|
[1] R. L. Siegel, K. D. Miller, and A. Jemal, "Cancer statistics, 2019," CA: a cancer journal for clinicians, vol. 69, no. 1, pp. 7-34, Jan 2019. [2] C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, "Breast cancer statistics, 2017, racial disparity in mortality by state," CA: a cancer journal for clinicians, vol. 67, no. 6, pp. 439-448, Oct 2017. [3] A. Alitalo and M. Detmar, "Interaction of tumor cells and lymphatic vessels in cancer progression," Oncogene, vol. 31, no. 42, p. 4499, Dec 2012. [4] U. Veronesi, F. Rilke, A. Luini, V. Sacchini, V. Galimberti, T. Campa, E. D. Bei, M. Greco, A. Magni, and M. Merson, "Distribution of axillary node metastases by level of invasion. An analysis of 539 cases," Cancer, vol. 59, no. 4, pp. 682-687, Feb 1987. [5] U. Veronesi, A. Luini, V. Galimberti, S. Marchini, V. Sacchini, and F. Rilke, "Extent of metastatic axillary involvement in 1446 cases of breast cancer," European journal of surgical oncology: the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, vol. 16, no. 2, pp. 127-133, Apr 1990. [6] C. L. Carter, C. Allen, and D. E. Henson, "Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases," Cancer, vol. 63, no. 1, pp. 181-187, Jan 1989. [7] B. Weigelt, J. L. Peterse, and L. J. Van''t Veer, "Breast cancer metastasis: markers and models," Nature reviews cancer, vol. 5, no. 8, p. 591, Aug 2005. [8] D. Ivens, A. Hoe, T. Podd, C. Hamilton, I. Taylor, and G. Royle, "Assessment of morbidity from complete axillary dissection," British journal of cancer, vol. 66, no. 1, p. 136, Jul 1992. [9] S.-Q. Qiu, H.-C. Zeng, F. Zhang, C. Chen, W.-H. Huang, R. G. Pleijhuis, J.-D. Wu, G. M. Van Dam, and G.-J. Zhang, "A nomogram to predict the probability of axillary lymph node metastasis in early breast cancer patients with positive axillary ultrasound," Scientific reports, vol. 6, p. 21196, Feb 2016. [10] S. Koscielny, M. Tubiana, M. Le, A. Valleron, H. Mouriesse, G. Contesso, and D. Sarrazin, "Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination," British journal of cancer, vol. 49, no. 6, p. 709, Jun 1984. [11] M. Takada, M. Sugimoto, Y. Naito, H.-G. Moon, W. Han, D.-Y. Noh, M. Kondo, K. Kuroi, H. Sasano, and T. Inamoto, "Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model," BMC medical informatics and decision making, vol. 12, no. 1, p. 54, Jun 2012. [12] W. K. Moon, Y.-W. Lee, Y.-S. Huang, S. H. Lee, M. S. Bae, A. Yi, C.-S. Huang, and R.-F. Chang, "Computer-aided prediction of axillary lymph node status in breast cancer using tumor surrounding tissue features in ultrasound images," Computer methods and programs in biomedicine, vol. 146, pp. 143-150, Jul 2017. [13] W. K. Moon, I.-L. Chen, A. Yi, M. S. Bae, S. U. Shin, and R.-F. Chang, "Computer-aided prediction model for axillary lymph node metastasis in breast cancer using tumor morphological and textural features on ultrasound," Computer methods and programs in biomedicine, vol. 162, pp. 129-137, Aug 2018. [14] X. Cui, N. Wang, Y. Zhao, S. Chen, S. Li, M. Xu, and R. Chai, "Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Radiomics Features of DCE-MRI," Scientific reports, vol. 9, no. 1, p. 2240, Feb 2019. [15] J. Yang, T. Wang, L. Yang, Y. Wang, H. Li, X. Zhou, W. Zhao, J. Ren, X. Li, and J. Tian, "Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using Mammography-Based Radiomics Method," Scientific reports, vol. 9, no. 1, p. 4429, Mar 2019. [16] W. Li, J. Li, K. V. Sarma, K. C. Ho, S. Shen, B. S. Knudsen, A. Gertych, and C. W. Arnold, "Path R-CNN for prostate cancer diagnosis and gleason grading of histological images," IEEE transactions on medical imaging, vol. 38, no. 4, pp. 945-954, Apr 2018. [17] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, "Unet++: A nested u-net architecture for medical image segmentation," in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018, pp. 3-11. [18] X. Qi, L. Zhang, Y. Chen, Y. Pi, Y. Chen, Q. Lv, and Z. Yi, "Automated diagnosis of breast ultrasonography images using deep neural networks," Medical image analysis, vol. 52, pp. 185-198, Feb 2019. [19] J. G. Elmore, K. Armstrong, C. D. Lehman, and S. W. Fletcher, "Screening for breast cancer," Jama, vol. 293, no. 10, pp. 1245-1256, Mar 2005. [20] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask r-cnn," in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2961-2969. [21] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," in Advances in neural information processing systems, 2015, pp. 91-99. [22] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117-2125. [23] H. Chen, Q. Dou, D. Ni, J.-Z. Cheng, J. Qin, S. Li, and P.-A. Heng, "Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks," in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015, pp. 507-514. [24] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, "Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning," IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1285-1298, May 2016. [25] D. F. Quail and J. A. Joyce, "Microenvironmental regulation of tumor progression and metastasis," Nature medicine, vol. 19, no. 11, p. 1423, Nov 2013. [26] H. A. Goubran, R. R. Kotb, J. Stakiw, M. E. Emara, and T. Burnouf, "Regulation of tumor growth and metastasis: the role of tumor microenvironment," Cancer growth and metastasis, vol. 7, p. CGM. S11285, Jun 2014. [27] N. Beig, M. Khorrami, M. Alilou, P. Prasanna, N. Braman, M. Orooji, S. Rakshit, K. Bera, P. Rajiah, and J. Ginsberg, "Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas," Radiology, vol. 290, no. 3, pp. 783-792, Dec 2018. [28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012, pp. 1097-1105. [29] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700-4708. [30] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression. 2013. [31] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, "Support vector machines," IEEE Intelligent Systems and their applications, vol. 13, no. 4, pp. 18-28, 1998. [32] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794. [33] F. Chollet, "Keras," ed, 2015. [34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, "Scikit-learn: Machine learning in Python," Journal of machine learning research, vol. 12, pp. 2825-2830, Oct 2011. [35] J. D. Rodriguez, A. Perez, and J. A. Lozano, "Sensitivity analysis of k-fold cross validation in prediction error estimation," IEEE transactions on pattern analysis and machine intelligence, vol. 32, no. 3, pp. 569-575, Mar 2009. [36] D. A. Berry, K. A. Cronin, S. K. Plevritis, D. G. Fryback, L. Clarke, M. Zelen, J. S. Mandelblatt, A. Y. Yakovlev, J. D. F. Habbema, and E. J. Feuer, "Effect of screening and adjuvant therapy on mortality from breast cancer," New England Journal of Medicine, vol. 353, no. 17, pp. 1784-1792, Oct 2005. [37] L. Tabar, A. Gad, L. Holmberg, U. Ljungquist, K. C. P. Group, C. Fagerberg, L. Baldetorp, O. Gröntoft, B. Lundström, and J. Månson, "Reduction in mortality from breast cancer after mass screening with mammography: randomised trial from the Breast Cancer Screening Working Group of the Swedish National Board of Health and Welfare," The Lancet, vol. 325, no. 8433, pp. 829-832, Apr 1985. [38] M.-Q. Gao, B. G. Kim, S. Kang, Y. P. Choi, H. Park, K. S. Kang, and N. H. Cho, "Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial–mesenchymal transition-like state in breast cancer cells in vitro," J Cell Sci, vol. 123, no. 20, pp. 3507-3514, Jul 2010. [39] S. Zhang, S. Yi, D. Zhang, M. Gong, Y. Cai, and L. Zou, "Intratumoral and peritumoral lymphatic vessel density both correlate with lymph node metastasis in breast cancer," Scientific reports, vol. 7, p. 40364, Jan 2017. [40] N. M. Braman, M. Etesami, P. Prasanna, C. Dubchuk, H. Gilmore, P. Tiwari, D. Plecha, and A. Madabhushi, "Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI," Breast Cancer Research, vol. 19, no. 1, p. 57, Dec 2017. [41] L. Zou, S. Yu, T. Meng, Z. Zhang, X. Liang, and Y. Xie, "A Technical Review of Convolutional Neural Network-Based Mammographic Breast Cancer Diagnosis," Computational and mathematical methods in medicine, vol. 2019, Mar 2019. [42] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, no. 7553, p. 436, May 2015
|