跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳怡儒
研究生(外文):Yi-Ru Chen
論文名稱:抗發炎和抗氧化介入對早期退化性關節炎之療效
論文名稱(外文):Anti-inflammatory and Antioxidant Interventions in the Treatment of Early Stage of Osteoarthritis
指導教授:蔡孟勳蔡孟勳引用關係楊凱強楊凱強引用關係
口試委員:吳長晉王禎麒張維仁陳沛裕
口試日期:2019-07-03
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:118
中文關鍵詞:骨關節炎橙皮苷地奥司明桃葉珊瑚苷氧化壓力發炎反應抗氧化
DOI:10.6342/NTU201903704
相關次數:
  • 被引用被引用:0
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
骨關節炎(OA)是最常見的關節疾病,由於人口老齡化而日益普遍。造成骨關節炎的原因是由於軟骨上出現缺陷、軟骨變薄、表面變得粗糙使關節處上下骨頭的負擔加重,導致關節間隙變窄,形成骨刺。許多研究表明,骨關節炎患者的滑液膜液中氧化壓力上升且抗氧化酶水平下降,因此氧化壓力是骨關節炎進展中的重要因素,故減少關節腔內氧化物質的量並提高抗氧化物質以減緩骨關節炎的進展為本研究之重要目標。已有文獻指出diosmin、hesperidin 和aucubin三種萃取物具有抗氧化及抗發炎之功能,故我們使用diosmin、hesperidin 和aucubin萃取物來處理OA細胞,觀察這些萃取物其抗氧化和抗發炎機制並找出這些萃取物最適濃度及給予時間點。研究結果顯示高劑量(50和100 μM)的hesperidin和diosmin會對軟骨細胞造成死亡,然而 5和10 μM hesperidin可以增加總抗氧化能力並恢復H2O2刺激下之軟骨細胞中的superoxide dismutase和glutathione Peroxidase活性,而5 μM diosmin可改善由H2O2刺激誘導的軟骨發炎反應,故diosmin對H2O2刺激下的軟骨細胞具有保護作用。在mRNA表現量上,因H2O2導致損傷的軟骨細胞中,發現dosmin可降低iNOS,COX-2,IL-1β,COL1A1,MMP-3,MMP-9,提升TIMP-1,SOX9和 COL2A1 mRNA表現量,而hesperidin處理下則降低COX-2,IL-1β,TNF-α,MMP-3,MMP-9,提升IL-10,TIMP-1和SOX9 mRNA表現量,表明hesperidin和diosmin不僅可以穩定表型及降低發炎因子外,而且對軟骨細胞具有合成代謝作用。此外,我們也發現hesperidin和diosmin的抗氧化能力是短暫的 (24小時以內) ,且皆是透過Foxo和Nrf2信號通路調節抗氧化能力。在aucubin萃取物實驗中,結果顯示玻尿酸結合 aucubin有益於軟骨細胞中細胞外基質產生並增強玻尿酸對OA軟骨細胞的抗分解代謝和抗發炎作用。三個萃取物都具有抗發炎效果及有助軟骨細胞外基質維持,而其中hesperidin相較於diosmin具有更好的抗老化及抗氧化能力。由於針對骨關節炎疾病緩解藥物很少,故此研究針對氧化壓力探討將為骨關節炎這種破壞性疾病的潛在治療策略提供有價值的觀點,我們也期許之後可以將研究結果應用於支架或佐劑的開發,以改善並提高早期退化性關節炎之療效。
Osteoarthritis (OA) is the most common joint disorder with increasing prevalence due to aging of the population. In Taiwan, people aged 75 years old and above have a 85% chance to be recognized with degenerative arthritis of the knee, it most commonly affects the knees, hands, feet, the hips, and the spine. Cause of OA is due to the defects appearing on the cartilage, as the cartilage becomes thinner, the surface becomes rough, burdening the upper and lower bone, thus forming the narrowed joint space and bone spurs. These leads to inflammation and swelling of the joints. Many studies have shown an increasing oxidative stress and a decreasing level of antioxidants in synovial fluid in OA patients. Oxidative stress is known as an important factor in the progress of OA. Therefore, reducing the amount of oxidized substances in the joint cavity should slow the progression of OA, and is an important goal to support the cartilage repair. Previous literature has pointed out that the three components of diosmin, hesperidin and aucubin have antioxidant functions. Therefore, we treat diosmin, hesperidin and aucubin components to study their anti-oxidation and anti-inflammatory properties of chondrocytes stimulated with H2O2 or IL-1β. The results showed that high doses (50 and 100 μM) of hesperidin and diosmin caused death in chondrocytes, whereas 5 and 10 μM hesperidin increased total antioxidant capacity and restored superoxide dismutase and glutathione Peroxidase activity in chondrocytes stimulated by H2O2. 5 μM dosmin can improve the cartilage inflammatory response induced by H2O2 stimulation, so diosmin has a protective effect on chondrocytes stimulated by H2O2. Dosmin down-regulated the mRNA levels of iNOS, COX-2, IL-1β, COL1A1, MMP-3, MMP-9, up-regulated TIMP-1, SOX9, COL2A1 and hesperidin down-regulated the mRNA levels of COX-2, IL-1β, TNF-α, MMP-3, MMP-9, up-regulated IL-10, TIMP-1, SOX9 in H2O2-injuried chondrocytes, which revealed that hesperidin and diosmin may not only stabilize the phenotype but also have anabolic effects on chondrocytes. In addition, we also found that hesperidin and diosmin antioxidant capacity is short-lived (within 24 hours) and regulate antioxidant capacity through the Foxo and Nrf2 signaling pathways. In the aucubin experiment, it showed that hyaluronic acid (HA) binding to aucubin is beneficial to the extracellular matrix production in chondrocytes and enhances the anti-catabolic and anti-inflammatory effects of HA on OA. All three extracts (diosmin, hesperidin and aucubin) have anti-inflammatory effects and maintain the extracellular matrix of the cartilage. In addition, hesperidin has better anti-senescence and anti-oxidation ability than diosmin. As disease-modifying drugs for osteoarthritis are rare, targeting the oxidative stress would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease. We expect this study to be beneficial and applicable to the development of scaffold or adjuvants to improve the efficacy of early OA.
Acknowledgement i
Chinese abstract (中文摘要) ii
Abstract xii
List of Tables xiv
Glossary xv
Chapter 1. Background and significance 1
1.1. Structure of articular cartilage 1
1.2. Osteoarthritis (OA) 2
1.3. Oxidant stress and inflammation in OA patients 4
1.4. Current treatment 6
1.5. Natural antioxidant components to OA 7
Chapter 2. The chondroprotective effect of diosmin on human articular chondrocytes under oxidative stress 12
2.1. Abstract 12
2.2. Introduction 13
2.3. Materials and methods 14
2.3.1. Human chondrocyte isolation and culture 14
2.3.2. Dose-dependent toxicity of diosmin supplementation to chondrocytes and cell proliferation 15
2.3.3. H2O2 stimulation and diosmin supplementation 15
2.3.4. Cell survival and senescence of H2O2-exposed chondrocytes 16
2.3.5. Quantitative real-time polymerase chain reaction analysis 16
2.3.6. Western blot analysis 17
2.3.7. Cellular antioxidant capacity 17
2.3.8. Statistical analysis 18
2.4. Results 19
2.4.1. Dose-dependent toxicity of diosmin supplementation to chondrocytes and cell proliferation 19
2.4.2. H2O2 stimulation and diosmin supplementation 19
2.4.3. Cell survival and senescence of H2O2-exposed chondrocytes 20
2.4.4. Quantitative RT-PCR analysis for treated chondrocytes 20
2.4.5. Diosmin modulated Foxos and Nrf2 syntheses 21
2.4.6. Cellular antioxidant capacity 21
2.5. Discussion 29
Chapter 3. Effect of hesperidin on anti-inflammation and cellular antioxidant capacity in hydrogen peroxide-stimulated human articular chondrocytes 32
3.1. Abstract 32
3.2. Introduction 33
3.3. Materials and methods 34
3.3.1. Human chondrocyte isolation and culture 34
3.3.2. Possible cytotoxicity of hesperidin to chondrocytes 35
3.3.3. H2O2 exposure and hesperidin supplementation to chondrocytes 35
3.3.4. Cell survival, senescence and telomerase activity 36
3.3.5. Quantitative real-time polymerase chain reaction analysis for chondrocytes 36
3.3.6. Western blot analysis 37
3.3.7. Cellular antioxidant capacity 38
3.3.8. Statistical analysis 38
3.4. Results 40
3.4.1. Dose-dependent toxicity of hesperidin supplementation to chondrocytes and cell proliferation 40
3.4.2. H2O2 stimulation and hesperidin supplementation 40
3.4.3. Hesperidin improved cell survival, senescence and telomerase activity 41
3.4.4. Quantitative RT-PCR analysis for treated chondrocytes 42
3.4.5. Hesperidin modulated Foxos and Nrf2 syntheses 43
3.4.6. Hesperidin improved anti-oxidant capacity to H2O2-stimulated chondrocytes 43
3.5.Discussion 55
Chapter 4. The therapeutic effect of aucubin-supplemented hyaluronic acid on interleukin-1beta-stimulated human articular chondrocytes 59
4.1. Abstract 59
4.2. Introduction 61
4.3. Materials and methods 62
4.3.1. Human chondrocyte isolation and culture 62
4.3.2. Dose-dependent toxicity of aucubin and HA+aucubin supplementation to IL-1β-stimulated chondrocytes 62
4.3.3. Sulfated glycosaminoglycan production of treated chondrocytes 63
4.3.4. Quantitative real-time polymerase chain reaction analysis 63
4.3.5. Quantification of inflammatory cytokines and extracellular matrix proteins 64
4.3.6. Total antioxidant capacity and superoxide dismutase activity 65
4.3.7. Western blot analysis 65
4.3.8. Statistical analysis 65
4.4. Results 68
4.4.1. Dose-dependent toxicity of aucubin, HA+aucubin supplementation to IL-1β-stimulated chondrocytes 68
4.4.2. Sulfated glycosaminoglycan production of treated chondrocytes 68
4.4.3. qRT-PCR analysis of inflammatory cytokine and extracellular matrix 68
4.4.4. Quantification of inflammatory cytokines and extracellular matrix proteins 69
4.4.5. Total antioxidant capacity and SOD activity 69
4.4.6. Western blot analysis 70
4.5. Discussion 80
Chapter 5. Conclusion 83
References 85
Appendix 104
1.Zhang, W., Ouyang, Dass C.R., Xu, J. (2016). Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 4:15040.
2.Eckstein, F., Reiser, M., Englmeier, K.H., Putz, R. (2001). In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging--from image to data, from data to theory. Anat Embryol (Berl). 203(3): 147–173.
3.Athanasiou, K.A., Rosenwasser, M.P., Buckwalter, J.A., Malinin, T.I., Mow, V.C. (1991). Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res. 9(3): 330–340.
4.Zhang, L., Hu J., Athanasiou, K.A. (2009). The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 37(1-2): 1-57.
5.Xia, B., Di, C., Zhang, J,H.S., Jin, H.,Tong, P. (2014). Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int. 95(6): 495-505.
6.Poole, C.A., Flint, M.H., Beaumont, B.W. (1987). Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages.J. Orthop Res.5: 509–522.
7.Choi, J.B., Youn, I., Cao, L., Leddy, H.A., Gilchrist, C.L., Setton, L.A. (2007). Zonal changes in the three‐dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J Biomech. 40: 2596–2603.
8.Vincent, T.L., McLean, C.J., Full, L.E., Peston, D., Saklatvala, J. (2007). FGF‐2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthritis Cartilage.15: 752–763.
9.Lotz, M., Hashimoto, S., Kuhn, K. (1999). Mechanisms of chondrocyte apoptosis. Osteoarthritis Cartilage. 7: 389–391.
10.Kuhn, K., D''Lima, D.D., Hashimoto, S., Lotz, M. (2014). Cell death in cartilage. Osteoarthritis Cartilage.12: 1–16.
11.Matsumoto, H., Silverton, S.F., Debolt, K., Shapiro, I.M. (1991). Superoxide dismutase and catalase activities in the growth cartilage: relationship between oxidoreductase activity and chondrocyte maturation. J. Bone Miner. Res. 6: 569-574.
12.Sen, C.K. (1995). Oxygen toxicity and antioxidants: state of the art. Indian J. Physiol. Pharmacol. 39: 177-196.
13.Katti, S.A., Suravanshi, A.K., Bangar, S.S., Sanakal, D., Surendran, S. (2015). A Study of Oxidative Stress and Antioxidant Levels in Osteoarthritis. International Journal of Clinical Biochemistry and Research. 2(4): 236-241.
14.Ostalowska, A., Birkner, E., Wiecha, M., Kasperczyk, S., Kasperczyk, A., Kapolka, D., Zon-Giebel, A. (2006). Lipid peroxidation and antioxidant enzymes in synovial fluid of patients with primary and secondary osteoarthritis of the knee joint. Osteoarthritis Cartilage. 14(2): 139-45.
15.Finosh, G.T. and Jayabalan, M. (2013). Reactive oxygen species—Control and management using amphiphilic biosynthetic hydrogels for cardiac applications. Advances in Bioscience and Biotechnology. 4: 12 -13.
16.Goldring, M.B., Berenbaum, F. (2015). Emerging Targets in Osteoarthritis Therapy. Curr Opin Pharmacol. 22: 51-63.
17.Loeser, R.F. (2014). Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol. 39: 11–16.
18.Loeser, R.F., Gandhi, U., Long, D.L., Yin, W., Chubinskaya, S. (2014). Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1. Arthritis Rheumatol. 66: 2201–2209.
19.Goldring, M.B., Otero, M., Plumb, D.A., Dragomir, C., Favero, M., El Hachem, K., Hashimoto, K., Roach, H.I., Olivotto, E., Borzì, R.M., Marcu, K.B. (2011). Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater. 21: 202–220.
20.Marcu, K.B., Otero, M., Olivotto, E., Borzi, R.M., Goldring, M.B. (2010). NF-κB signaling: multiple angles to target OA. Curr Drug Targets.11: 599–613.
21.Nam, J., Aguda, B.D., Rath, B., Agarwal, S. (2009). Biomechanical thresholds regulate inflammation through the NF-κB pathway: experiments and modeling. PLoS One.4: e5262.
22.Saito, T., Fukai, A., Mabuchi, A., Ikeda, T., Yano, F., Ohba, S., Nishida, N., Akune, T., Yoshimura, N., Nakagawa, T., Nakamura, K., Tokunaga, K., Chung, U.I., Kawaguchi, H. (2010). Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development. Nat Med. 16: 678–686.
23.Sutipornpalangkul, W., Morales, N.P., Charoencholvanich, K., Harnroongroj, T. (2009) Lipid peroxidation, glutathione, vitamin E, and antioxidant enzymes in synovial fluid from patients with osteoarthritis. Int J Rheum Dis. 12: 324–328.
24.Regan, E.A., Bowler, R.P., Crapo, J.D. (2008) Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthr Cartil. 16: 515–521.
25.Mathy-Hartert, M., Hogge, L., Sanchez, C., Deby-Dupont, G., Crielaard, J.M., Henrotin, Y. (2008). Interleukin-1beta and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation. Osteoarthritis Cartilage. 16(7): 756-763.
26.Martin, G., Andriamanalijaona, R., Mathy-Hartert, M., Henrotin, Y., Pujol, J.P. (2005). Comparative effects of IL-1beta and hydrogen peroxide (H2O2) on catabolic and anabolic gene expression in juvenile bovine chondrocytes. Osteoarthritis Cartilage. 13(10): 915-24.
27.Saturveithan, C., Premganesh, G., Fakhrizzaki, S., Mahathir, M., Karuna, K., Rauf, K., William, H., Akmal, H., Sivapathasundaram, N., Jaspreet, K. (2016). Intra-articular Hyaluronic Acid (HA) and Platelet Rich Plasma (PRP) injection versus Hyaluronic acid (HA) injection alone in Patients with Grade III and IV Knee Osteoarthritis (OA): A Retrospective Study on Functional Outcome. Malays Orthop J.
28.Dervin, G.F., Stiell, I.G., Rody, K., Grabowski, J. (2003). Effect of arthroscopic debridement for osteoarthritis of the knee on health-related quality of life. J Bone Joint Surg. 85: 10–19.
29.Laupattarakasem, W., Laopaiboon, M., Laupattarakasem, P., Sumananont, C. (2008) Arthroscopic debridement for knee osteoarthritis. Cochrane Database Syst Rev. D5118.
30.Knutsen, G., Drogset, J.O., Engebretsen, L., Grøntvedt, T., Isaksen, V., Ludvigsen, T.C., Roberts, S., Solheim, E., Strand, T., Johansen, O. (2007). A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg. 89: 2105–2112.
31.Saris, D.B., Vanlauwe, J., Victor, J., Haspl, M., Bohnsack, M., Fortems, Y., Vandekerckhove, B., Almqvist, K.F., Clae,s T., Handelberg, F., Lagae K, van der Bauwhede, J. (2008). Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med. 36: 235–246.
32.Nawar, W.F. (1996). Lipids in food chemistry. 3rd ed. p 225–320.
33.Brewer M.S. (2011). Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential. Applications Comprehensive Reviews in Food Science and Food Safety. 10(4) : 221-247.
34.Hughes, S.D., Ketheesan, N., Haleagrahara, N. (2017). The therapeutic potential of plant flavonoids on rheumatoid arthritis. Crit Rev Food Sci Nutr. 57(17): 3601-3613.
35.Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. (2014). Resources and biological activities of natural polyphenols. Nutrients. 6: 6020–6047.
36.Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life. Sci. 148: 183–193.
37.Grover, A.K., Samson, S.E. (2014). Antioxidants and vision health: facts and fiction. Mol Cell Biochem. 388: 173–183.
38.Abdali, D., Samson, S.E., Grover, A.K. (2015). How effective are antioxidant supplements in obesity and diabetes? Med Princ Pract. 24(3): 201–215.
39.Grover, A.K., Samson, S.E. (2016). Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality. Nutr J. 15: 1.
40.Shan, B., Cai, Y.Z., Sun, M., Corke, H. (2005). Antioxidant capacity of 26 spice components and characterization of their phenolic constituents. J Agric. Food Chem. 53(2): 7749–7759.
41.Geldof, N., Engeseth, N.J., (2002). Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of the in vitro lipoprotein oxidation in human serum samples. J. Agric. Food. Chem. 50: 3050-3055.
42.Cao, G., Sofic, E., Prior, R.L. (1997). Antioxidant and pro-oxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 22: 749–760.
43.Burda, S., Olesze, K.W. (2001). Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 49: 2774–2779.
44.Saija, A., Scalese, M., Lanza, M., Marzullo, D., Bonina, F., Castelli, F. (1995). Flavonoids as antioxidant agents: Importance of their interaction with biomembranes. Free Radic. Biol. Med. 19: 481–486.
45.Torel, J., Cillard, J., Cillard, P. (1986). Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry. 25: 383–385.
46.Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food. Chem. 104: 466–479.
47.Thanapongsathorn, W., Vajrabukka, T. (1992). Clinical trial of oral diosmin (Daflon) in the treatment of hemorrhoids. Dis. Colon Rectum. 35: 1085–1088.
48.Srinivasan, S.; Pari, L. (2012). Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chem. Biol. Interact. 195: 43–51.
49.Rovenský, J. Stančíková, M., Rovenská, E., Štvrtina, S., Štvrtinová, V. and Švík, K. (2009). Treatment of rat adjuvant arthritis with flavonoid (Detralex®), methotrexate, and their combination. Ann. N. Y. Acad. Sci.1173:798–804.
50.Guardia, T., Rotelli, A. E., Juarez, A. O., Pelzer, L.E. (2001). Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farm. 56: 683–687.
51.Li, R., Cai, L., Xie, X., Yang, F. and Li, J. (2010). Hesperidin suppresses adjuvant arthritis in rats by inhibiting synoviocyte activity. Phyther. Res. 24: 71–76.
52.Li, R., Li, J., Cai, L., Hu, C. and Zhang, L. (2008). Suppression of adjuvant arthritis by hesperidin in rats and its mechanisms. J. Pharm. Pharmacol. 60:221–228.
53.Ahmed, Y. M., Messiha, B.A.S., Abo-Saif, A.A. (2015). Protective effects of simvastatin and hesperidin against complete freund''s adjuvant-induced rheumatoid arthritis in rats. Pharmacol. 96: 217–225.
54.Kokotkiewicz, A., Luczkiewicz, M., Pawlowska, J., Luczkiewicz, P., Sowinski, P., Witkowski, J. (2013). Isolation of xanthone and benzophenone derivatives from Cyclopiagenistoides (L.) Vent. (honeybush) and their pro-apoptotic activity on synoviocytes from patients with rheumatoid arthritis. Fitoterapia. 90: 199–208.
55.Young, I.C., Chuang, S.T., Hsu, C.H., Sun, Y.J., Liu, H.C., Chen, Y.S., Lin, F.H. (2017). Protective effects of aucubin on osteoarthritic chondrocyte model induced by hydrogenperoxide and mechanicalstimulus. BMC Complement Altern Med. 2; 17(1):91.
56.Wang, P., Zhang, F., He, Q.,Wang, J., Shiu, H.T., Shu, Y.,Tsang, W.P., Liang, S., Zhao, K.,Wan, C. (2016). Flavonoid compound Icariin activates hypoxia inducible factor-1α in chondrocytes and promotes articular cartilage repair. PLoS One. 11:(2).e0148372.
57.Loeser, R.F., Collins, J.A., Diekman, B.O. (2016). Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 12: 412-420.
58.Freund, A., Orjalo, A.V., Desprez, P.Y., Campisi, J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 16: 238-246.
59.Watari, T., Naito, K., Sakamoto, K., Kurosawa, H., Nagaoka. I., Kaneko, K. (2011). Evaluation of the effect of oxidative stress on articular cartilage in spontaneously osteoarthritic STR/OrtCrlj mice by measuring the biomarkers for oxidative stress and type II collagen degradation/synthesis. Exp Ther Med. 2: 245-250.
60.Scott, J.L., Gabrielides, C., Davidson, R.K., Swingler, T.E., Clark, I.M., Wallis, G.A., Young, D. A. (2010). Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis. 69: 1502-1510.
61.Gavriilidis, C., Miwa, S, von Zglinicki, T., Taylor, R.W., Young, D.A. (2013). Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 65: 378-387.
62.Vaamonde-García, C., Riveiro-Naveira, R.R., Valcárcel-Ares, M.N., Hermida-Carballo, L., Blanco, F.J., & López-Armada, M. J. (2012). Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 64: 2927-2936.
63.Regan, E.A., Bowler, R.P., Crapo, J.D. (2008). Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthritis Cartilage. 16: 515-521.
64.Rosenbaum, C.C., O''Mathúna, D.P., Chavez, M., Shields, K. (2010). Antioxidants and antiinflammatory dietary supplements for osteoarthritis and rheumatoid arthritis. Altern Ther Health Med. 16: 32-40.
65.Rathee, P., Chaudhary, H., Rathee, S., Rathee, D., Kumar, V., Kohli, K. (2009). Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets. 8: 229-235.
66.Rehman, M.U., Tahir, M., Quaiyoom, Khan. A., Khan, R., Lateef, A., Hamiza, O. O., Sultana, S. (2013). Diosmin protects against trichloroethylene-induced renal injury in Wistar rats: plausible role of p53, Bax and caspases. Br J Nutr. 110: 699-710.
67.Liu, X., Zhang, X., Zhang, J., Kang, N., Zhang, N., Wang, H., Wang, X. (2014). Diosmin protects against cerebral ischemia/reperfusion injury through activating JAK2/STAT3 signal pathway in mice. Neuroscience. 268: 318-327.
68.Abdel-Daim, M.M., Khalifa, H.A., Abushouk, A.I., Dkhil, M.A., Al-Quraishy, S.A. (2017). Diosmin attenuates methotrexate-induced hepatic, renal, and cardiac injury: a biochemical and histopathological study in mice. Oxid Med Cell Longev. 3281670.
69.Arab, H.H., Salama, S.A., Omar, H.A., Arafa, el-SA., Maghrabi, I.A. (2015). Diosmin protects against ethanol-induced gastric injury in rats: novel anti-ulcer actions. PLoS One. 10: e0122417.
70.Ahmed, S., Mundhe, N., Borgohain, M., Chowdhury, L., Kwatra, M., Bolshette, N., Lahkar, M. (2016). Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy. Inflammation. 39: 1783-1797.
71.Trellu, S., Courties, A., Jaisson, S., Gorisse, L., Gillery, P., Kerdine-Römer, S., Sellam, J. (2019). Impairment of glyoxalase-1, an advanced glycation end-product detoxifying enzyme, induced by inflammation in age-related osteoarthritis. Arthritis Res Ther. 21: 18.
72.Su, X.L., Lu, W.H., Zhang, H. (2012). Inhibitive effect of proliferation of dosmin on human umbilical vein endothelial cells by MTT assay. J Inf Tradit Chin Med. 29: 101-104.
73.Dholakiya, S.L., Benzeroual, K.E. (2011). Protective effect of diosmin on LPS induced apoptosis in PC12 cells and inhibition of TNF-αexpression. Toxicol In Vitro. 25: 1039-1044.
74.Liu, W.Y., Liou, S.S., Hong, T.Y., Liu, I.M. (2017). The benefits of the citrus lavonoid diosmin on human retinal pigment epithelial cells under high-glucose conditions. Molecules. 22: E2251.
75.Galati, G., O''Brien, P.J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med. 37: 287-303.
76.Lim, H.D., Kim, Y.S., Ko, S.H., Yoon, I.J., Cho, S.G., Chun, Y.H., Kim, E.C. (2012). Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J Pineal Res. 53: 225-237.
77.Zhuang, C., Xu, N.W., Gao, G.M., Ni, S., Miao, K.S., Li, C. K., Xie, HG. (2016) Polysaccharide from Angelica sinensis protects chondrocytes from H2O2-induced apoptosis through its antioxidant effects in vitro. Int J Biol Macromol. 87: 322-328.
78.Hwang, S.L., Yen, G.C. (2008). Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells. J Agric Food Chem. 56: 859-864.
79.Wu, L., Liu, H., Li, L., Liu, H., Cheng, Q., Li, H., Huang, H. (2014). Mitochondrial pathology in osteoarthritic chondrocytes. Curr Drug Targets. 15: 710-719.
80.Hämäläinen, M., Nieminen, R., Asmawi, M. Z., Vuorela, P., Vapaatalo, H., & Moilanen, E. (2011). Effects of flavonoids on prostaglandin E2 production and on COX-2 and mPGES-1 expressions in activated macrophages. Planta Med. 77: 1504-1511.
81.Rojas-Ortega, M., Cruz, R., Vega-López, M. A., Cabrera-González, M., Hernández, J. M., Lavalle-Montalvo, C., Kouri, J. B. (2015). Exercise modulates the expression of IL-1βand IL-10 in the articular cartilage of normal and osteoarthritis induced rats. Pathol Res Pract. 211: 435-443.
82.Röhner, E., Hoff, P., Winkler, T., von Roth, P., Seeger, J. B., Perka, C., Matziolis, G. (2011). Polyhexanide and hydrogen peroxide inhibit proteoglycan synthesis of human chondrocytes. J Histotechnol. 34: 35-39.
83.Kishimoto, H., Akagi, M., Zushi, S., Teramura, T., Onodera, Y., Sawamura, T., Hamanishi, C. (2010). Induction of hypertrophic chondrocyte-like phenotypes by oxidized LDL in cultured bovine articular chondrocytes through increase in oxidative stress. Osteoarthritis Cartilage. 18: 1284-1290.
84.Ishihara, Y., Shimamoto, N. (2007). Critical role of exposure time to endogenous oxidative stress in hepatocyte apoptosis. Redox Rep. 12: 275-281.
85.Gülden, M., Jess, A., Kammann, J., Maser, E., Seibert, H. (2010). Cytotoxic potency of H2O2 in cell cultures: impact of cell concentration and exposure time. Free Radic Biol Med. 49: 1298-1305.
86.Mathy-Hartert, M., Hogge, L., Sanchez, C., Deby-Dupont, G., Crielaard, J.M., Henrotin, Y. (2008). Interleukin-1beta and interleukin-6 disturb the antioxidant enzyme ystem in bovine chondrocytes: a possible explanation for oxidative stress generation. Osteoarthritis Cartilage. 16: 756-763.
87.Ostalowska, A., Birkner, E., Wiecha, M., Kasperczyk, S., Kasperczyk, A., Kapolka, D., Zon-Giebel, A. (2006). Lipid peroxidation and antioxidant enzymes in synovial fluid of patients with primary and secondary osteoarthritis of the knee joint. Osteoarthritis Cartilage. 14: 139-145.
88.Sroka, Z., Fecka, I., Cisowski, W. (2005). Antiradical and anti-H2O2 properties of polyphenolic compounds from an aqueous peppermint extract. Z Naturforsch C. 60: 826-832.
89.Barreca, D., Laganà, G., Bruno, G., Magazù, S., & Bellocco, E. (2013). Diosmin binding to human serum albumin and its preventive action against degradation due to oxidative injuries. Biochimie. 95: 2042-2049.
90.Lepetsos, P., Papavassiliou, A.G. (2016). ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta. 1862: 576-591.
91.Portal-Núñez, S., Esbrit, P., Alcaraz, M.J., Largo, R. (2016). Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis. Biochem. Pharmacol. 108: 1-10.
92.Hui, W., Young, D.A., Rowan, A.D., Xu, X., Cawston, T.E., Proctor C.J. (2016). Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage. Ann. Rheum. Dis. 75: 449-458.
93.Shalini, V., Hemlata, S., Vyas, R.K., Kim, C., Meenakshy, J. (2015). Oxidative stress and antioxidant level in the serum of osteoarthritis patients. Indian. J. Sci. Res. 6: 37-40.
94.Li, D., Xie, G., Wang, W. (2012). Reactive oxygen species: the 2-edged sword of osteoarthritis. Am. J. Med. Sci. 344: 486-490.
95.Parhiz, H., Roohbakhsh, A., Soltani, F., Rezaee, R., Iranshahi, M. (2015). Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res. 29: 323-331.
96.Huang, W.Y., Cai, Y.Z., Zhang, Y. (2010). Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. Cancer. 62: 1-20.
97.Li, R., Li, J., Cai, L., Hu, C.M., Zhang, L. (2008). Suppression of adjuvant arthritis by hesperidin in rats and its mechanisms. J. Pharm. Pharmacol. 60: 221-228.
98.Ahmed, Y.M., Messiha, B.A., Abo-Saif, A.A. (2015). Protective effects of simvastatin and hesperidin against complete freund''s adjuvant-induced rheumatoid arthritis in rats. Pharmacology. 96: 217-225.
99.Umar, S., Kumar, A., Sajad, M., Zargan, J., Ansari, M., Ahmad, S., Katiyar, C.K., Khan, H.A. (2013). Hesperidin inhibits collagen-induced arthritis possibly through suppression of free radical load and reduction in neutrophil activation and infiltration. Rheumatol. Int. 33: 657-663.
100.Fu, Z., Chen, Z., Xie, Q., Lei, H., Xiang, S. (2018). Hesperidin protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes. Exp. Ther. Med. 16: 3721-3727.
101.Choi, E.M., Lee, Y.S. (2010). Effects of hesperetin on the production of inflammatory mediators in IL-1beta treated human synovial cells. Cell. Immunol. 264: 1-3.
102.Rong, Z., Pan, R., Xu, Y., Zhang, C., Cao, Y., Liu, D. (2013). Hesperidin pretreatment protects hypoxia-ischemic brain injury in neonatal rat. Neuroscience. 255: 292-299.
103.Shin, J.S., Hong, S.W., Lee, S.L., Kim, T.H., Park, I.C., An, S.K., Lee, W.K., Lim, J.S., Kim, K.I., Yang, Y., Lee, S.S., Jin, D.H., Lee, M.S. (2008). Serum starvation induces G1 arrest through suppression of Skp2-CDK2 and CDK4 in SK-OV-3 cells. Int J Oncol. 32: 435-439.
104.Chang, Z., Huo, L., Li, P., Wu, Y., Zhang, P. (2015). Ascorbic acid provides protection for human chondrocytes against oxidative stress. Mol. Med. Rep. 12: 7086-7092.
105.Bhatti, F.U., Mehmood, A., Wajid, N. Rauf, M., Khan, S.N., Riazuddin S. (2013). Vitamin E protects chondrocytes against hydrogen peroxide-induced oxidative stress in vitro. Inflamm. Res. 62: 781-789.
106.Li, H., Zeng, C., Wei, J., Yang, T., Gao, S.G., Li, Y.S., Lei, G.H. (2016). Associations between dietary antioxidants intake and radiographic knee osteoarthritis. Clin. Rheumatol. 35: 1585-1592.
107.Ahmadi, A., Shadboorestan, A., Nabavi, S.F., Setzer, W.N., Nabavi, S.M. (2015). The role of hesperidin in cell signal transduction pathway for the prevention or treatment of cancer. Curr. Med. Chem. 22: 3462-3471.
108.Choi, E.J., Kim, G.D., Chee, K.M., Kim, G. (2006). Effects of hesperetin on vessel structure formation in mouse embryonic stem (mES) cells. Nutrition 22: 947-951.
109.Chen, M., Gu, H., Ye, Y., Lin, B., Sun, L., Deng, W., Zhang J., Liu, J. (2010). Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food. Chem. Toxicol. 48: 2980-2987.
110.Röhner, E., Seeger, J.B., Hoff, P., Dähn-Wollenberg, S., Perka, C., Matziolis, G. (2011). Toxicity of polyhexanide and hydrogen peroxide on human chondrocytes in vitro. Orthopedics. 34: e290-294.
111.Röhner, E.,Hoff , P., Winkler, T., von Roth, P., Seeger, J.B., Perka C., Matziolis, G. (2011). Polyhexanide and hydrogen peroxide inhibit proteoglycan synthesis of human chondrocytes. J. Histotechnol. 34: 35-39.
112.Vaamonde-García, C., Riveiro-Naveira, R.R., Valcárcel-Ares, M.N., Hermida-Carballo, Blanco, L., F.J., López-Armada M.J. (2012). Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 64: 2927-2936.
113.Dai, S.M., Shan, Z.Z., Nakamura, H., Masuko-Hongo, K., Kato, T., Nishioka, K., Yudoh, K. (2006). Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum. 54: 818-831.
114.Heywood, H.K., Lee, D.A. (2008). Monolayer expansion induces an oxidative metabolism and ROS in chondrocytes. Biochem. Biophys. Res. Commun. 373: 224-229.
115.Fan, Z., Bau, B., Yang, H., Soeder, S., Aigner, T. (2005). Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1beta. Arthritis Rheum. 52: 136-143.
116.Martin, G., Andriamanalijaona, R., Mathy-Hartert, M., Henrotin, Y., PujolJ, .P. (2005). Comparative effects of IL-1beta and hydrogen peroxide (H2O2) on catabolic and anabolic gene expression in juvenile bovine chondrocytes. Osteoarthritis Cartilage 13: 915-924.
117.Fan, Z., Bau, B., Yang, H., Soeder, S., Aigner, T. (2005). Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1beta. Arthritis. Rheum. 52: 136-143.
118.Park, J.S., Kim, D.K., Shin, H.D., Lee, H.J., Jo, H.S., Jeong, J.H., Choi, Y.L., Lee, C.J., Hwang, S.C. (2016). Apigenin regulates interleukin-1β-induced production of matrix metalloproteinase both in the knee joint of rat and in primary cultured articular chondrocytes. Biomol. Ther. (Seoul). 24: 163-170.
119.Behrendt, P., Preusse-Prange, A., Klüter, T., Haake, M., Rolauffs, B., GrodzinskyA, .J., Lippross, S., Kurz, B. (2016). IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage. Osteoarthritis. Cartilage. 24: 1981-1988.
120.Chang, Z., Huo, L., Li, P., Wu, Y., Zhang, P. (2015). Ascorbic acid provides protection for human chondrocytes against oxidative stress. Mol. Med. Rep. 12: 7086-7092.
121.Akasaki, Y., Hasegawa, A., Saito M., Asahara, H., Iwamoto, Y., Lotz, M.K. (2014). Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthritis. Cartilage. 22: 162-170.
122.Siendones, E., SantaCruz-Calvo, S., Martín-Montalvo, A., Cascajo, M.V., Ariza, J., López-Lluch, G., Villalba, J.M., Acquaviva-Bourdain, C., Roze, E. Bernier, M., de Cabo, R., Navas, P. (2014). Membrane-bound CYB5R3 is a common effector of nutritional and oxidative stress response through FOXO3a and Nrf2. Antioxid. Redox. Signal. 21: 1708-1725.
123.Akasaki, Y., Alvarez-Garcia, O., Saito, M., Caramés, B., Iwamoto, Y., Lotz, M.K. (2014). FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis. Rheumatol. 66: 3349-3358.
124.Sahu, B.D., Kuncha, M., Sindhura, G.J., Sistla, R. (2013). Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine. 20: 453-460.
125.Huang, T.L., Yang, C.H., Yanai, G., Liao, J.Y., Sumi, S., Yang K.C. (2018). Synergistic effect of l-ascorbic acid and hyaluronic acid on the expressions of matrix metalloproteinase-3 and -9 in human chondrocytes. J. Biomed. Mater. Res. B Appl. Biomater, 106: 1809-1817.
126.Mathy-Hartert, M., Hogge, L., Sanchez, C., Deby-Dupont, G., Crielaard, J.M., Henrotin, Y. (2008). Interleukin-1beta and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation. Osteoarthritis Cartilage 16: 756–763.
127.Henrotin, Y., Kurz, B. (2007). Antioxidant to treat osteoarthritis: dream or reality? Curr. Drug Targets. 8: 347–357.
128.Yudoh, K., Nguyen, vT., Nakamura, H., Hongo-Masuko, K., Kato, T., Nishioka, K. (2005). Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res. Ther. 7: R380–R391.
129.Seki, T., Hasegawa, Y., Yamaguchi, J., Kanoh, T., Ishiguro, N., Tsuboi, M., Ito, Y., Hamajima, N., Suzuki, K. (2010). Association of serum carotenoids, retinol, and tocopherols with radiographic knee osteoarthritis: possible risk factors in rural Japanese inhabitants. J. Orthop. Sci. 15: 477–484.
130.Naik, E., Dixit, V.M. (2011). Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 208: 417–420.
131.Wang, S.N., Xie, G.P., Qin, C.H., Chen, Y.R., Zhang, K.R., Li, X., Wu, Q., Dong, W.Q., Yang, J., Yu, B. (2015). Aucubin prevents interleukin-1 beta induced inflammation and cartilage matrix degradation via inhibition of NF-κB signaling pathway in rat articular chondrocytes. Int. Immunopharmacol. 24: 408–415.
132.Young, I.C., Chuang, S.T., Hsu, C.H., Sun, Y.J., Liu, H.C., Chen, Y.S., Lin, F.H. (2017). Protective effects of aucubin on osteoarthritic chondrocyte model induced by hydrogen peroxide and mechanical stimulus. BMC Complement. Altern. Med. 17: 91.
133.Huang, T.L., Yang, C.H., Yanai, G., Liao, J.Y., Sumi, S., Yang, K.C. (2018). Synergistic effect of L-ascorbic acid and hyaluronic acid on the modulation of matrix metalloproteinase-3 and -9 in human chondrocytes. J. Biomed. Mater. Res. B Appl. Biomater. 106: 1809–1817.
134.Campo, GM., Avenoso, A., D''Ascola, A., Scuruchi, M., Prestipino, V., Nastasi, G., Calatroni, A., Campo, S. (2012). The inhibition of hyaluron flammatory cytokines in mouse synovialfibroblas arthritis. J. Cell. Biochem. 113: 1852–1867.
135.Altman, R., Bedi, A., Manjoo, A., Niazi, F., Shaw, P., Mease, P. (2019). Anti-inflammatory effects of intra-articular hyaluronic acid: a systematic review. Cartilage 10: 43-52.
136.Seki, T., Hasegawa, Y., Yamaguchi, J., Kanoh, T., Ishiguro, N., Tsuboi, M., Ito, Y., Hamajima, N., Suzuki, K. (2010). Association of serum carotenoids, retinol, and tocopherols with radiographic knee osteoarthritis: possible risk factors in rural Japanese inhabitants. J. Orthop. Sci. 15: 477–484.
137.Van der Kraan, P.M., van den Berg, W.B. (2012). Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage 20: 223–232.
138.Otsuki, S., Brinson, D.C., Creighton, L., Kinoshita, M., Sah, R.L., D''Lima, D., Lotz, M. (2008). The effect of glycosaminoglycan loss on chondrocyte viability: a study on porcine cartilage explants. Arthritis Rheum. 58: 1076–1085.
139.Williams, A., Oppenheimer, R.A., Gray, M.L., Burstein, D. (2003). Differential recovery of glycosaminoglycan after IL-1-induced degradation of bovine articular cartilage depends on degree of degradation. Arthritis Res. Ther. 5: 97–105.
140.Martin, G., Andriamanalijaona, R., Mathy-Hartert, M., Henrotin, Y., Pujol, J.P. (2005). Comparative effects of IL-1beta and hydrogen peroxide (H2O2) on catabolic and anabolic gene expression in juvenile bovine chondrocytes. Osteoarthritis Cartilage. 13: 915–924.
141.Fan, Z., Bau, B., Yang, H., Soeder, S., Aigner, T. (2005). Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1beta. Arthritis Rheum. 52: 136–143.
142.Hashizume, M., Mihara, M. (2010). High molecular weight hyaluronic acid inhibits IL-6-induced MMP production from human chondrocytes by up-regulating the ERK inhibitor, MKP-1. Biochem. Biophys. Res. Commun. 403: 184–189.
143.Mladenovic, Z., Saurel, A.S., Berenbaum, F., Jacques, C. (2014). Potential role of hyaluronic acid on bone in osteoarthritis:matrix metalloproteinases, aggrecanases, and RANKL expression are partially prevented by hyaluronic acid in interleukin 1-stimulated osteoblasts. J. Rheumatol. 41: 945–954.
144.Qiu, B., Liu, S.Q., Peng, H., Wang, H.B. (2005). The effects of sodium hyaluronate on mRNA expressions of matrix metalloproteinase-1, -3 and tissue inhibitor of metalloproteinase-1 in cartilage and synovium of traumatic osteoarthritis model. Chin. J. Traumatol. 8: 8–12.
145.Jeong, H.J., Koo, H.N., Na, H.J., Kim, M.S., Hong, S.H., Eom, J.W., Kim, K.S., Shin, T.Y., Kim, H.M. (2002). Inhibition of TNF-alpha and IL-6 production by Aucubin through blockade of NF-kappaB activation RBL-2H3 mast cells. Cytokine 18: 252–259.
146.Lotz, M., Guerne, P.A. (1991). Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). J. Biol. Chem. 266: 2017–2020.
147.Sadowski, T., Steinmeyer, J. (2001). Effects of non-steroidal antiinflammatory drugs and dexamethasone on the activity and expression of matrix metalloproteinase-1, matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 by bovine articular chondrocytes. Osteoarthritis Cartilage. 9: 407–415.
148.Hashimoto, G., Aoki, T., Nakamura, H., Tanzawa, K., Okada, Y. (2001). Inhibition of ADAMTS4 (aggrecanase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4). FEBS Lett. 494: 192–195.
149.Kogan, G., Soltés, L., Stern, R., Gemeiner, P. (2007). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17–25.
150.Ho, JN., Lee, Y.H., Park, J.S., Jun, W.J., Kim, H.K., Hong, B.S., Shin, D.H., Cho, H.Y. (2005). Protective effects of aucubin isolated from Eucommia ulmoides against UVB-induced oxidative stress in human skinfibroblasts. Biol. Pharm. Bull. 28: 1244–1248.
151.Xue, H.Y., Jin, L., Jin, L.J., Li, X.Y., Zhang, P., Ma, Y.S., Lu, Y.N., Xia, Y.Q., Xu, Y.P. (2009). Aucubin prevents loss of hippocampal neurons and regulates antioxidative activity in diabetic encephalopathy rats. Phytother. Res. 23: 980–986.
152.Jin, L., Xue, H.Y., Jin, L.J., Li, S.Y., Xu, Y.P. (2008). Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol. 582: 162–167.
153.Chen, Y.R., Chang, J.H, Yang, K.C., Lu, H.K., Senatov, F.S., Wu, C.C., Tsai, M.H. (2018). The influence of vancomycin on extracellular matrix and proinflammatory cytokine expressions to human articular chondrocytes. Process Biochem. 65: 178–185.
154.Khan, N.M., Ahmad, I., Haqqi, T.M. (2018). Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radic. Biol. Med. 116: 159–171.
155.Onodera, Y., Teramura, T., Takehara, T., Fukuda, K. (2015). Hyaluronic acid regulates a key redox control factor Nrf2 via phosphorylation of Akt in bovine articular chondrocytes. FEBS Open Bio. 5: 476–484.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊