|
1.Zhang, W., Ouyang, Dass C.R., Xu, J. (2016). Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 4:15040. 2.Eckstein, F., Reiser, M., Englmeier, K.H., Putz, R. (2001). In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging--from image to data, from data to theory. Anat Embryol (Berl). 203(3): 147–173. 3.Athanasiou, K.A., Rosenwasser, M.P., Buckwalter, J.A., Malinin, T.I., Mow, V.C. (1991). Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res. 9(3): 330–340. 4.Zhang, L., Hu J., Athanasiou, K.A. (2009). The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 37(1-2): 1-57. 5.Xia, B., Di, C., Zhang, J,H.S., Jin, H.,Tong, P. (2014). Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int. 95(6): 495-505. 6.Poole, C.A., Flint, M.H., Beaumont, B.W. (1987). Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages.J. Orthop Res.5: 509–522. 7.Choi, J.B., Youn, I., Cao, L., Leddy, H.A., Gilchrist, C.L., Setton, L.A. (2007). Zonal changes in the three‐dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J Biomech. 40: 2596–2603. 8.Vincent, T.L., McLean, C.J., Full, L.E., Peston, D., Saklatvala, J. (2007). FGF‐2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthritis Cartilage.15: 752–763. 9.Lotz, M., Hashimoto, S., Kuhn, K. (1999). Mechanisms of chondrocyte apoptosis. Osteoarthritis Cartilage. 7: 389–391. 10.Kuhn, K., D''Lima, D.D., Hashimoto, S., Lotz, M. (2014). Cell death in cartilage. Osteoarthritis Cartilage.12: 1–16. 11.Matsumoto, H., Silverton, S.F., Debolt, K., Shapiro, I.M. (1991). Superoxide dismutase and catalase activities in the growth cartilage: relationship between oxidoreductase activity and chondrocyte maturation. J. Bone Miner. Res. 6: 569-574. 12.Sen, C.K. (1995). Oxygen toxicity and antioxidants: state of the art. Indian J. Physiol. Pharmacol. 39: 177-196. 13.Katti, S.A., Suravanshi, A.K., Bangar, S.S., Sanakal, D., Surendran, S. (2015). A Study of Oxidative Stress and Antioxidant Levels in Osteoarthritis. International Journal of Clinical Biochemistry and Research. 2(4): 236-241. 14.Ostalowska, A., Birkner, E., Wiecha, M., Kasperczyk, S., Kasperczyk, A., Kapolka, D., Zon-Giebel, A. (2006). Lipid peroxidation and antioxidant enzymes in synovial fluid of patients with primary and secondary osteoarthritis of the knee joint. Osteoarthritis Cartilage. 14(2): 139-45. 15.Finosh, G.T. and Jayabalan, M. (2013). Reactive oxygen species—Control and management using amphiphilic biosynthetic hydrogels for cardiac applications. Advances in Bioscience and Biotechnology. 4: 12 -13. 16.Goldring, M.B., Berenbaum, F. (2015). Emerging Targets in Osteoarthritis Therapy. Curr Opin Pharmacol. 22: 51-63. 17.Loeser, R.F. (2014). Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol. 39: 11–16. 18.Loeser, R.F., Gandhi, U., Long, D.L., Yin, W., Chubinskaya, S. (2014). Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1. Arthritis Rheumatol. 66: 2201–2209. 19.Goldring, M.B., Otero, M., Plumb, D.A., Dragomir, C., Favero, M., El Hachem, K., Hashimoto, K., Roach, H.I., Olivotto, E., Borzì, R.M., Marcu, K.B. (2011). Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater. 21: 202–220. 20.Marcu, K.B., Otero, M., Olivotto, E., Borzi, R.M., Goldring, M.B. (2010). NF-κB signaling: multiple angles to target OA. Curr Drug Targets.11: 599–613. 21.Nam, J., Aguda, B.D., Rath, B., Agarwal, S. (2009). Biomechanical thresholds regulate inflammation through the NF-κB pathway: experiments and modeling. PLoS One.4: e5262. 22.Saito, T., Fukai, A., Mabuchi, A., Ikeda, T., Yano, F., Ohba, S., Nishida, N., Akune, T., Yoshimura, N., Nakagawa, T., Nakamura, K., Tokunaga, K., Chung, U.I., Kawaguchi, H. (2010). Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development. Nat Med. 16: 678–686. 23.Sutipornpalangkul, W., Morales, N.P., Charoencholvanich, K., Harnroongroj, T. (2009) Lipid peroxidation, glutathione, vitamin E, and antioxidant enzymes in synovial fluid from patients with osteoarthritis. Int J Rheum Dis. 12: 324–328. 24.Regan, E.A., Bowler, R.P., Crapo, J.D. (2008) Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthr Cartil. 16: 515–521. 25.Mathy-Hartert, M., Hogge, L., Sanchez, C., Deby-Dupont, G., Crielaard, J.M., Henrotin, Y. (2008). Interleukin-1beta and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation. Osteoarthritis Cartilage. 16(7): 756-763. 26.Martin, G., Andriamanalijaona, R., Mathy-Hartert, M., Henrotin, Y., Pujol, J.P. (2005). Comparative effects of IL-1beta and hydrogen peroxide (H2O2) on catabolic and anabolic gene expression in juvenile bovine chondrocytes. Osteoarthritis Cartilage. 13(10): 915-24. 27.Saturveithan, C., Premganesh, G., Fakhrizzaki, S., Mahathir, M., Karuna, K., Rauf, K., William, H., Akmal, H., Sivapathasundaram, N., Jaspreet, K. (2016). Intra-articular Hyaluronic Acid (HA) and Platelet Rich Plasma (PRP) injection versus Hyaluronic acid (HA) injection alone in Patients with Grade III and IV Knee Osteoarthritis (OA): A Retrospective Study on Functional Outcome. Malays Orthop J. 28.Dervin, G.F., Stiell, I.G., Rody, K., Grabowski, J. (2003). Effect of arthroscopic debridement for osteoarthritis of the knee on health-related quality of life. J Bone Joint Surg. 85: 10–19. 29.Laupattarakasem, W., Laopaiboon, M., Laupattarakasem, P., Sumananont, C. (2008) Arthroscopic debridement for knee osteoarthritis. Cochrane Database Syst Rev. D5118. 30.Knutsen, G., Drogset, J.O., Engebretsen, L., Grøntvedt, T., Isaksen, V., Ludvigsen, T.C., Roberts, S., Solheim, E., Strand, T., Johansen, O. (2007). A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg. 89: 2105–2112. 31.Saris, D.B., Vanlauwe, J., Victor, J., Haspl, M., Bohnsack, M., Fortems, Y., Vandekerckhove, B., Almqvist, K.F., Clae,s T., Handelberg, F., Lagae K, van der Bauwhede, J. (2008). Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med. 36: 235–246. 32.Nawar, W.F. (1996). Lipids in food chemistry. 3rd ed. p 225–320. 33.Brewer M.S. (2011). Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential. Applications Comprehensive Reviews in Food Science and Food Safety. 10(4) : 221-247. 34.Hughes, S.D., Ketheesan, N., Haleagrahara, N. (2017). The therapeutic potential of plant flavonoids on rheumatoid arthritis. Crit Rev Food Sci Nutr. 57(17): 3601-3613. 35.Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. (2014). Resources and biological activities of natural polyphenols. Nutrients. 6: 6020–6047. 36.Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life. Sci. 148: 183–193. 37.Grover, A.K., Samson, S.E. (2014). Antioxidants and vision health: facts and fiction. Mol Cell Biochem. 388: 173–183. 38.Abdali, D., Samson, S.E., Grover, A.K. (2015). How effective are antioxidant supplements in obesity and diabetes? Med Princ Pract. 24(3): 201–215. 39.Grover, A.K., Samson, S.E. (2016). Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality. Nutr J. 15: 1. 40.Shan, B., Cai, Y.Z., Sun, M., Corke, H. (2005). Antioxidant capacity of 26 spice components and characterization of their phenolic constituents. J Agric. Food Chem. 53(2): 7749–7759. 41.Geldof, N., Engeseth, N.J., (2002). Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of the in vitro lipoprotein oxidation in human serum samples. J. Agric. Food. Chem. 50: 3050-3055. 42.Cao, G., Sofic, E., Prior, R.L. (1997). Antioxidant and pro-oxidant behavior of flavonoids: Structure-activity relationships. Free Radic. Biol. Med. 22: 749–760. 43.Burda, S., Olesze, K.W. (2001). Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 49: 2774–2779. 44.Saija, A., Scalese, M., Lanza, M., Marzullo, D., Bonina, F., Castelli, F. (1995). Flavonoids as antioxidant agents: Importance of their interaction with biomembranes. Free Radic. Biol. Med. 19: 481–486. 45.Torel, J., Cillard, J., Cillard, P. (1986). Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry. 25: 383–385. 46.Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food. Chem. 104: 466–479. 47.Thanapongsathorn, W., Vajrabukka, T. (1992). Clinical trial of oral diosmin (Daflon) in the treatment of hemorrhoids. Dis. Colon Rectum. 35: 1085–1088. 48.Srinivasan, S.; Pari, L. (2012). Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chem. Biol. Interact. 195: 43–51. 49.Rovenský, J. Stančíková, M., Rovenská, E., Štvrtina, S., Štvrtinová, V. and Švík, K. (2009). Treatment of rat adjuvant arthritis with flavonoid (Detralex®), methotrexate, and their combination. Ann. N. Y. Acad. Sci.1173:798–804. 50.Guardia, T., Rotelli, A. E., Juarez, A. O., Pelzer, L.E. (2001). Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farm. 56: 683–687. 51.Li, R., Cai, L., Xie, X., Yang, F. and Li, J. (2010). Hesperidin suppresses adjuvant arthritis in rats by inhibiting synoviocyte activity. Phyther. Res. 24: 71–76. 52.Li, R., Li, J., Cai, L., Hu, C. and Zhang, L. (2008). Suppression of adjuvant arthritis by hesperidin in rats and its mechanisms. J. Pharm. Pharmacol. 60:221–228. 53.Ahmed, Y. M., Messiha, B.A.S., Abo-Saif, A.A. (2015). Protective effects of simvastatin and hesperidin against complete freund''s adjuvant-induced rheumatoid arthritis in rats. Pharmacol. 96: 217–225. 54.Kokotkiewicz, A., Luczkiewicz, M., Pawlowska, J., Luczkiewicz, P., Sowinski, P., Witkowski, J. (2013). Isolation of xanthone and benzophenone derivatives from Cyclopiagenistoides (L.) Vent. (honeybush) and their pro-apoptotic activity on synoviocytes from patients with rheumatoid arthritis. Fitoterapia. 90: 199–208. 55.Young, I.C., Chuang, S.T., Hsu, C.H., Sun, Y.J., Liu, H.C., Chen, Y.S., Lin, F.H. (2017). Protective effects of aucubin on osteoarthritic chondrocyte model induced by hydrogenperoxide and mechanicalstimulus. BMC Complement Altern Med. 2; 17(1):91. 56.Wang, P., Zhang, F., He, Q.,Wang, J., Shiu, H.T., Shu, Y.,Tsang, W.P., Liang, S., Zhao, K.,Wan, C. (2016). Flavonoid compound Icariin activates hypoxia inducible factor-1α in chondrocytes and promotes articular cartilage repair. PLoS One. 11:(2).e0148372. 57.Loeser, R.F., Collins, J.A., Diekman, B.O. (2016). Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 12: 412-420. 58.Freund, A., Orjalo, A.V., Desprez, P.Y., Campisi, J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 16: 238-246. 59.Watari, T., Naito, K., Sakamoto, K., Kurosawa, H., Nagaoka. I., Kaneko, K. (2011). Evaluation of the effect of oxidative stress on articular cartilage in spontaneously osteoarthritic STR/OrtCrlj mice by measuring the biomarkers for oxidative stress and type II collagen degradation/synthesis. Exp Ther Med. 2: 245-250. 60.Scott, J.L., Gabrielides, C., Davidson, R.K., Swingler, T.E., Clark, I.M., Wallis, G.A., Young, D. A. (2010). Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis. 69: 1502-1510. 61.Gavriilidis, C., Miwa, S, von Zglinicki, T., Taylor, R.W., Young, D.A. (2013). Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 65: 378-387. 62.Vaamonde-García, C., Riveiro-Naveira, R.R., Valcárcel-Ares, M.N., Hermida-Carballo, L., Blanco, F.J., & López-Armada, M. J. (2012). Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 64: 2927-2936. 63.Regan, E.A., Bowler, R.P., Crapo, J.D. (2008). Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthritis Cartilage. 16: 515-521. 64.Rosenbaum, C.C., O''Mathúna, D.P., Chavez, M., Shields, K. (2010). Antioxidants and antiinflammatory dietary supplements for osteoarthritis and rheumatoid arthritis. Altern Ther Health Med. 16: 32-40. 65.Rathee, P., Chaudhary, H., Rathee, S., Rathee, D., Kumar, V., Kohli, K. (2009). Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets. 8: 229-235. 66.Rehman, M.U., Tahir, M., Quaiyoom, Khan. A., Khan, R., Lateef, A., Hamiza, O. O., Sultana, S. (2013). Diosmin protects against trichloroethylene-induced renal injury in Wistar rats: plausible role of p53, Bax and caspases. Br J Nutr. 110: 699-710. 67.Liu, X., Zhang, X., Zhang, J., Kang, N., Zhang, N., Wang, H., Wang, X. (2014). Diosmin protects against cerebral ischemia/reperfusion injury through activating JAK2/STAT3 signal pathway in mice. Neuroscience. 268: 318-327. 68.Abdel-Daim, M.M., Khalifa, H.A., Abushouk, A.I., Dkhil, M.A., Al-Quraishy, S.A. (2017). Diosmin attenuates methotrexate-induced hepatic, renal, and cardiac injury: a biochemical and histopathological study in mice. Oxid Med Cell Longev. 3281670. 69.Arab, H.H., Salama, S.A., Omar, H.A., Arafa, el-SA., Maghrabi, I.A. (2015). Diosmin protects against ethanol-induced gastric injury in rats: novel anti-ulcer actions. PLoS One. 10: e0122417. 70.Ahmed, S., Mundhe, N., Borgohain, M., Chowdhury, L., Kwatra, M., Bolshette, N., Lahkar, M. (2016). Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy. Inflammation. 39: 1783-1797. 71.Trellu, S., Courties, A., Jaisson, S., Gorisse, L., Gillery, P., Kerdine-Römer, S., Sellam, J. (2019). Impairment of glyoxalase-1, an advanced glycation end-product detoxifying enzyme, induced by inflammation in age-related osteoarthritis. Arthritis Res Ther. 21: 18. 72.Su, X.L., Lu, W.H., Zhang, H. (2012). Inhibitive effect of proliferation of dosmin on human umbilical vein endothelial cells by MTT assay. J Inf Tradit Chin Med. 29: 101-104. 73.Dholakiya, S.L., Benzeroual, K.E. (2011). Protective effect of diosmin on LPS induced apoptosis in PC12 cells and inhibition of TNF-αexpression. Toxicol In Vitro. 25: 1039-1044. 74.Liu, W.Y., Liou, S.S., Hong, T.Y., Liu, I.M. (2017). The benefits of the citrus lavonoid diosmin on human retinal pigment epithelial cells under high-glucose conditions. Molecules. 22: E2251. 75.Galati, G., O''Brien, P.J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med. 37: 287-303. 76.Lim, H.D., Kim, Y.S., Ko, S.H., Yoon, I.J., Cho, S.G., Chun, Y.H., Kim, E.C. (2012). Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J Pineal Res. 53: 225-237. 77.Zhuang, C., Xu, N.W., Gao, G.M., Ni, S., Miao, K.S., Li, C. K., Xie, HG. (2016) Polysaccharide from Angelica sinensis protects chondrocytes from H2O2-induced apoptosis through its antioxidant effects in vitro. Int J Biol Macromol. 87: 322-328. 78.Hwang, S.L., Yen, G.C. (2008). Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells. J Agric Food Chem. 56: 859-864. 79.Wu, L., Liu, H., Li, L., Liu, H., Cheng, Q., Li, H., Huang, H. (2014). Mitochondrial pathology in osteoarthritic chondrocytes. Curr Drug Targets. 15: 710-719. 80.Hämäläinen, M., Nieminen, R., Asmawi, M. Z., Vuorela, P., Vapaatalo, H., & Moilanen, E. (2011). Effects of flavonoids on prostaglandin E2 production and on COX-2 and mPGES-1 expressions in activated macrophages. Planta Med. 77: 1504-1511. 81.Rojas-Ortega, M., Cruz, R., Vega-López, M. A., Cabrera-González, M., Hernández, J. M., Lavalle-Montalvo, C., Kouri, J. B. (2015). Exercise modulates the expression of IL-1βand IL-10 in the articular cartilage of normal and osteoarthritis induced rats. Pathol Res Pract. 211: 435-443. 82.Röhner, E., Hoff, P., Winkler, T., von Roth, P., Seeger, J. B., Perka, C., Matziolis, G. (2011). Polyhexanide and hydrogen peroxide inhibit proteoglycan synthesis of human chondrocytes. J Histotechnol. 34: 35-39. 83.Kishimoto, H., Akagi, M., Zushi, S., Teramura, T., Onodera, Y., Sawamura, T., Hamanishi, C. (2010). Induction of hypertrophic chondrocyte-like phenotypes by oxidized LDL in cultured bovine articular chondrocytes through increase in oxidative stress. Osteoarthritis Cartilage. 18: 1284-1290. 84.Ishihara, Y., Shimamoto, N. (2007). Critical role of exposure time to endogenous oxidative stress in hepatocyte apoptosis. Redox Rep. 12: 275-281. 85.Gülden, M., Jess, A., Kammann, J., Maser, E., Seibert, H. (2010). Cytotoxic potency of H2O2 in cell cultures: impact of cell concentration and exposure time. Free Radic Biol Med. 49: 1298-1305. 86.Mathy-Hartert, M., Hogge, L., Sanchez, C., Deby-Dupont, G., Crielaard, J.M., Henrotin, Y. (2008). Interleukin-1beta and interleukin-6 disturb the antioxidant enzyme ystem in bovine chondrocytes: a possible explanation for oxidative stress generation. Osteoarthritis Cartilage. 16: 756-763. 87.Ostalowska, A., Birkner, E., Wiecha, M., Kasperczyk, S., Kasperczyk, A., Kapolka, D., Zon-Giebel, A. (2006). Lipid peroxidation and antioxidant enzymes in synovial fluid of patients with primary and secondary osteoarthritis of the knee joint. Osteoarthritis Cartilage. 14: 139-145. 88.Sroka, Z., Fecka, I., Cisowski, W. (2005). Antiradical and anti-H2O2 properties of polyphenolic compounds from an aqueous peppermint extract. Z Naturforsch C. 60: 826-832. 89.Barreca, D., Laganà, G., Bruno, G., Magazù, S., & Bellocco, E. (2013). Diosmin binding to human serum albumin and its preventive action against degradation due to oxidative injuries. Biochimie. 95: 2042-2049. 90.Lepetsos, P., Papavassiliou, A.G. (2016). ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta. 1862: 576-591. 91.Portal-Núñez, S., Esbrit, P., Alcaraz, M.J., Largo, R. (2016). Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis. Biochem. Pharmacol. 108: 1-10. 92.Hui, W., Young, D.A., Rowan, A.D., Xu, X., Cawston, T.E., Proctor C.J. (2016). Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage. Ann. Rheum. Dis. 75: 449-458. 93.Shalini, V., Hemlata, S., Vyas, R.K., Kim, C., Meenakshy, J. (2015). Oxidative stress and antioxidant level in the serum of osteoarthritis patients. Indian. J. Sci. Res. 6: 37-40. 94.Li, D., Xie, G., Wang, W. (2012). Reactive oxygen species: the 2-edged sword of osteoarthritis. Am. J. Med. Sci. 344: 486-490. 95.Parhiz, H., Roohbakhsh, A., Soltani, F., Rezaee, R., Iranshahi, M. (2015). Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res. 29: 323-331. 96.Huang, W.Y., Cai, Y.Z., Zhang, Y. (2010). Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. Cancer. 62: 1-20. 97.Li, R., Li, J., Cai, L., Hu, C.M., Zhang, L. (2008). Suppression of adjuvant arthritis by hesperidin in rats and its mechanisms. J. Pharm. Pharmacol. 60: 221-228. 98.Ahmed, Y.M., Messiha, B.A., Abo-Saif, A.A. (2015). Protective effects of simvastatin and hesperidin against complete freund''s adjuvant-induced rheumatoid arthritis in rats. Pharmacology. 96: 217-225. 99.Umar, S., Kumar, A., Sajad, M., Zargan, J., Ansari, M., Ahmad, S., Katiyar, C.K., Khan, H.A. (2013). Hesperidin inhibits collagen-induced arthritis possibly through suppression of free radical load and reduction in neutrophil activation and infiltration. Rheumatol. Int. 33: 657-663. 100.Fu, Z., Chen, Z., Xie, Q., Lei, H., Xiang, S. (2018). Hesperidin protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes. Exp. Ther. Med. 16: 3721-3727. 101.Choi, E.M., Lee, Y.S. (2010). Effects of hesperetin on the production of inflammatory mediators in IL-1beta treated human synovial cells. Cell. Immunol. 264: 1-3. 102.Rong, Z., Pan, R., Xu, Y., Zhang, C., Cao, Y., Liu, D. (2013). Hesperidin pretreatment protects hypoxia-ischemic brain injury in neonatal rat. Neuroscience. 255: 292-299. 103.Shin, J.S., Hong, S.W., Lee, S.L., Kim, T.H., Park, I.C., An, S.K., Lee, W.K., Lim, J.S., Kim, K.I., Yang, Y., Lee, S.S., Jin, D.H., Lee, M.S. (2008). Serum starvation induces G1 arrest through suppression of Skp2-CDK2 and CDK4 in SK-OV-3 cells. Int J Oncol. 32: 435-439. 104.Chang, Z., Huo, L., Li, P., Wu, Y., Zhang, P. (2015). Ascorbic acid provides protection for human chondrocytes against oxidative stress. Mol. Med. Rep. 12: 7086-7092. 105.Bhatti, F.U., Mehmood, A., Wajid, N. Rauf, M., Khan, S.N., Riazuddin S. (2013). Vitamin E protects chondrocytes against hydrogen peroxide-induced oxidative stress in vitro. Inflamm. Res. 62: 781-789. 106.Li, H., Zeng, C., Wei, J., Yang, T., Gao, S.G., Li, Y.S., Lei, G.H. (2016). Associations between dietary antioxidants intake and radiographic knee osteoarthritis. Clin. Rheumatol. 35: 1585-1592. 107.Ahmadi, A., Shadboorestan, A., Nabavi, S.F., Setzer, W.N., Nabavi, S.M. (2015). The role of hesperidin in cell signal transduction pathway for the prevention or treatment of cancer. Curr. Med. Chem. 22: 3462-3471. 108.Choi, E.J., Kim, G.D., Chee, K.M., Kim, G. (2006). Effects of hesperetin on vessel structure formation in mouse embryonic stem (mES) cells. Nutrition 22: 947-951. 109.Chen, M., Gu, H., Ye, Y., Lin, B., Sun, L., Deng, W., Zhang J., Liu, J. (2010). Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food. Chem. Toxicol. 48: 2980-2987. 110.Röhner, E., Seeger, J.B., Hoff, P., Dähn-Wollenberg, S., Perka, C., Matziolis, G. (2011). Toxicity of polyhexanide and hydrogen peroxide on human chondrocytes in vitro. Orthopedics. 34: e290-294. 111.Röhner, E.,Hoff , P., Winkler, T., von Roth, P., Seeger, J.B., Perka C., Matziolis, G. (2011). Polyhexanide and hydrogen peroxide inhibit proteoglycan synthesis of human chondrocytes. J. Histotechnol. 34: 35-39. 112.Vaamonde-García, C., Riveiro-Naveira, R.R., Valcárcel-Ares, M.N., Hermida-Carballo, Blanco, L., F.J., López-Armada M.J. (2012). Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 64: 2927-2936. 113.Dai, S.M., Shan, Z.Z., Nakamura, H., Masuko-Hongo, K., Kato, T., Nishioka, K., Yudoh, K. (2006). Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum. 54: 818-831. 114.Heywood, H.K., Lee, D.A. (2008). Monolayer expansion induces an oxidative metabolism and ROS in chondrocytes. Biochem. Biophys. Res. Commun. 373: 224-229. 115.Fan, Z., Bau, B., Yang, H., Soeder, S., Aigner, T. (2005). Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1beta. Arthritis Rheum. 52: 136-143. 116.Martin, G., Andriamanalijaona, R., Mathy-Hartert, M., Henrotin, Y., PujolJ, .P. (2005). Comparative effects of IL-1beta and hydrogen peroxide (H2O2) on catabolic and anabolic gene expression in juvenile bovine chondrocytes. Osteoarthritis Cartilage 13: 915-924. 117.Fan, Z., Bau, B., Yang, H., Soeder, S., Aigner, T. (2005). Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1beta. Arthritis. Rheum. 52: 136-143. 118.Park, J.S., Kim, D.K., Shin, H.D., Lee, H.J., Jo, H.S., Jeong, J.H., Choi, Y.L., Lee, C.J., Hwang, S.C. (2016). Apigenin regulates interleukin-1β-induced production of matrix metalloproteinase both in the knee joint of rat and in primary cultured articular chondrocytes. Biomol. Ther. (Seoul). 24: 163-170. 119.Behrendt, P., Preusse-Prange, A., Klüter, T., Haake, M., Rolauffs, B., GrodzinskyA, .J., Lippross, S., Kurz, B. (2016). IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage. Osteoarthritis. Cartilage. 24: 1981-1988. 120.Chang, Z., Huo, L., Li, P., Wu, Y., Zhang, P. (2015). Ascorbic acid provides protection for human chondrocytes against oxidative stress. Mol. Med. Rep. 12: 7086-7092. 121.Akasaki, Y., Hasegawa, A., Saito M., Asahara, H., Iwamoto, Y., Lotz, M.K. (2014). Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthritis. Cartilage. 22: 162-170. 122.Siendones, E., SantaCruz-Calvo, S., Martín-Montalvo, A., Cascajo, M.V., Ariza, J., López-Lluch, G., Villalba, J.M., Acquaviva-Bourdain, C., Roze, E. Bernier, M., de Cabo, R., Navas, P. (2014). Membrane-bound CYB5R3 is a common effector of nutritional and oxidative stress response through FOXO3a and Nrf2. Antioxid. Redox. Signal. 21: 1708-1725. 123.Akasaki, Y., Alvarez-Garcia, O., Saito, M., Caramés, B., Iwamoto, Y., Lotz, M.K. (2014). FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis. Rheumatol. 66: 3349-3358. 124.Sahu, B.D., Kuncha, M., Sindhura, G.J., Sistla, R. (2013). Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine. 20: 453-460. 125.Huang, T.L., Yang, C.H., Yanai, G., Liao, J.Y., Sumi, S., Yang K.C. (2018). Synergistic effect of l-ascorbic acid and hyaluronic acid on the expressions of matrix metalloproteinase-3 and -9 in human chondrocytes. J. Biomed. Mater. Res. B Appl. Biomater, 106: 1809-1817. 126.Mathy-Hartert, M., Hogge, L., Sanchez, C., Deby-Dupont, G., Crielaard, J.M., Henrotin, Y. (2008). Interleukin-1beta and interleukin-6 disturb the antioxidant enzyme system in bovine chondrocytes: a possible explanation for oxidative stress generation. Osteoarthritis Cartilage 16: 756–763. 127.Henrotin, Y., Kurz, B. (2007). Antioxidant to treat osteoarthritis: dream or reality? Curr. Drug Targets. 8: 347–357. 128.Yudoh, K., Nguyen, vT., Nakamura, H., Hongo-Masuko, K., Kato, T., Nishioka, K. (2005). Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res. Ther. 7: R380–R391. 129.Seki, T., Hasegawa, Y., Yamaguchi, J., Kanoh, T., Ishiguro, N., Tsuboi, M., Ito, Y., Hamajima, N., Suzuki, K. (2010). Association of serum carotenoids, retinol, and tocopherols with radiographic knee osteoarthritis: possible risk factors in rural Japanese inhabitants. J. Orthop. Sci. 15: 477–484. 130.Naik, E., Dixit, V.M. (2011). Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 208: 417–420. 131.Wang, S.N., Xie, G.P., Qin, C.H., Chen, Y.R., Zhang, K.R., Li, X., Wu, Q., Dong, W.Q., Yang, J., Yu, B. (2015). Aucubin prevents interleukin-1 beta induced inflammation and cartilage matrix degradation via inhibition of NF-κB signaling pathway in rat articular chondrocytes. Int. Immunopharmacol. 24: 408–415. 132.Young, I.C., Chuang, S.T., Hsu, C.H., Sun, Y.J., Liu, H.C., Chen, Y.S., Lin, F.H. (2017). Protective effects of aucubin on osteoarthritic chondrocyte model induced by hydrogen peroxide and mechanical stimulus. BMC Complement. Altern. Med. 17: 91. 133.Huang, T.L., Yang, C.H., Yanai, G., Liao, J.Y., Sumi, S., Yang, K.C. (2018). Synergistic effect of L-ascorbic acid and hyaluronic acid on the modulation of matrix metalloproteinase-3 and -9 in human chondrocytes. J. Biomed. Mater. Res. B Appl. Biomater. 106: 1809–1817. 134.Campo, GM., Avenoso, A., D''Ascola, A., Scuruchi, M., Prestipino, V., Nastasi, G., Calatroni, A., Campo, S. (2012). The inhibition of hyaluron flammatory cytokines in mouse synovialfibroblas arthritis. J. Cell. Biochem. 113: 1852–1867. 135.Altman, R., Bedi, A., Manjoo, A., Niazi, F., Shaw, P., Mease, P. (2019). Anti-inflammatory effects of intra-articular hyaluronic acid: a systematic review. Cartilage 10: 43-52. 136.Seki, T., Hasegawa, Y., Yamaguchi, J., Kanoh, T., Ishiguro, N., Tsuboi, M., Ito, Y., Hamajima, N., Suzuki, K. (2010). Association of serum carotenoids, retinol, and tocopherols with radiographic knee osteoarthritis: possible risk factors in rural Japanese inhabitants. J. Orthop. Sci. 15: 477–484. 137.Van der Kraan, P.M., van den Berg, W.B. (2012). Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage 20: 223–232. 138.Otsuki, S., Brinson, D.C., Creighton, L., Kinoshita, M., Sah, R.L., D''Lima, D., Lotz, M. (2008). The effect of glycosaminoglycan loss on chondrocyte viability: a study on porcine cartilage explants. Arthritis Rheum. 58: 1076–1085. 139.Williams, A., Oppenheimer, R.A., Gray, M.L., Burstein, D. (2003). Differential recovery of glycosaminoglycan after IL-1-induced degradation of bovine articular cartilage depends on degree of degradation. Arthritis Res. Ther. 5: 97–105. 140.Martin, G., Andriamanalijaona, R., Mathy-Hartert, M., Henrotin, Y., Pujol, J.P. (2005). Comparative effects of IL-1beta and hydrogen peroxide (H2O2) on catabolic and anabolic gene expression in juvenile bovine chondrocytes. Osteoarthritis Cartilage. 13: 915–924. 141.Fan, Z., Bau, B., Yang, H., Soeder, S., Aigner, T. (2005). Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1beta. Arthritis Rheum. 52: 136–143. 142.Hashizume, M., Mihara, M. (2010). High molecular weight hyaluronic acid inhibits IL-6-induced MMP production from human chondrocytes by up-regulating the ERK inhibitor, MKP-1. Biochem. Biophys. Res. Commun. 403: 184–189. 143.Mladenovic, Z., Saurel, A.S., Berenbaum, F., Jacques, C. (2014). Potential role of hyaluronic acid on bone in osteoarthritis:matrix metalloproteinases, aggrecanases, and RANKL expression are partially prevented by hyaluronic acid in interleukin 1-stimulated osteoblasts. J. Rheumatol. 41: 945–954. 144.Qiu, B., Liu, S.Q., Peng, H., Wang, H.B. (2005). The effects of sodium hyaluronate on mRNA expressions of matrix metalloproteinase-1, -3 and tissue inhibitor of metalloproteinase-1 in cartilage and synovium of traumatic osteoarthritis model. Chin. J. Traumatol. 8: 8–12. 145.Jeong, H.J., Koo, H.N., Na, H.J., Kim, M.S., Hong, S.H., Eom, J.W., Kim, K.S., Shin, T.Y., Kim, H.M. (2002). Inhibition of TNF-alpha and IL-6 production by Aucubin through blockade of NF-kappaB activation RBL-2H3 mast cells. Cytokine 18: 252–259. 146.Lotz, M., Guerne, P.A. (1991). Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). J. Biol. Chem. 266: 2017–2020. 147.Sadowski, T., Steinmeyer, J. (2001). Effects of non-steroidal antiinflammatory drugs and dexamethasone on the activity and expression of matrix metalloproteinase-1, matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 by bovine articular chondrocytes. Osteoarthritis Cartilage. 9: 407–415. 148.Hashimoto, G., Aoki, T., Nakamura, H., Tanzawa, K., Okada, Y. (2001). Inhibition of ADAMTS4 (aggrecanase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4). FEBS Lett. 494: 192–195. 149.Kogan, G., Soltés, L., Stern, R., Gemeiner, P. (2007). Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17–25. 150.Ho, JN., Lee, Y.H., Park, J.S., Jun, W.J., Kim, H.K., Hong, B.S., Shin, D.H., Cho, H.Y. (2005). Protective effects of aucubin isolated from Eucommia ulmoides against UVB-induced oxidative stress in human skinfibroblasts. Biol. Pharm. Bull. 28: 1244–1248. 151.Xue, H.Y., Jin, L., Jin, L.J., Li, X.Y., Zhang, P., Ma, Y.S., Lu, Y.N., Xia, Y.Q., Xu, Y.P. (2009). Aucubin prevents loss of hippocampal neurons and regulates antioxidative activity in diabetic encephalopathy rats. Phytother. Res. 23: 980–986. 152.Jin, L., Xue, H.Y., Jin, L.J., Li, S.Y., Xu, Y.P. (2008). Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol. 582: 162–167. 153.Chen, Y.R., Chang, J.H, Yang, K.C., Lu, H.K., Senatov, F.S., Wu, C.C., Tsai, M.H. (2018). The influence of vancomycin on extracellular matrix and proinflammatory cytokine expressions to human articular chondrocytes. Process Biochem. 65: 178–185. 154.Khan, N.M., Ahmad, I., Haqqi, T.M. (2018). Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radic. Biol. Med. 116: 159–171. 155.Onodera, Y., Teramura, T., Takehara, T., Fukuda, K. (2015). Hyaluronic acid regulates a key redox control factor Nrf2 via phosphorylation of Akt in bovine articular chondrocytes. FEBS Open Bio. 5: 476–484.
|