaction in naturally warmed streams." Global change biology 24(4): 1793-1803.
Sinu, P. A., V. Sibisha, M. N. Reshmi, K. Reshmi, T. Jasna, K. Aswathi and P. Megha (2017). "Invasive ant (Anoplolepis gracilipes) disrupts pollination in pumpkin." Biological Invasions 19(9): 2599-2607.
Sternberg, M. and D. Yakir (2015). "Coordinated approaches for studying long-term ecosystem responses to global change." Oecologia 177(4): 921-924.
Takizawa, T. and H. Yasuda (2006). "The effects of attacks by the mutualistic ant, Lasius japonicus Santschi (Hymenoptera: Formicidae) on the foraging behavior of the two aphidophagous ladybirds, Coccinella septempunctata brucki Mulsant (Coleoptera: Coccinellidae) and Propylea japonica (Thunberg)(Coleoptera: Coccinellidae)." Applied entomology and zoology 41(1): 161-169.
Tschumi, M., J. Ekroos, C. Hjort, H. G. Smith and K. Birkhofer (2018). "Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes." Oecologia 188(3): 863-873.
Turrini, T., D. Sanders and E. Knop (2016). "Effects of urbanization on direct and indirect interactions in a tri‐trophic system." Ecological applications 26(3): 664-675.
Tylianakis, J. M., E. Laliberté, A. Nielsen and J. Bascompte (2010). "Conservation of species interaction networks." Biological conservation 143(10): 2270-2279.
Valdovinos, F. S., R. Ramos‐Jiliberto, L. Garay‐Narváez, P. Urbani and J. A. Dunne (2010). "Consequences of adaptive behaviour for the structure and dynamics of food webs." Ecology Letters 13(12): 1546-1559.
Votava, E. J. and P. W. Bosland (1996). "Use of ladybugs to control aphids in Capsicum field isolation cages." HortScience 31(7): 1237-1237.
Warren, R. J. and M. A. Bradford (2014). "Mutualism fails when climate response differs between interacting species." Global change biology 20(2): 466-474.
Watanabe, S., T. Murakami, J. Yoshimura and E. Hasegawa (2016). "Color polymorphism in an aphid is maintained by attending ants." Science advances 2(9): e1600606.
Wood, T. C., R. E. Kelley and P. A. Moore (2018). "Feeding in fear: Indirect effects of predatory fish on macrophyte communities mediated by altered crayfish foraging behaviour." Freshwater Biology.
Yao, I. (2014). "Costs and constraints in aphid-ant mutualism." Ecological research 29(3): 383-391.
Zhang, Y. and J. Adams (2011). "Top‐down control of herbivores varies with ecosystem types." Journal of Ecology 99(2): 370-372.
Zhou, A., X. Qu, L. Shan and X. Wang (2017). "Temperature warming strengthens the mutualism between ghost ants and invasive mealybugs." Scientific Reports 7(1): 959.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔