跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/11 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊仁凱
研究生(外文):Ren-Kai Yang
論文名稱:曲面型電極液晶透鏡之光學特性之研究
論文名稱(外文):Optical Characteristics of Liquid Crystal Lenses with Spherical Electrodes
指導教授:蘇國棟
口試委員:蔡永傑黃定洧
口試日期:2018-10-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:67
中文關鍵詞:可變焦距透鏡液晶透鏡精密加工二次翻模
DOI:10.6342/NTU201900338
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文先以液晶模擬軟體2dimMOS模擬分別探討傳統圓孔型電極液晶透鏡,具有額外電極之圓孔型電極液晶透鏡,曲面型電極液晶透鏡之電位分佈。由電位分佈判斷三種透鏡尺寸為毫米之透鏡是否在液晶層能形成連續分佈,並且產生不均勻之電場,進而使得液晶層內產生折射率分佈,進而形成液晶透鏡。本論文更進一步探討圓孔型電極液晶透鏡與曲面型電極液晶透鏡在高填充因子之目標下,兩種透鏡間電位分佈是否會有平緩之情形發生,透鏡間產生有crosstalk之現象。最後,本論文也包含四種透鏡尺寸之曲面型電極液晶透鏡製程,而透鏡尺寸是從微米到毫米。我們將精密加工所之透鏡做為母模,然後運用二次翻模之技術並利用旋轉塗佈,將導電高分子PEDOT:PSS均勻旋塗於透鏡以製造曲面電極,再使用NOA65填平並旋塗上PVA作為配向膜,並將其與ITO玻璃封裝成液晶盒,最後注入液晶形成液晶透鏡。
In this thesis, we use liquid crystal simulation software 2dimMOS to investigate the electric potential of liquid crystal lenses with hole-pattern electrode, hole-pattern with additional electrode and spherical electrode. We analyze the electric potential to determine whether the three kinds of liquid crystal lenses with the lens sizes of millimeters can form a continuous electric potential distribution in the liquid crystal layer and the non-uniform electric field could be generated. The refractive index distribution generated by non-uniform electric field in the liquid crystal layer forms a liquid crystal lens. We further investigate whether the hole-pattern electrode with additional electrode liquid crystal lens and the spherical electrode liquid crystal lens have flat potential distribution between the two adjacent lenses and crosstalk occurs consequently. Fabrication of four sizes of liquid crystal lenses range from micrometers to millimeters is also included. Replication process is used and conductive polymer PEDOT:PSS is applied to form spherical electrode. We assemble flattened spherical electrode with ITO glass with PVA to form liquid crystal lens.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLE xiii
Chapter 1 Introduction 1
1.1 Liquid Crystal 1
1.1.1 Types of Liquid Crystal 1
1.1.2 Elastic Properties of Liquid Crystal 2
1.2 Focus Tunable Lens 4
1.2.1 Elastomeric Membrane Lens[1] 5
1.2.2 Electrowetting Lenses 7
1.2.3 Liquid Crystal Lens 8
Chapter 2 Theoretical Calculation 12
2.1 Freedericksz Transition 12
2.2 Methods of Calculating Focal Length 16
2.2.1 Method 1 17
2.2.2 Method 2 19
Chapter 3 Electric Potential Analysis 21
3.1 Equivalent Circuit 21
3.2 Structure of Three Types of Liquid Crystal Lens 23
3.3 Electric Potential and Refractive Index Distribution 25
Chapter 4 Fabrication Process 31
4.1 Materials 31
4.1.1 NOA65 31
4.1.2 Polydimethylsiloxane (PDMS) 32
4.1.3 PEDOT:PSS 33
4.1.4 Liquid crystal 35
4.2 Fabrication process 36
4.2.1 Lens manufacturing 37
4.2.2 Lenses made of NOA65 39
4.2.3 Curved spherical electrode and flatten layer 40
4.2.4 Liquid crystal lens assembly 40
Chapter 5 Experimental Results 43
5.1 Interference pattern 43
5.1.1 Lens diameter 500 microns 44
5.1.2 Lens diameter 1 millimeter 48
5.1.3 Lens diameter 2 millimeters 52
5.1.4 Lens diameter 4 millimeters 56
Chapter 6 Conclusion 61
REFERENCE 63
[1]H. Ren, and S.-T. Wu, Introduction to adaptive lenses: John Wiley & Sons, 2012.
[2]N. Sugiura, and S. Morita, “Variable-focus liquid-filled optical lens,” Applied Optics, vol. 32, no. 22, pp. 4181-4186, 1993.
[3]F. Mugele, and J.-C. Baret, “Electrowetting: from basics to applications,” Journal of Physics: Condensed Matter, vol. 17, no. 28, pp. R705, 2005.
[4]S. Sato, “Liquid-crystal lens-cells with variable focal length,” Japanese Journal of Applied Physics, vol. 18, no. 9, pp. 1679, 1979.
[5]H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Applied physics letters, vol. 88, no. 19, pp. 191116, 2006.
[6]H. Ren, and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Optics Express, vol. 14, no. 23, pp. 11292-11298, 2006.
[7]H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Optics express, vol. 15, no. 18, pp. 11328-11335, 2007.
[8]B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Japanese Journal of Applied Physics, vol. 41, no. 11A, pp. L1232, 2002.
[9]Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” Journal of display technology, vol. 1, no. 1, pp. 151-156, 2005.
[10]H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Applied physics letters, vol. 84, no. 23, pp. 4789-4791, 2004.
[11]B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Applied optics, vol. 43, no. 17, pp. 3420-3425, 2004.
[12]T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid crystal microlens,” Molecular Crystals and Liquid Crystals, vol. 199, no. 1, pp. 27-35, 1991.
[13]T. Nose, S. Masuda, and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Japanese journal of applied physics, vol. 30, no. 12B, pp. L2110, 1991.
[14]T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Japanese journal of applied physics, vol. 31, no. 5S, pp. 1643, 1992.
[15]S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Japanese journal of applied physics, vol. 35, no. 9R, pp. 4668, 1996.
[16]S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Applied optics, vol. 36, no. 20, pp. 4772-4778, 1997.
[17]M. Ye, and S. Sato, “Optical properties of liquid crystal lens of any size,” Japanese journal of applied physics, vol. 41, no. 5B, pp. L571, 2002.
[18]M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Japanese journal of applied physics, vol. 43, no. 9R, pp. 6108, 2004.
[19]B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Optics communications, vol. 250, no. 4-6, pp. 266-273, 2005.
[20]B. Wang, M. Ye, and S. Sato, “Properties of liquid crystal lens with stacked structure of liquid crystal layers,” Japanese journal of applied physics, vol. 45, no. 10R, pp. 7813, 2006.
[21]B. Wang, M. Ye, and S. Sato, “Liquid crystal negative lens,” Japanese journal of applied physics, vol. 44, no. 7R, pp. 4979, 2005.
[22]C.-R. Lee, K.-C. Lo, and T.-S. Mo, “Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern,” Japanese Journal of Applied Physics, vol. 46, no. 7R, pp. 4144, 2007.
[23]Y.-H. Fan, H. Ren, and S.-T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Optics express, vol. 13, no. 11, pp. 4141-4147, 2005.
[24]S. Sato, T. Nose, R. Yamaguchi, and S. Yanase, “Relationship between lens properties and director orientation in a liquid crystal lens,” Liquid Crystals, vol. 5, no. 5, pp. 1435-1442, 1989.
[25]S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Japanese Journal of Applied Physics, vol. 39, no. 2R, pp. 480, 2000.
[26]S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Japanese journal of applied physics, vol. 24, no. 8A, pp. L626, 1985.
[27]D. Liang, and Q.-H. Wang, “Liquid crystal microlens array using double lenticular electrodes,” Journal of Display Technology, vol. 9, no. 10, pp. 814-818, 2013.
[28]W. Choi, D.-W. Kim, and S.-D. Lee, “Liquid crystal lens array with high fill-factor fabricated by an imprinting technique,” Molecular Crystals and Liquid Crystals, vol. 508, no. 1, pp. 35/[397]-40/[402], 2009.
[29]B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 79-81, 2006.
[30]M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal anamorphic lens,” Japanese journal of applied physics, vol. 44, no. 1R, pp. 235, 2005.
[31]O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Applied Optics, vol. 45, no. 19, pp. 4576-4582, 2006.
[32]J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “A temperature controlled liquid crystal lens for spherical aberration compensation,” Microsystem technologies, vol. 13, no. 2, pp. 161-164, 2007.
[33]C.-W. Chiu, Y.-C. Lin, P. C.-P. Chao, and A. Y.-G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Optics express, vol. 16, no. 23, pp. 19277-19284, 2008.
[34]C.-Y. Huang, Y.-J. Huang, and Y.-H. Tseng, “Dual-operation-mode liquid crystal lens,” Optics express, vol. 17, no. 23, pp. 20860-20865, 2009.
[35]C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Applied Physics Letters, vol. 92, no. 22, pp. 221908, 2008.
[36]H.-C. Lin, and Y.-H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Applied Physics Letters, vol. 97, no. 6, pp. 063505, 2010.
[37]M. Kawamura, H. Goto, and E. Yumoto, “Improvement of negative lens property of liquid crystal device,” Japanese Journal of Applied Physics, vol. 49, no. 11R, pp. 118002, 2010.
[38]Y.-Y. Kao, P. C.-P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Optics express, vol. 18, no. 18, pp. 18506-18518, 2010.
[39]Y.-H. Lin, M.-S. Chen, and H.-C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Optics express, vol. 19, no. 5, pp. 4714-4721, 2011.
[40]A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Optics Express, vol. 23, no. 2, pp. 971-981, 2015.
[41]J. Prost, The physics of liquid crystals: Oxford university press, 1995.
[42]D.-K. Yang, Fundamentals of liquid crystal devices: John Wiley & Sons, 2014.
[1]H. Ren and S.-T. Wu, Introduction to adaptive lenses. John Wiley & Sons, 2012.
[2]N. Sugiura and S. Morita, "Variable-focus liquid-filled optical lens," Applied Optics, vol. 32, no. 22, pp. 4181-4186, 1993.
[3]F. Mugele and J.-C. Baret, "Electrowetting: from basics to applications," Journal of Physics: Condensed Matter, vol. 17, no. 28, p. R705, 2005.
[4]S. Sato, "Liquid-crystal lens-cells with variable focal length," Japanese Journal of Applied Physics, vol. 18, no. 9, p. 1679, 1979.
[5]H. Ren, Y.-H. Lin, and S.-T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Applied physics letters, vol. 88, no. 19, p. 191116, 2006.
[6]H. Ren and S.-T. Wu, "Adaptive liquid crystal lens with large focal length tunability," Optics Express, vol. 14, no. 23, pp. 11292-11298, 2006.
[7]H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, "Liquid crystal lens with large focal length tunability and low operating voltage," Optics express, vol. 15, no. 18, pp. 11328-11335, 2007.
[8]B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Japanese Journal of Applied Physics, vol. 41, no. 11A, p. L1232, 2002.
[9]Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, "Liquid crystal microlens arrays with switchable positive and negative focal lengths," Journal of display technology, vol. 1, no. 1, pp. 151-156, 2005.
[10]H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, "Tunable-focus flat liquid crystal spherical lens," Applied physics letters, vol. 84, no. 23, pp. 4789-4791, 2004.
[11]B. Wang, M. Ye, and S. Sato, "Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers," Applied optics, vol. 43, no. 17, pp. 3420-3425, 2004.
[12]T. Nose, S. Masuda, and S. Sato, "Optical properties of a hybrid-aligned liquid crystal microlens," Molecular Crystals and Liquid Crystals, vol. 199, no. 1, pp. 27-35, 1991.
[13]T. Nose, S. Masuda, and S. Sato, "Optical properties of a liquid crystal microlens with a symmetric electrode structure," Japanese journal of applied physics, vol. 30, no. 12B, p. L2110, 1991.
[14]T. Nose, S. Masuda, and S. Sato, "A liquid crystal microlens with hole-patterned electrodes on both substrates," Japanese journal of applied physics, vol. 31, no. 5S, p. 1643, 1992.
[15]S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, "Dependence of optical properties on the device and material parameters in liquid crystal microlenses," Japanese journal of applied physics, vol. 35, no. 9R, p. 4668, 1996.
[16]S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, "Liquid-crystal microlens with a beam-steering function," Applied optics, vol. 36, no. 20, pp. 4772-4778, 1997.
[17]M. Ye and S. Sato, "Optical properties of liquid crystal lens of any size," Japanese journal of applied physics, vol. 41, no. 5B, p. L571, 2002.
[18]M. Ye, S. Hayasaka, and S. Sato, "Liquid crystal lens array with hexagonal-hole-patterned electrodes," Japanese journal of applied physics, vol. 43, no. 9R, p. 6108, 2004.
[19]B. Wang, M. Ye, and S. Sato, "Liquid crystal lens with stacked structure of liquid-crystal layers," Optics communications, vol. 250, no. 4-6, pp. 266-273, 2005.
[20]B. Wang, M. Ye, and S. Sato, "Properties of liquid crystal lens with stacked structure of liquid crystal layers," Japanese journal of applied physics, vol. 45, no. 10R, p. 7813, 2006.
[21]B. Wang, M. Ye, and S. Sato, "Liquid crystal negative lens," Japanese journal of applied physics, vol. 44, no. 7R, p. 4979, 2005.
[22]C.-R. Lee, K.-C. Lo, and T.-S. Mo, "Electrically switchable Fresnel lens based on a liquid crystal film with a polymer relief pattern," Japanese Journal of Applied Physics, vol. 46, no. 7R, p. 4144, 2007.
[23]Y.-H. Fan, H. Ren, and S.-T. Wu, "Electrically switchable Fresnel lens using a polymer-separated composite film," Optics express, vol. 13, no. 11, pp. 4141-4147, 2005.
[24]S. Sato, T. Nose, R. Yamaguchi, and S. Yanase, "Relationship between lens properties and director orientation in a liquid crystal lens," Liquid Crystals, vol. 5, no. 5, pp. 1435-1442, 1989.
[25]S. Suyama, M. Date, and H. Takada, "Three-dimensional display system with dual-frequency liquid-crystal varifocal lens," Japanese Journal of Applied Physics, vol. 39, no. 2R, p. 480, 2000.
[26]S. Sato, A. Sugiyama, and R. Sato, "Variable-focus liquid-crystal Fresnel lens," Japanese journal of applied physics, vol. 24, no. 8A, p. L626, 1985.
[27]D. Liang and Q.-H. Wang, "Liquid crystal microlens array using double lenticular electrodes," Journal of Display Technology, vol. 9, no. 10, pp. 814-818, 2013.
[28]W. Choi, D.-W. Kim, and S.-D. Lee, "Liquid crystal lens array with high fill-factor fabricated by an imprinting technique," Molecular Crystals and Liquid Crystals, vol. 508, no. 1, pp. 35/[397]-40/[402], 2009.
[29]B. Wang, M. Ye, and S. Sato, "Liquid crystal lens with focal length variable from negative to positive values," IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 79-81, 2006.
[30]M. Ye, Y. Yokoyama, and S. Sato, "Liquid crystal anamorphic lens," Japanese journal of applied physics, vol. 44, no. 1R, p. 235, 2005.
[31]O. Pishnyak, S. Sato, and O. D. Lavrentovich, "Electrically tunable lens based on a dual-frequency nematic liquid crystal," Applied Optics, vol. 45, no. 19, pp. 4576-4582, 2006.
[32]J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, "A temperature controlled liquid crystal lens for spherical aberration compensation," Microsystem technologies, vol. 13, no. 2, pp. 161-164, 2007.
[33]C.-W. Chiu, Y.-C. Lin, P. C.-P. Chao, and A. Y.-G. Fuh, "Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes," Optics express, vol. 16, no. 23, pp. 19277-19284, 2008.
[34]C.-Y. Huang, Y.-J. Huang, and Y.-H. Tseng, "Dual-operation-mode liquid crystal lens," Optics express, vol. 17, no. 23, pp. 20860-20865, 2009.
[35]C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, "Silica-nanoparticle-doped nematic display with multistable and dynamic modes," Applied Physics Letters, vol. 92, no. 22, p. 221908, 2008.
[36]H.-C. Lin and Y.-H. Lin, "A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens," Applied Physics Letters, vol. 97, no. 6, p. 063505, 2010.
[37]M. Kawamura, H. Goto, and E. Yumoto, "Improvement of negative lens property of liquid crystal device," Japanese Journal of Applied Physics, vol. 49, no. 11R, p. 118002, 2010.
[38]Y.-Y. Kao, P. C.-P. Chao, and C.-W. Hsueh, "A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths," Optics express, vol. 18, no. 18, pp. 18506-18518, 2010.
[39]Y.-H. Lin, M.-S. Chen, and H.-C. Lin, "An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio," Optics express, vol. 19, no. 5, pp. 4714-4721, 2011.
[40]A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, "Hexagonal liquid crystal lens array for 3D endoscopy," Optics Express, vol. 23, no. 2, pp. 971-981, 2015.
[41]J. Prost, The physics of liquid crystals. Oxford university press, 1995.
[42]D.-K. Yang, Fundamentals of liquid crystal devices. John Wiley & Sons, 2014.
[43]Norland Optical Adhesive 65 https://www.norlandprod.com/adhesives/noa%2065.html
[44]PDMS https://www.sigmaaldrich.com/catalog/product/aldrich/761036?lang=en®ion=TW
[45]Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) https://www.sigmaaldrich.com/catalog/product/aldrich/655201?lang=en®ion=TW
[46]Data sheet E7 http://www.waters.com/webassets/cms/library/docs/720004814en.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top